

Miniature Glass Passivated Junction Plastic Controlled Avalanche Rectifiers

Reverse Voltage
 400 to 800V

Forward Current 1.5A

*Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976; brazed-lead assembly by Patent No. 3,930,306 of 1976 and glass composition by Patent No. 3,752,701 of 1973

Features

- Plastic package has Underwriters Laboratory Flammability Classification 94V-0
- High temp. metallurgically bonded constructed rectifiers
- Controlled Avalanche characteristic combined with the ability to dissipate reverse power
- Glass passivated cavity-free junction in DO-15 package
- 1.5 Ampere operation at $T_A=55^\circ\text{C}$ with no thermal runaway
- Typical I_R less than $0.1\mu\text{A}$
- Capable of meeting environmental standards of MIL-S-19500
- High temperature soldering guaranteed: $350^\circ\text{C}/10$ seconds, 0.375" (9.5mm) lead length, 5 lbs. (2.3kg) tension

Mechanical Data
Case: Molded plastic over glass

Terminals: Plated axial leads, solderable per MIL-STD-202, Method 208

Polarity: Color band denotes cathode end

Mounting Position: Any

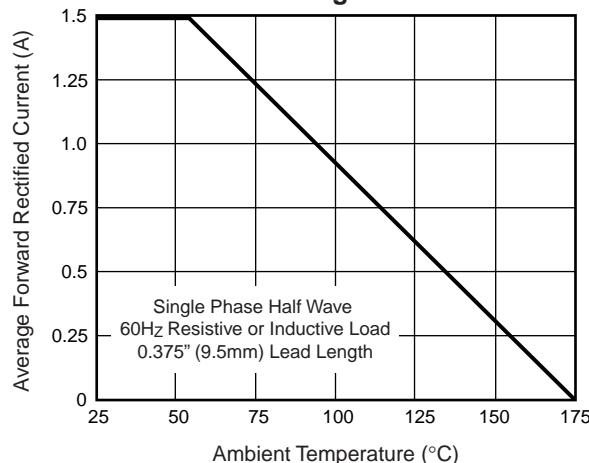
Weight: 0.0154 oz., 0.4 g

Maximum Ratings & Thermal Characteristics

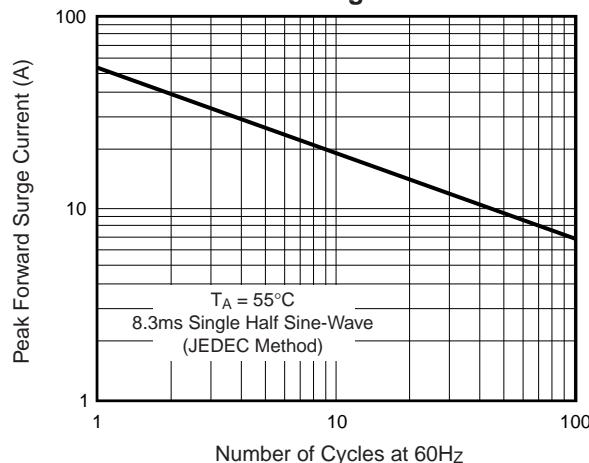
 Ratings at 25°C ambient temperature unless otherwise specified.

Parameter	Symbol	AGP15-400	AGP15-600	AGP15-800	Unit
Maximum Recurrent Peak Reverse Voltage	V_{RRM}	400	600	800	V
Maximum RMS voltage	V_{RMS}	280	420	560	V
Maximum DC blocking voltage	V_{DC}	400	600	800	V
Maximum Peak Power Dissipation in the Avalanche Region 20 μs Pulse	PR_M		500		W
Max. Average Forward Rectified Current 0.375" (9.5mm) Lead Lengths at $T_A = 55^\circ\text{C}$	I_{AV}		1.5		A
Peak forward surge current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	I_{FSM}		50		A
Maximum full load reverse current, full cycle average 0.375" (9.5mm) lead length at $T_A = 55^\circ\text{C}$	$I_{R(AV)}$		100		μA
Typical thermal resistance (Note 1)	$R_{\theta JA}$		25		$^\circ\text{C}/\text{W}$
Operating and storage temperature range	T_J, T_{STG}		-65 to +175		$^\circ\text{C}$

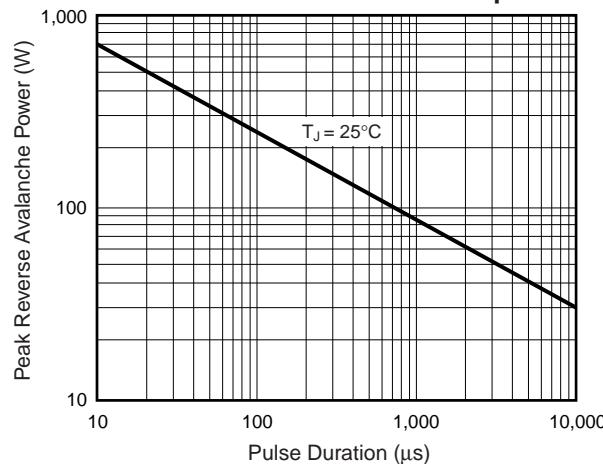
Electrical Characteristics

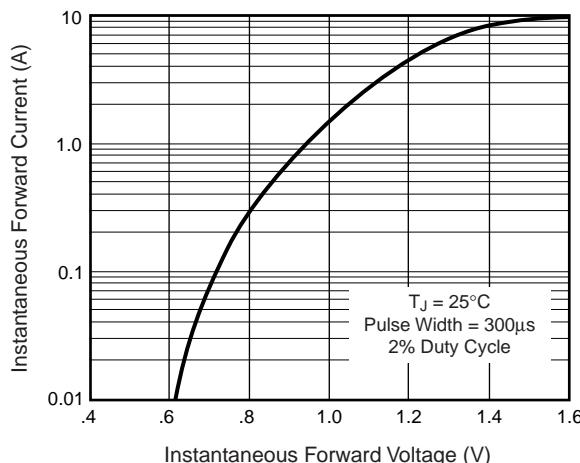

 Ratings at 25°C ambient temperature unless otherwise specified.

Minimum Avalanche Breakdown Voltage at $100\mu\text{A}$	V_{BR}	450	675	880	V
Maximum Avalanche Breakdown Voltage at $100\mu\text{A}$	V_{BR}	750	1000	1200	V
Maximum instantaneous forward voltage at 1.5A	V_F		1.1		V
Maximum reverse current at rated DC blocking voltage	I_R		5.0		μA
Typical reverse recovery time $I_F=0.5\text{A}$, $I_R=1.0\text{A}$, $I_{rr}=0.25\text{A}$	t_{rr}		2.0		μs
Typical junction capacitance at 4.0V, 1MHz	C_J		15		pF


Note: (1) Thermal resistance from junction to ambient at 0.375" (9.5mm) lead length, P.C. Board mounted

Ratings and Characteristic Curves ($T_A = 25^\circ\text{C}$ unless otherwise noted)


Fig. 1 – Maximum Forward Current Derating Curve


Fig. 3 – Maximum Non-Repetitive Peak Forward Surge Current

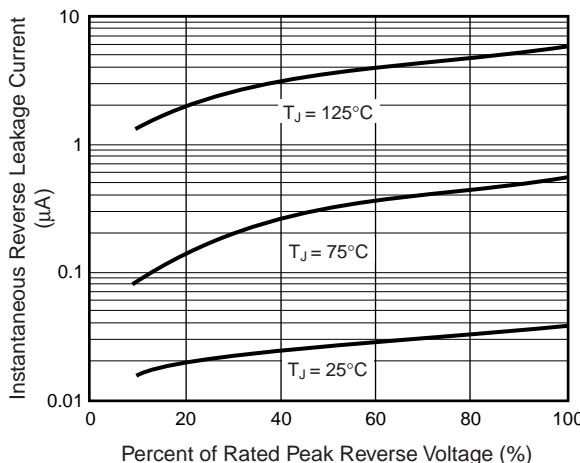

Fig. 5 – Maximum Non-Repetitive Reverse Avalanche Power Dissipation

Fig. 2 – Typical Instantaneous Forward Characteristics

Fig. 4 – Typical Reverse Leakage Characteristics

