Monolithic Linear IC

FM Modulator and Demodulator IC

http://onsemi.com

Overview

The LA72912V is a FM modulation and demodulation single-chip IC. Its adjustment free modulation/demodulation circuit significantly reduces the number of peripheral circuits required and can contribute to lower production costs.

Functions

- ASK modulation and demodulation
- Video signal FM modulation and demodulation
- Video signal emphasis and de-emphasis function
- Drop-Out detecting function of Video FM signal
- FM mute function at Second-Call

Specifications

Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max		7.0	V
Allowable power dissipation	Pd max		300	mW
Operating temperature	Topr	Ta ≤ 70°C *	-30 to +70	°C
Storage temperature	Tstg		-40 to +150	°C

^{*} Mounted on a 114.3mm \times 76.1mm \times 1.6mm, glass epoxy board.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Recommended Operating Conditions at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Recommended supply voltage	V _{CC}		5.0	V
Allowable operating voltage range	V _{CC} op	Ta = -30 to +70°C	4.7 to 5.5	V

Electrical Characteristics at Ta = 25°C, $V_{CC} = 5V$

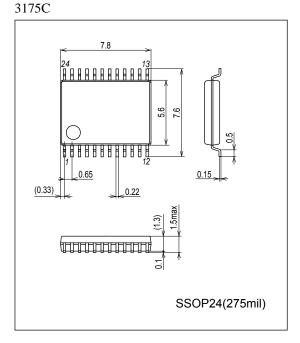
DC CHARACTERISTICS T6 = 0.4V, T17 = 2.0V, T18 = 0.4V

Danamatan	O. mala al		OUT	Conditions		Ratings		11:4
Parameter	Symbol	In	OUT	Conditions	min	typ	max	Unit
Control terminal	CNT6L	T6		Low level of control terminal of ALL mode.	0		0.4	V
(Pin6,9) Low level	CNT17L	T17		T6 = 0.4V(DEMOD mode),T17 = 0.4V (Standby mode)				
Control terminal	CNT6H	T6		High level of input terminal of ALL mode	2.0		5.0	V
(Pin6,9)High level	CNT17H	T17		T6 = 2.0V (MOD mode), T17 = 2.0V (Normal mode)				
Input5 Low level	IN5L	T5		Low level of input terminal of MOD mode	0		0.4	V
				T6 = 2.0V, T17 = 2.0V, T18 = 0.4V				
Input5 High level	IN5H	T5		High level of input terminal of MOD mode	2.0		5.0	V
				T6 = 2.0V, T17 = 2.0V, T18 = 0.4V				
Input18 Low level	IN18L	T18		Low level of input terminal of MOD mode	0		0.4	V
				T5 = 0.4V, T6 = 2.0V, T17 = 2.0V				
Input18 High level	IN18H	T18		High level of input terminal of MOD mode	2.0		5.0	V
				T5 = 0.4V, T6 = 2.0V, T17 = 2.0V				
Output18 terminal	OPH18		T18	DEMOD mode: FM-Signal input	4.7			V
High level				T6 = 0.4V, T17 = 2.0V, Pull-UP:15KΩ				
Output18 terminal	OPL13		T18	T18: DEMOD mode: FM No-signal	0	0.25	0.4	V
Low level	OPL18			Measure the sink level of output terminal.				
				T6 = 0.4V, T17 = 2.0V, Pull-UP:15KΩ				
InpuT20 Low level	IN20L	T20	T20	Voltage of terminal at AGC ON	0		3	V
				T6 = 0.4V, T17 = 2.0V				
InpuT20 High level	IN20H	T20	T20	Voltage of terminal at AGC OFF	4.5		5.0	V
				T6 = 0.4V, T17 = 2.0V				
5pin AC input dynamic	ACIN5	T5A	Т3	Input amplitude level of FM signal			1000	mVp-p
range				Freq: 11.5MHz to 13.5MHz				
16pin AC input	ACIN16	T24A	T3	Maximum input level of T24A at Video signal			1.5	Vp-p
dynamic range								

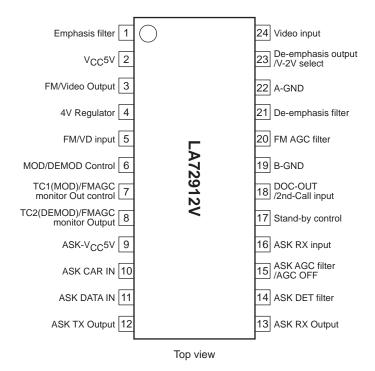
Video FM Modulation Block (MOD) $\,T6{=}2.0V,\!T17{=}2.0V,\!T18{=}0.4V$

Danasatas	O. mala al	1	OUT	0	Ratings			Unit
Parameter	Symbol	In	001	Conditions	min	typ	max	Unit
Current dissipation	ICCR			measure the currents into pins 2 (MOD mode)	22.0	27.0	32.0	mA
FM modulator output	VFM1		Т3	Measure the output level on T3 (No signal input)		1.8	2.2	Vp-p
level				It is load impedance 200 Ω between T3-GND.				
FM Mute output level	VFM2		Т3	Measure the T3 output level with 2nd call	0	10	20	mVp-p
Carrier frequency	FFM		Т3	Measure the output frequency on T3 with no signal input	10.9	11.5	12.1	MHz
FM output Second harmonic distortion	THD2		Т3	Measure the second harmonics distortion with the above condition		-30	-20	dB
Deviation	DEV	T24A	T3	With T24A 100% White 1Vp-p signal,	1.9	2.0	2.1	MHz
Deviation	DLV	127/	13	Measure the deviation on T3	1.3	2.0	2.1	IVII IZ
FM modulator linearity (11.5MHz to 13.5MHz)	LMOD	T24A	Т3	Let f2.85, f3.35 and f3.85 be the output frequency when 2.85V, 3.35V and 3.85V is applied to T24A $LMOD = \frac{f3.35 - (f3.85 + f2.85) / 2}{f3.85 - f2.85} \times 100$	-2	0	+2	%
Emphasis gain	GEMP	T24A	T20	With V _{IN} a 300mVp-p 10kHz sine wave, Measure the ratio of the levels on T24A and T20	-7.5	-6.0	-4.5	dB
Main linear emphasis characteristics(1)	GME1	T24A	T20	With V _{IN} a 300mVp-p 500kHz sine wave, Measure the ratio of the levels on T24A and T20	0.0	1.5	3.0	dB
Main linear emphasis characteristics(2)	GME2	T24A	T20	With V _{IN} a 300mVp-p 2MHz sine wave, Measure the ratio of the levels on T24A and T20	4.0	5.5	7.0	dB
White clipping level	LWC	T24A	T20	With V _{IN} a 1.5Vp-p 100% white video signal. Measure the white clipping level on T20	180	200	220	%
Dark clipping level	LDC	T24A	T20	With V _{IN} a 1.5Vp-p 100% white video signal. Measure the dark clipping level on T20.	-60	-50	-40	%
FM stop beginning delay time (VD characteristic 1B)	TC1	T5	Т3	$C7 = 0.01\mu F$, Time from fall of T5 signal to doing of FM carrier of T3 STOP	240	300	360	μs
FM stop time (VD characteristic2A)	TC2	Т5	Т3	C8 = 0.001µF, Stop time of FM carrier of T3	30	40	50	μs
Minimum VD pulse width	VDT	Т5	Т3	C7 = 0.01µF, Minimum VD pulse width to which TC1B is normally output	63			μs

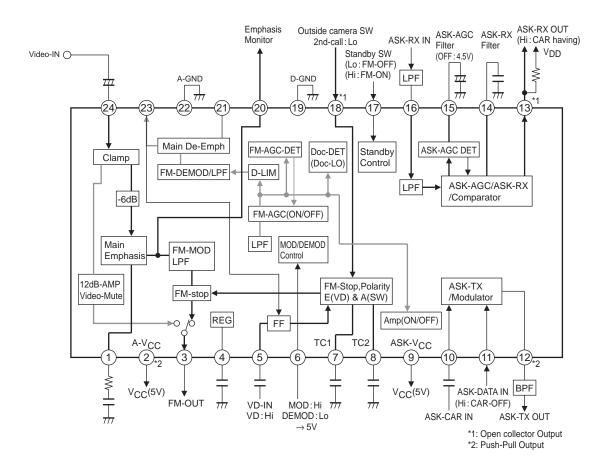
Video FM De-modulation Block (DEMOD) T6=0.4V,T17=2.0V

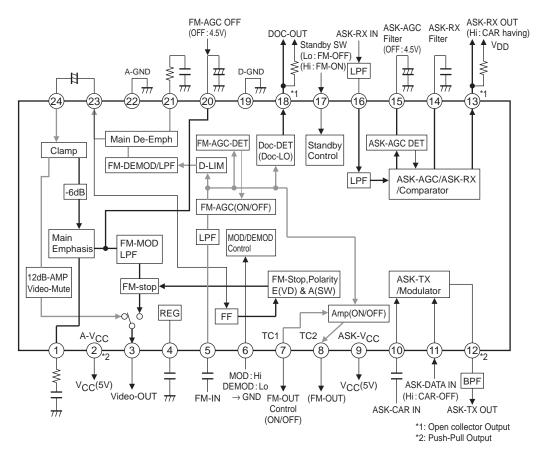

Parameter	Symbol	In	OUT	Conditions	min	Ratings typ	max	Unit
Current dissipation	IccP			Measure the currents into pin 2 (DEMOD mode)	26.0	32.0	38.0	mA
Video output level	VOUT	T5A	Т3	Demodulation level, when the FM signal of 2.2MHz deviation. Load impedance = 1kΩ T3-GND.	2.09	2.2	2.31	Vp-p
Video output level B	V _{OUT} B	T5A	Т3	Demodulation level, when the FM signal of 2.0MHz deviation. Load impedance = $1k\Omega$ T3-GND. (In this case only, V_{CC} make 4.5V to 5.5V.)	1.9	2.0	2.1	Vp-p
FM stop detection level (DOC characteristic 1)	DOC1	T5A T20	T18 T20	T5 = 11.5MHz, 300mVp-p. Measure T20 voltage (V20). Set T20 V20 (AGC-Fix). T5 input level when T5 amplitude is decrease gradually, and T18 becomes "Low"		40	60	mVp-p
(Drop Delay Down)	DDD	T5A T20	T18 T20	Shift time from T5 = 300mVp-p → 0mVp-p to T18 "Low".	0.5	1.5	2.5	μs
FM return judgment level	DOC2	T5A T20	T18 T20	T5 = 11.5MHz, 300mVp-p, Measure T20 Voltage (V20). Set T20 V20 (AGC-Fix). T5 inputs the level when T5 amplitude is increase gradually, and T18 becomes "High"		60	90	mVp-p
Video DC level when returning	DOC2B	T5A T20	T23	Confirmation of output of Video signal from T3. Measurement of DC level.	0.5	1.0	1.5	V
(Drop Delay Rise) Return operation delay time	DWR	T5A T20	T18 T20	Shift time from T5 = 0mVp-p →3 00mVp-p to T18 "High"	0.2	1.5	2.5	μsec
4V Regulator	VREG		T4	Measurement of T4 DC level.	3.9	4.0	4.3	V
Range of input Dynamic range	ACIN5	T5A	Т3	DEV = 2.0MHz. Input amplitude level of FM signal. (T5A: 11.5MHz to 13.5MHz)		500	1000	mVp-p
DG	DG	T5A	Т3		0	6	10	%
DP	DP	T5A	Т3		0	6	10	deg
Output voltage at mute	MUV		Т3	Mute level measurement of T3	0	10	20	IRE
FM demodulation voltage (11.0M)	VDEM11 VDEM12 VDEM13	T5A	T23	T5A = 11.0MHz, 100mVp-p, 200mVp-p and 400mVp-p. Each T23 voltage measurement	0.3	0.8	1.3	V
FM demodulation voltage (12.5M)	VDEM21 VDEM22 VDEM23	T5A	T23	T5A = 12.5MHz, 100mVp-p, 200mVp-p and 400mVp-p. Each T23 voltage measurement	0.7	1.2	1.7	V
FM demodulation voltage (14.0M)	VDEM31 VDEM32 VDEM33	T5A	T23	T5A = 14MHz, 100mVp-p, 200mVp-p and 400mVp-p Each T23 voltage measurement	1.1	1.6	2.1	V
FM demodulation linearity1,2,3	LDEM1 LDEM2 LDEM3			Calculate FM demodulation linearity LDEM1 = {[VDEM21 - (VDEM11 + VDEM31) / 2]	-2	0	+2	%
FM demodulation Sensitivity1,2,3	SDEM1 SDEM2 SDEM3			Calculate FM recovery Sensitivity with consider pin 3 output level conversion ratio. SDEM1 = (VDEM31-VDEM11)/3.0 SDEM2 = (VDEM32-VDEM12)/3.0 SDEM3 = (VDEM33-VDEM13)/3.0	0.28	0.33	0.38	V/MHz
Main linear de-emphasis amplitude	GMED	T5A	T23	T5 = 200mVp-p FM signal (fm = 10kHz, Center Carrier = 12.5MHz, DEV = 2.0MHz) Signal level of T23	481	535	589	mVp-p
Main linear de-emphasis Characteristics(1)	GMED1	T5A	T23	T5 = 200mVp-p FM signal (fm = 500kHz, Center Carrier = 12.5MHz, DEV = 2.0MHz). Signal level of T23 versus GMRD (Ratio of GMED).	-3.5	-1.5	+0.5	dB
Main linear de-emphasis Characteristics(2)	GMED2	T5A	T23	T5 = 200mVp-p FM signal (fm = 2MHz, Center Carrier = 9.25MHz, DEV = 2.0MHz). Signal level of T23 versus GMRD (Ratio of GMED)	-6.5	-4.5	-2.5	dB

ASK Block T17=0.4V


Damanatan	Commanda a l	1	OUT	Conditions		Ratings		11
Parameter	Symbol	In	001	Conditions	min	typ	max	Unit
Current dissipation at standby	I _{CC} S	T17		At standby mode, measures include current to pin2,9. T17 = 0.4V, T15 and T20:open	10.8	13.0	15.5	mA
Current dissipation at standby at MOD-AGC-OFF	I _{CC} Sb	T17 T15		At standby mode, measures include current to pin2,9. T17 = 0.4V, T15 = 5V, T20:open	12.8	16.0	19.2	mA
Current dissipation at standby at DEMOD-AGC-OFF	I _{CC} Sc	T17 T15 T20		At standby mode, measures include current to pin2,9. T17 = 0.4V, T15 = 5V, T20 = 5V	16.8	21.0	25.2	mA
Standby release time(1) (FM stop→release)	S _{ASK} 1	T6 T17	Т3	T6 = 2.0VDC T17 = 0V→2V (Standby release) Time until FM carrier is output to T3.	0.0	6.0	12.0	μs
Standby release time(2) (Video signal stop →release)	S _{ASK} 2	T6 T5A T17	Т3	T6 = 0.4V, T5 = DEV = 2.0MHz 100% white video signal of FM signal. T17 = 0V \rightarrow 2V (Standby release) Time until white 100% signal is output to T3	2.0	7.0	12.0	μs
ASK Transmitting time "transmission"	T _{ASK} 1	T10A T11	T12	T10A = 1MHz,0/2V Pulse T11 = 20KHz, 0/2VPulse. Measure T12 signal appear time			0.1	ms
ASK Transmitting time "Receive"	T _{ASK} 2	T16A	T13	T16 = 1MHz, 300mVp-p-SIN wave Measure time T13 appear detected T16 signal			0.1	ms
ASK transmission setup time	W _{ASK}	T10A T11	T12	T10A = 1MHz, 0-2V-pulse T11 = 20KHz,0-2V-pulse Measure T11 input interval time when T10A input		10	100	ms
ASK minimum detect level	VASK	T16A	T13	Measure T16 minimum level at T13 is normally condition	0.2		3	Vp-p
ASK start up time	O _{ASK}	T16A	T13	Measure time ASK working from Power-ON	-	30	300	ms
ASK demodulation duty ratio	D _{ASK}	T16A	T13	T16 = T12 output signal (0-2Vp-p) Measure ASK Duty difference with 50% DASK = (pulse width μs / 50μs) - 50% × 100%	-15	-2	11	%

Package Dimensions


unit: mm (typ)


Pin Assignment

Block Diagram and Application Circuit Example1 Modulation (Outside camera)

Application Circuit Example2 Demodulation (Inside monitor)

Pin Function

Pin No.	Pin name	FM MOD mode(Outside camera)	FM DEMOD mode(Inside Monitor)	Note
1	Emphasis filter	Emphasis filter connection pin	Non connect(Hi-Z)	If you no need, this pin is open.
2	V _{CC} 5V	V _{CC} for FM modulation.	V _{CC} for FM demodulation.	, , , , ,
3	FM/Video Output	FM Output	Video Output	Push-pull output
	·	(R _O =200Ω:1.8Vp-p)	(R _O =1kΩ: 2Vp-p)	
4	4V Regulator	FM modulate block and ASK bock	FM demodulate block and ASK bock	
		supply reference voltage.	supply reference voltage.	
5	FM/VD input	VD Input.	FM Input.	DEMOD mode: Set
		(Hi: over 2V, Low: under 0.4V)	(Recommend Level: 100 to 620mVp-p)	3.3V by internal bias. (34k Ω /66k Ω)
6	MOD/DEMOD Control	(VD DET: High) Set over 2V DC voltage.	Set under 0.4V DC voltage.	Outside camera /
	WOD/DEWOD CONTO	Get over 2v DC voltage.	Set under 0.44 DC voltage.	Inside monitor setting.
7	TC1(MOD)/	Set capacitor for TC1	FMAGC monitor out control	Can do second inside monitor
	FMAGC monitor		GND: Monitor ON / V _{CC} : Monitor OFF	addition
	Out control			
8	TC2(DEMOD)/	Set capacitor for TC2	FMAGC monitor output	Can do second inside monitor
	FMAGC monitor Output			addition
9	ASK-V _{CC} 5V	V _{CC} for ASK	←	
10	ASK CAR IN	ASK carrier Input.	←	2.1V by internal bias. (50kΩ)
		(Recommend below 3Vp-p)		,
11	ASK DATA IN	ASK Data Input.	←	
		(Hi: more than 2V, Lo: below 0.4V)		
12	ASK TX Output	ASK modulated signal Output	←	Push-pull output
13	ASK RX Output	ASK Demodulated Output	←	Open collector output
14	ASK DET filter	ASK Detector filter	,	ASK carrier detect = Lo
15	ASK AGC filter	AGC filter for ASK. (When AGC	←	
15	/AGC OFF	operate voltage is 0V to 3V, AGC stop	←	
		when you add over 4.5V.)		
16	ASK RX input	ASK Demodulate Input	←	3.3V by internal bias. (34k Ω /66k Ω)
17	Standby control	FM blocks standby control. (FM block	←	
		operate: over 2V, FM block standby:		
		under 0.4V)		
18	DOC-OUT	2ND-Call input, 2ND-Call: Low (High:	DOC output	DEMOD mode:
	/2nd-Call input	over 2V, Low: under 0.4V)	(When DO-DET, output is Low)	Open collector output.
19	B-GND	Circuit GND	←	
20	FM AGC filter	Emphasis monitor output	FM AGC control filter (AGC-ON:0 to	MOD mode: Don't connect
			3V DC, AGC-OFF:4.5V to 5V by	capacitor.
21	De-emphasis filter	Non connect(Hi-Z)	external DC voltage.) De-emphasis filter connection pin.	If you don't need, this pin is open.
22	A-GND	Circuit GND	← ←	,
23	De-emphasis output	DFF for V-diff control	DE-emphasis output	MOD mode;
	/V-2V select	(ON: over 2V, OFF: under 0.4V)	P	VD diff. Count select
		•		0V : VD through
				2V : VD 1/2 diff
24	Video input	Video signal input.	Video signal input.	MOD mode: Maximum video input
		(from outside CCD camera: 1Vp-p).	(from de-emphasis block: 0.5Vp-p).	level is 1.5Vp-p.

Pin Description

Pin No.	Pin Name	Description	Equivalent circuit
1	Emphasis filter	Main Emphasis filter pin. Before FM Modulation, make emphasis characteristic at video signal. Emphasis time constant must be matching at de-emphasis time constant. (If you don't need the emphasis, this pin is open.)	
2	V _{CC} 5V	V _{CC} pin. Supply voltage is 5V DC. Please connect de-coupling capacitor.	
3	FM/Video OUT	Push-Pull output pin. MOD mode: FM carrier output. (1.8Vp-p: Rout=200 Ω) DEMOD mode: Video signal output. (2.0Vp-p: Rout=1k Ω)	MOD \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
4	Regulator filter	Internal regulator filter pin. Please connect 0.1μF (C1).	4 23kΩ 10kΩ \$50kΩ
5	FM/VD input	DEMOD mode: FM signal input. Internal DC bias is 3.3V. Please use capacitor (C1) coupling. MOD mode: VD signal input. Please input VD signal directory. Please consider input impedance.	FM Sig C1 Sig VD Sig VD Sig
6	MOD/DEMOD Control	MOD mode / DEMOD mode setting pin. MOD mode: Please set over 2V DC voltage. (2 to 5V). DEMOD mode: Please set under 0.4V DC voltage. (0 to 0.4V).	30μA 6 W
7	TC1(MOD)/ FMAGC monitor Control	MOD mode: TC1 filter pin. Please connect C1. DEMOD mode: FM-AGC monitor on/off control. GND: AGC-monitor ON VCC: AGC-monitor OFF	7 20μA 20μA 20μA 20μA 200Ω 1kΩ 30μA

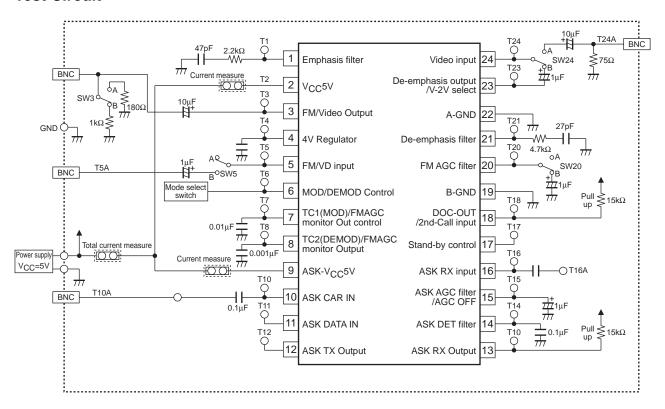
Continued on next page.

Continued from preceding page.

	ed from preceding page.		
Pin No.	Pin Name	Description	Equivalent circuit
8	TC2(DEMOD)/ FMAGC monitor Output	MOD mode: TC2 filter pin. Please connect C1. DEMOD mode: FM-AGC-monitor output	8 2κΩ \$ 30μA
9	ASK-V _{CC} 5V	ASK block V _{CC} . Please supply DC 5V with use capacitor for de-coupling.	
10	ASK CAR IN	ASK carrier input Pin. Please connect with capacitor, 2.1V by internal biased.	ASK carrier Max 3.0Vp-p C1 1kΩ S0kΩ 2.1V
11	ASK DATA IN	ASK data input pin. L level is lower than 0.4V H level is more than 2V	ASK data 10kΩ 30μΑ 30 μΑ 30 μ
12	ASK TX Output	ASK output pin. Push-pull type output.	12 \$\frac{1}{40\alpha}\$
13	ASK RX Output	ASK detect output. Open corrector type output.	13 300Ω
14	ASK DET filter	ASK detect filter. Connect capacitor for reject of ASK AC component.	SIG \$50kΩ \$00μΑ \$777

Continued on next page.

Continued from preceding page.


	ed from preceding page		For the design of
Pin No.	Pin Name	Description ACC filter pin for ASK	Equivalent circuit
15	ASK AGC filter /AGC OFF	AGC filter pin for ASK. Please connect pull-up resistance to this pin, and do more than 4.5V at voltage of this pin.	100kΩ 100kΩ 100kΩ 10kΩ 10kΩ 10kΩ 10kΩ
16	ASK RX input	ASK input pin. Please connect with capacitor, 3.3V by internal biased.	ASK signal $C1$ $34k\Omega$ \gtrsim 200Ω 300Ω $66k\Omega$ \gtrsim 80μ A
17	Standby control	Standby control pin. FM block standby: under 0.4V DC voltage. (0 to 0.4V) FM block operate: over 2V DC voltage. (2 to 5V)	17—18Ω 17—17—17—17—17—17—17—17—17—17—17—17—17—1
18	DOC-OUT /2nd-Call input	DEMOD mode: Drop-out output pin. This pin is open collector output, so please connect pull up resistor. MOD mode: 2ND-CALL input. 2ND-CALL input: under 0.4V DC voltage. (0 to 0.4V) Normal: over 2V DC voltage. (2 to 5V)	18 300Ω 30μA
19	B-GND	Circuit GND.	
20	FM AGC filter	MOD mode: Emphasis monitor pin. DEMOD mode: FM AGC filter pin. If FM AGC no need (= AGC Off), Please set pin 12 voltage over 4.5V DC voltage. (4.5 to 5V)	AGC-DET EMP 100kΩ 10
21	De-emphasis filter	DEMOD mode: De-emphasis filter pin. De-emphasis time constant must be matching at emphasis time constant. (If you don't need the emphasis, this pin is open.)	SIG 300µA
22	A-GND	Circuit GND.	

Continued on next page.

Continued from preceding page.

Pin No.	Pin Name	Description	Equivalent circuit
23	De-emphasis output /V-2V select	DEMOD mode: Video signal output after De-emphasis. Output level is 0.5Vp-p. Connect capacitor to clamp input (pin 16). MOD mode: DFF control pin. DFF is ON at over 2V DC voltage. (2 to 5V)	MOD : DC IN \$200Ω DEMOD C1 23 1mA
24	Video input	MOD mode: Video signal input pin (from camera). Input level is 1Vp-p. DEMOD mode: Video signal input pin (from de-emphasis). Input level is 0.5Vp-p.	Video input MOD : 1Vp-p DEMOD : 0.5Vp-p C1 24 200μA

Test Circuit

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equa

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

LA72912V-MPB-H LA72912V-TLM-H LA72912VL-TLM-H