

SN54LVTZ245, SN74LVTZ245
3.3-V ABT OCTAL BUS TRANSCEIVERS
WITH 3-STATE OUTPUTS

SCBS303C – DECEMBER 1993 – REVISED JANUARY 1996

- State-of-the-Art Advanced BiCMOS Technology (ABT) Design for 3.3-V Operation and Low-Static Power Dissipation
- High-Impedance State During Power Up and Power Down
- Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V V_{CC})
- Support Unregulated Battery Operation Down to 2.7 V
- Typical V_{OLP} (Output Ground Bounce) < 0.8 V at $V_{CC} = 3.3$ V, $T_A = 25^\circ\text{C}$
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Bus-Hold Data Inputs Eliminate the Need for External Pullup/Pulldown Resistors
- Package Options Include Plastic Small-Outline (DW), Shrink Small-Outline (DB), and Thin Shrink Small-Outline (PW) Packages, Ceramic Chip Carriers (FK), and Ceramic (J) DIPs

description

These octal bus transceivers are designed specifically for low-voltage (3.3-V) V_{CC} operation, but with the capability to provide a TTL interface to a 5-V system environment.

These devices are designed for asynchronous communication between data buses. They transmit data from the A bus to the B bus or from the B bus to the A bus, depending upon the logic level at the direction-control (DIR) input. The output-enable (\overline{OE}) input can be used to disable the devices so the buses are effectively isolated.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

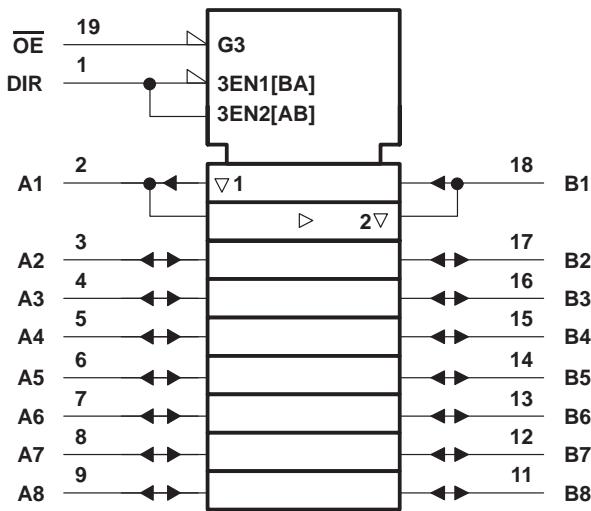
The SN74LVTZ245 is available in TI's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.

The SN54LVTZ245 is characterized for operation over the full military temperature range of -55°C to 125°C . The SN74LVTZ245 is characterized for operation from -40°C to 85°C .

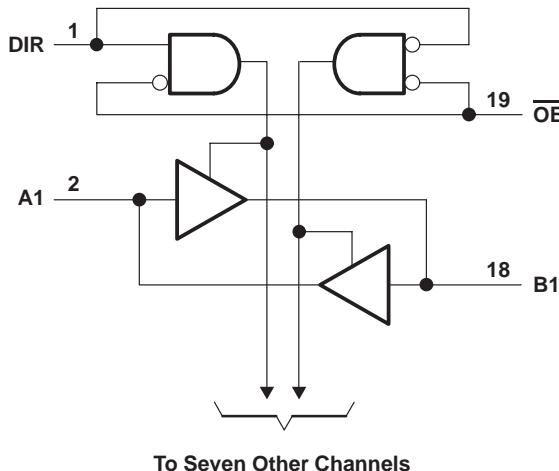
FUNCTION TABLE

INPUTS		OPERATION
OE	DIR	
L	L	B data to A bus
L	H	A data to B bus
H	X	Isolation

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1996, Texas Instruments Incorporated


SN54LVTZ245, SN74LVTZ245 3.3-V ABT OCTAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

SCBS303C – DECEMBER 1993 – REVISED JANUARY 1996

logic symbol†

logic diagram (positive logic)

† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Pin numbers shown are for the DB, DW, PW, and J packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

‡ Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

1. The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are exceeded.
2. This current flows only when the output is in the high state and $V_O > V_{CC}$.
3. The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils. For more information, refer to the *Package Thermal Considerations* application note in the 1994 *ABT Advanced BiCMOS Technology Data Book*, literature number SCBD002B.

**SN54LVTZ245, SN74LVTZ245
3.3-V ABT OCTAL BUS TRANSCEIVERS
WITH 3-STATE OUTPUTS**

SCBS303C – DECEMBER 1993 – REVISED JANUARY 1996

recommended operating conditions (see Note 4)

		SN54LVTZ245		SN74LVTZ245		UNIT
		MIN	MAX	MIN	MAX	
V _{CC}	Supply voltage	2.7	3.6	2.7	3.6	V
V _{IH}	High-level input voltage	2		2		V
V _{IL}	Low-level input voltage		0.8		0.8	V
V _I	Input voltage		5.5		5.5	V
I _{OH}	High-level output current		-24		-32	mA
I _{OL}	Low-level output current		48		64	mA
Δt/Δv	Input transition rise or fall rate	Outputs enabled		10	10	ns/V
Δt/ΔV _{CC}	Power-up ramp rate			200	200	μs/V
T _A	Operating free-air temperature	-55	125	-40	85	°C

NOTE 4: Unused control inputs must be held high or low to prevent them from floating.

**SN54LVTZ245, SN74LVTZ245
3.3-V ABT OCTAL BUS TRANSCEIVERS
WITH 3-STATE OUTPUTS**

SCBS303C – DECEMBER 1993 – REVISED JANUARY 1996

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	SN54LVTZ245			SN74LVTZ245			UNIT
		MIN	TYP†	MAX	MIN	TYP†	MAX	
V_{IK}	$V_{CC} = 2.7 \text{ V}$, $I_I = -18 \text{ mA}$			-1.2			-1.2	V
V_{OH}	$V_{CC} = \text{MIN to MAX}^‡$, $I_{OH} = -100 \mu\text{A}$			$V_{CC} - 0.2$			$V_{CC} - 0.2$	V
	$V_{CC} = 2.7 \text{ V}$, $I_{OH} = -8 \text{ mA}$			2.4			2.4	
	$V_{CC} = 3 \text{ V}$	$I_{OH} = -24 \text{ mA}$		2			2	
		$I_{OH} = -32 \text{ mA}$						
V_{OL}	$V_{CC} = 2.7 \text{ V}$	$I_{OL} = 100 \mu\text{A}$		0.2			0.2	V
		$I_{OL} = 24 \text{ mA}$		0.5			0.5	
	$V_{CC} = 3 \text{ V}$	$I_{OL} = 16 \text{ mA}$		0.4			0.4	
		$I_{OL} = 32 \text{ mA}$		0.5			0.5	
		$I_{OL} = 48 \text{ mA}$		0.55				
		$I_{OL} = 64 \text{ mA}$					0.55	
	$V_{CC} = 3.6 \text{ V}$	$V_I = V_{CC} \text{ or GND}$	Control inputs	±1			±1	μA
		$V_{CC} = 0 \text{ or MAX}^‡$, $V_I = 5.5 \text{ V}$		10			10	
		$V_I = 5.5 \text{ V}$	A or B ports§	100			20	
		$V_I = V_{CC}$		5			5	
		$V_I = 0$		-10			-10	
I_{off}	$V_{CC} = 0$, $V_I \text{ or } V_O = 0 \text{ to } 4.5 \text{ V}$						±100	μA
I_{OZPU}^{\dagger}	$V_{CC} = 0 \text{ to } 1.5 \text{ V}$, $V_O = 0.5 \text{ V to } 3 \text{ V}$, $\overline{OE} = X$						±50	μA
I_{OZPD}^{\dagger}	$V_{CC} = 1.5 \text{ V to } 0$, $V_O = 0.5 \text{ V to } 3 \text{ V}$, $\overline{OE} = X$						±50	μA
$I_{I(hold)}$	$V_{CC} = 3 \text{ V}$	$V_I = 0.8 \text{ V}$	A or B ports	75			75	μA
		$V_I = 2 \text{ V}$		-75			-75	
I_{OZH}	$V_{CC} = 3.6 \text{ V}$, $V_O = 3 \text{ V}$				1		1	μA
I_{OZL}	$V_{CC} = 3.6 \text{ V}$, $V_O = 0.5 \text{ V}$				-1		-1	μA
I_{CC}	$V_{CC} = 3.6 \text{ V}$, $I_O = 0$, $V_I = V_{CC} \text{ or GND}$	Outputs high		0.13	0.5		0.13	0.225
		Outputs low		8.8	17		8.8	15
		Outputs disabled		0.13	0.5		0.13	0.225
$\Delta I_{CC}^{\#}$	$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$, One input at $V_{CC} - 0.6 \text{ V}$, Other inputs at V_{CC} or GND			0.3			0.2	mA
C_I	$V_I = 3 \text{ V or } 0$			4			4	pF
C_{IO}	$V_O = 3 \text{ V or } 0$			10			10	pF

† All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^\circ\text{C}$.

‡ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

§ Unused terminals at V_{CC} or GND

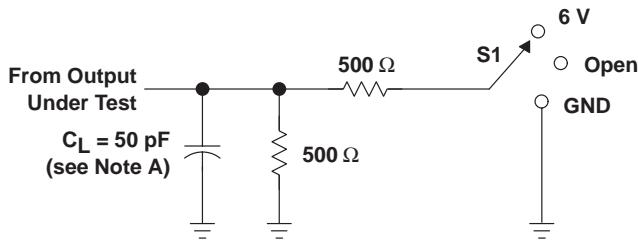
¶ This parameter is specified by characterization but is not production tested.

This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

SN54LVTZ245, SN74LVTZ245
**3.3-V ABT OCTAL BUS TRANSCEIVERS
 WITH 3-STATE OUTPUTS**

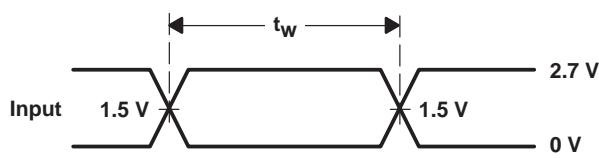
SCBS303C – DECEMBER 1993 – REVISED JANUARY 1996

switching characteristics over recommended operating free-air temperature range, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)

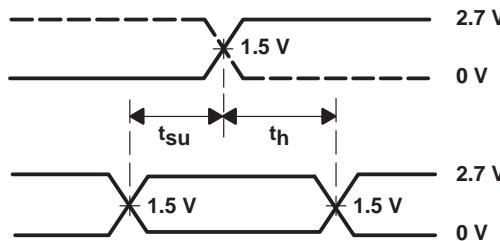

PARAMETER	FROM (INPUT)	TO (OUTPUT)	SN54LVTZ245				SN74LVTZ245				UNIT
			V _{CC} = 3.3 V $\pm 0.3 \text{ V}$		V _{CC} = 2.7 V		V _{CC} = 3.3 V $\pm 0.3 \text{ V}$		V _{CC} = 2.7 V		
			MIN	MAX	MIN	MAX	MIN	TYP [†]	MAX	MIN	MAX
t _{PLH}	A or B	B or A	1	4.6		5.3	1	2.5	4		5.2
t _{PHL}			1	4.1		5.7	1	2.5	4		5.5
t _{PZH}	$\overline{\text{OE}}$	A or B	1.1	6.1		7.2	1.1	3.3	5.9		7.1
t _{PZL}			1.5	6.6		8	1.5	3.8	6.5		7.9
t _{PHZ}	$\overline{\text{OE}}$	A or B	2.2	6.2		7	2.2	4.3	5.9		6.5
t _{PLZ}			2	5.7		5.9	2	3.9	5.5		5.6

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

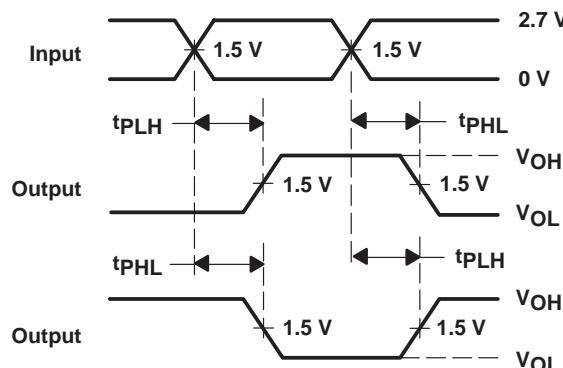
**SN54LVTZ245, SN74LVTZ245
3.3-V ABT OCTAL BUS TRANSCEIVERS
WITH 3-STATE OUTPUTS**


SCBS303C – DECEMBER 1993 – REVISED JANUARY 1996

PARAMETER MEASUREMENT INFORMATION


TEST	S1
t_{PLH}/t_{PHL}	Open
t_{PLZ}/t_{PZL}	6 V
t_{PHZ}/t_{PZH}	GND

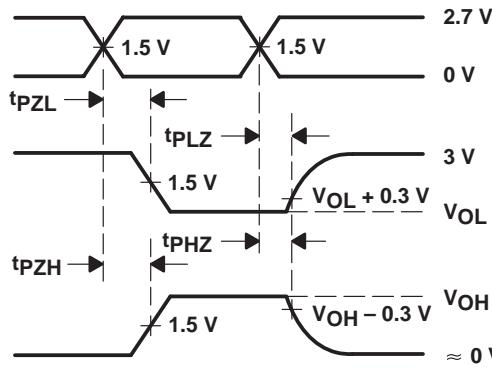
LOAD CIRCUIT FOR OUTPUTS



VOLTAGE WAVEFORMS
PULSE DURATION

Timing Input

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES



VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS

Output Control

Output Waveform 1
S1 at 6 V
(see Note B)

Output Waveform 2
S1 at GND
(see Note B)

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING

NOTES:

- C_L includes probe and jig capacitance.
- Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- All input pulses are supplied by generators having the following characteristics: PRR $\leq 10 \text{ MHz}$, $Z_O = 50 \Omega$, $t_f \leq 2.5 \text{ ns}$, $t_f \leq 2.5 \text{ ns}$.
- The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.