
SK 75 GARL 065 E

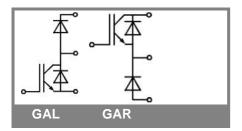
SEMITOP® 3

IGBT Module

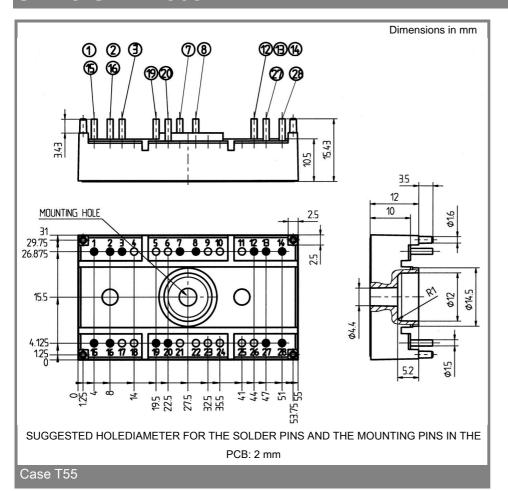
SK 75 GARL 065 E

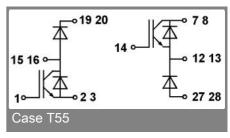
Target Data

Features


- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N-channel homogeneous silicon structure (NPT-Non punch-through IGBT)
- · High short circuit capability
- Low tail current with low temperature dependence

Typical Applications


- Switching (not for linear use)
- Driver
- Switched mode power supplies
- UPS


Absolute	Maximum Ratings	T _s = 25 °C, unless otherwise specified					
Symbol	Conditions	Values	Units				
IGBT							
V_{CES}		600	V				
V_{GES}		± 20	V				
I _C	T _s = 25 (80) °C;	79 (55)	Α				
I _{CM}	$t_p < 1 \text{ ms; } T_s = 25 (80) \text{ °C;}$	158 (110)	Α				
T_j		- 40 + 150	°C				
Inverse / Freewheeling CAL diode							
$I_F = -I_C$	T _s = 25 (125) °C;	84 (57)	Α				
$I_{FM} = -I_{CM}$	$t_p < 1 \text{ ms; } T_s = 25 (125) \text{ °C;}$	168 (114)	Α				
T_j		- 40 + 150	°C				
T _{stg}		- 40 + 125	°C				
T _{sol}	Terminals, 10 s	260	°C				
$V_{\rm isol}$	AC 50 Hz, r.m.s. 1 min. / 1 s	2500 / 3000	V				

Characteristics		T _s = 25 °C, unless otherwise specified					
Symbol	Conditions	min.	typ.	max.	Units		
IGBT					•		
V _{CE(sat)}	$I_C = 60 \text{ A}, T_j = 25 (125) ^{\circ}\text{C}$ $V_{CE} = V_{GE}; I_C = \text{A}$	4,5	1,8 (1,9) 5.5	6,5	V		
V _{GE(th)} C _{ies}	$V_{CE} = V_{GE}, V_{CE} = 0$ V; 1 MHz	4,5	3,3	0,5	nF		
$R_{th(j-s)}$	per IGBT			0,6	K/W		
	per module				K/W		
	under following conditions:						
t _{d(on)}	$V_{CC} = 300 \text{ V}$, $V_{GE} = \pm 15 \text{ V}$				ns		
t _r	I _C = 25 A, T _j = 125 °C				ns		
t _{d(off)}	$R_{Gon} = R_{Goff} = 33 \Omega$				ns		
t _f					ns		
$E_{on} + E_{off}$	Inductive load				mJ		
Inverse / Freewheeling CAL diode							
$V_F = V_{EC}$	I _F = 60 A; T _i = 25 (125) °C		1,45 (1,4)		V		
V _(TO)	T _i = 125 °C		0,9		V		
r _T	T _j = 125 () °C		5	9	mΩ		
$R_{th(j-s)}$				0,85	K/W		
	under following conditions:						
I _{RRM}	$I_F = 50 \text{ A}; V_R = 300 \text{ V}$		22		Α		
Q_{rr}	$dI_F/dt = -500 A/\mu s$				μC		
E _{off}	V _{GE} = 0 V; T _j = 125 °C				mJ		
Mechanical data							
M1	mounting torque			2,5	Nm		
w			30		g		
Case	SEMITOP® 3		T55				

SK 75 GARL 065 E

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.