

GaAs Infrared Emitting Diode in SMT Package

Description

TSMS3700 is a standard GaAs infrared emitting diode in a miniature PLCC-2 package.

Its flat window provides a wide aperture, making it ideal for use with external optics.

The diode is case compatible to the TEMT3700 phototransistor, allowing the user to assemble his own optical interrupters.

94 8553

Features

- · SMT IRED with high radiant power
- · Low forward voltage
- · Compatible with automatic placement equipment
- EIA and ICE standard package
- Suitable for infrared, vapor phase and wavesolder process
- Available in 8 mm tape
- Suitable for DC and high pulse current operation
- Wide angle of half intensity $\varphi = \pm 60^{\circ}$
- Peak wavelength $\lambda_p = 950 \text{ nm}$
- · High reliability
- · Matching to TEMT3700 phototransistor
- Lead-free device

Applications

Infrared source in tactile keyboards

IR diode in low space applications

Matching with phototransistor TEMT3700 in reflective sensors

PCB mounted infrared sensors

Infrared emitter for miniature light barriers

Parts Table

Part	Ordering code	Remarks
TSMS3700		MOQ: 7500 pcs MOQ: 8000 pcs

Absolute Maximum Ratings

 T_{amb} = 25 °C, unless otherwise specified

Parameter	Test condition	Symbol	Value	Unit	
Reverse Voltage		V _R	5	V	
Forward current		I _F	100	mA	
Peak Forward Current	$t_p/T = 0.5, t_p = 100 \mu s$	I _{FM}	200	mA	
Surge Forward Current	t _p = 100 μs	I _{FSM}	1.5	Α	
Power Dissipation		P _V	170	mW	
Junction Temperature		T _j	100	°C	
Operating Temperature Range		T _{amb}	- 55 to + 100	°C	

Document Number 81037 www.vishay.com

Rev. 1.7, 22-Jun-04

Parameter	Test condition	Symbol	Value	Unit
Storage Temperature Range		T _{stg}	- 55 to + 100	°C
Soldering Temperature	t ≤ 10 sec	T _{sd}	260	°C
Thermal Resistance Junction/ Ambient	on PC board	R _{thJA}	450	K/W

Electrical Characteristics

 T_{amb} = 25 °C, unless otherwise specified

Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
Forward Voltage	$I_F = 100 \text{ mA}, t_p = 20 \text{ ms}$	V _F		1.3	1.7	V
	$I_F = 1 \text{ A}, t_p = 100 \ \mu \text{s}$	V _F		1.8		V
Temp. Coefficient of V _F	I _F = 100 mA	TK _{VF}		- 1.3		mV/K
Reverse Current	V _R = 5 V	I _R			100	μΑ
Junction capacitance	V _R = 0 V, f = 1 MHz, E = 0	C _j		30		pF

Optical Characteristics

 T_{amb} = 25 °C, unless otherwise specified

Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
Radiant Intensity	$I_F = 100 \text{ mA}, t_p = 20 \text{ ms}$	I _e	1.6	4.5	8	mW/sr
	$I_F = 1.5 \text{ A}, t_p = 100 \ \mu\text{s}$	I _e		35		mW/sr
Radiant Power	$I_F = 100 \text{ mA}, t_p = 20 \text{ ms}$	φ _e		15		mW
Temp. Coefficient of φ _e	I _F = 100 mA	TK _{φe}		- 0.8		%/K
Angle of Half Intensity		φ		± 60		deg
Peak Wavelength	I _F = 100 mA	λ _p		950		nm
Spectral Bandwidth	I _F = 100 mA	Δλ		50		nm
Temp. Coefficient of λ_p	I _F = 100 mA	TK _{λp}		0.2		nm/K
Rise Time	I _F = 20 mA	t _r		800		ns
		400		ns		
Fall Time	I _F = 20 mA	t _f		800		ns
	I _F = 1 A	t _f		400		ns
Virtual Source Diameter		Ø		0.5		mm

Typical Characteristics (T_{amb} = 25 °C unless otherwise specified)

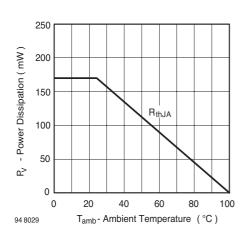


Figure 1. Power Dissipation vs. Ambient Temperature

www.vishay.com Document Number 81037
2 Rev. 1.7, 22-Jun-04

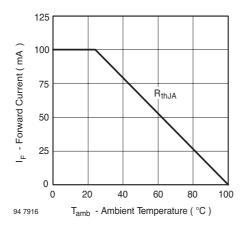


Figure 2. Forward Current vs. Ambient Temperature

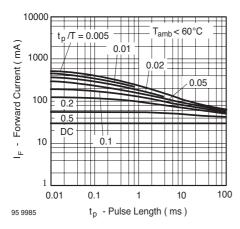


Figure 3. Pulse Forward Current vs. Pulse Duration

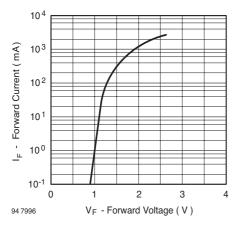


Figure 4. Forward Current vs. Forward Voltage

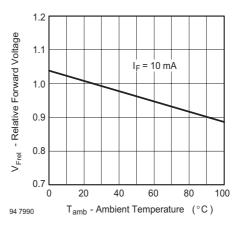


Figure 5. Relative Forward Voltage vs. Ambient Temperature

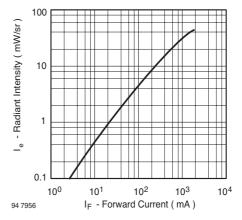


Figure 6. Radiant Intensity vs. Forward Current

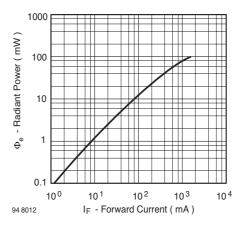


Figure 7. Radiant Power vs. Forward Current

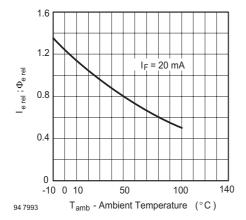


Figure 8. Rel. Radiant Intensity/Power vs. Ambient Temperature

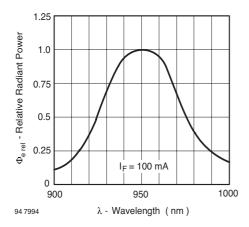


Figure 9. Relative Radiant Power vs. Wavelength

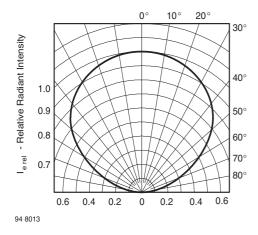
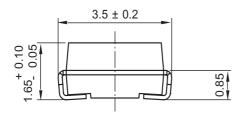
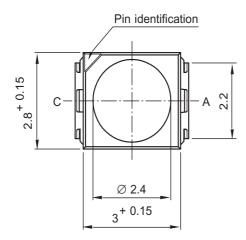
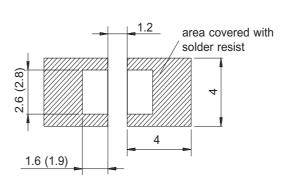



Figure 10. Relative Radiant Intensity vs. Angular Displacement

www.vishay.com Rev. 1.7, 22-Jun-04



Package Dimensions in mm


Mounting Pad Layout

Drawing-No.: 6.541-5025.01-4

Issue: 7; 05.04.04

95 11314

Dimensions: IR and Vaporphase (Wave Soldering)

TSMS3700

Vishay Semiconductors

Ozone Depleting Substances Policy Statement

It is the policy of Vishay Semiconductor GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operatingsystems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

> Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423

Document Number 81037 www.vishay.com Rev. 1.7, 22-Jun-04