Am26LS32B

Quad Differential Line Receiver

Advanced Micro Devices

DISTINCTIVE CHARACTERISTICS

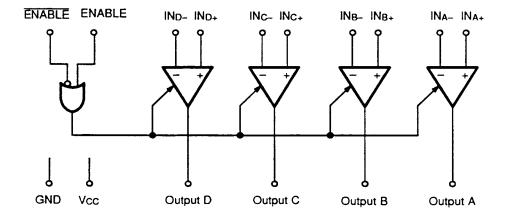
- ±120 mV sensitivity over V_{IN} range of 0 V to 5 V
- **■** ±200 mV sensitivity over V_{CM} range
- 7 V to +12 V input voltage range differential or common mode
- Guaranteed input voltage hysteresis limits
 - 65 mV minimum
 - 240 mV maximum
- 3 V maximum open circuit input voltage

- Three-state outputs disabled during power-up and power-down
- Maximum guarantees for tpp skew
- All AC and DC parameters guaranteed over COM'L and MIL operating temperature ranges
- Single +5 V supply
- Advanced low-power Schottky processing

GENERAL DESCRIPTION

The Am26LS32B is a quad line receiver designed to meet the requirements of RS-422 and RS-423, CCITT V.10 and V.11, and Federal Standards 1020 and 1030 for balanced and unbalanced digital data transmission.

The Am26LS32B features an input sensitivity of 200 mV over the common mode input voltage range of -7 V to +12 V.


The Am26LS32B is the first device in the Am26LS32 configuration to guarantee minimum hysteresis and propagation delay skew while maintaining better propagation delay guarantees than the Am26LS32. This al-

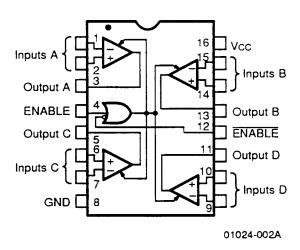
lows a more critical analysis of performance in high noise environments and better performance in terms of signal quality, resulting in better system performance.

The Am26LS32B provides an enable and disable function common to all four receivers. It features three-state outputs with 24 mA sink capability and incorporates a fail safe input-output relationship which keeps the outputs high when the inputs are open.

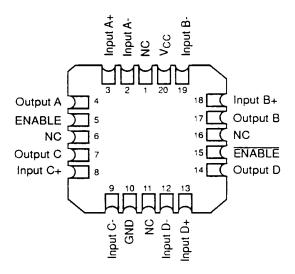
The Am26LS32B is contructed using Advanced Low-Power Schottky processing.

BLOCK DIAGRAM

RELATED AMD PRODUCTS


Part No.	Description
26LS29	Quad Three-State Single Ended RS-423 Line Driver
26LS30	Dual Differential RS-422 Party Line/Quad Single Ended RS-423 Line Driver
26LS33	Quad Differential Line Receiver

Publication# 01024 Rev. B Amendment/0 Issue Date: May 1991


01024-001B

CONNECTION DIAGRAMS Top View

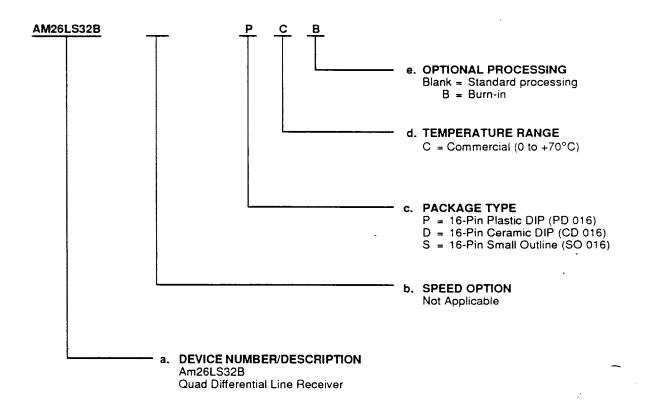
DIP

LCC

01024-003A

Note:

2


Pin 1 is marked for orientation.

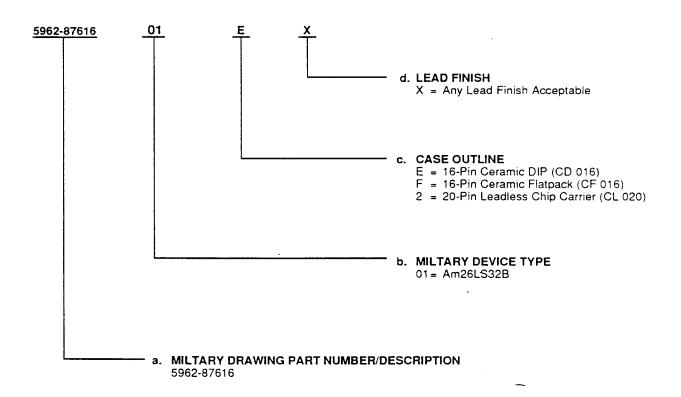
ORDERING INFORMATION **Standard Products**

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

- a. Device Number
- b. Speed Option (if applicable)
- c. Package Type d. Temperature Range
- e. Optional Processing

Valid Combinations					
AM26LS32B	PC, PCB, DC, DCB, SC				

Valid Combinations


Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations or to check on newly released combinations, and to obtain additional data on AMD's standard military grade products.

MILITARY ORDERING INFORMATION Standard Military Drawing (SMD)/DESC Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. Standard Military Drawing (SMD)/DESC products are fully compliant with MIL-STD-883C requirements. The order number (Valid Combination) for SMD/DESC products is formed by a combination of:

- a. Military Drawing Part Number
- b. Military Device Typec. Case Outline
- d. Lead Finish

Valid Combinations						
5962-87616-01	EX, FX, 2X					

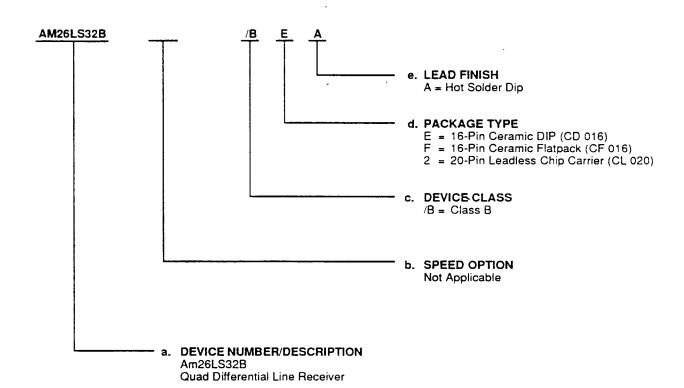
Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations, or to check on newly released combinations.

Group A Tests

Group A tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11.

MILITARY ORDERING INFORMATION


APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883C requirements. The order number (Valid Combination) is formed a. Device Number by a combination of:

b. Speed Option (if applicable)

c. Package Type

d. Temperature Range Optional Processing

Valid Combinations						
AM26LS32B	/BEA, /BFA, /B2A					

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations, or to check on newly released combinations.

Group A Tests

Group A tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11.

ABSOLUTE MAXIMUM RATINGS OPERATING RANGES Supply Voltage 7.0 V Commercial (C) Devices Temperature 0 to +70°C Common Mode Range ±25 V Supply Voltage +4.5 V to +5.5 V Differential Input Voltage ±25 V Enable Voltage 7.0 V Military (M) Devices -55 to +125°C Temperature Output Sink Current 50 mA Supply Voltage +4.5 V to +5.5 V -65 to +165°C Storage Temperature Range

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

Operating ranges define those limits between which the functionality of the device is guaranteed.

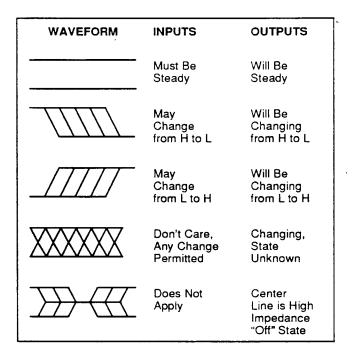
DC CHARACTERISTICS over operating ranges unless otherwise specified

Parameter Symbol	Parameter Description	Test Condit	ions		Min.	Typ. (Note 1)	Max.	Unit	
Vтн	Differential Input Voltage	Vout = Vol	0 ≤ Vcm ≤ +5	5 V	-100	±60	100		
	(Note 5)	or Vон	-7 V ≤ Vcm ≤	≤ +12 V	-200		200	mV	
VHYST	Input Hysteresis	Vcc = 5.0 V			65		240	mV	
Vioc	Open Circuit Input Voltage				1.5		3.0	V	
Rin	Input Resistance (Note 4)	-15 V ≤ VcM (One input A			6.0	9.8		kΩ	
lin	Input Current (Under Test)	V _{IN} = +15 V, Other Input −15 V ≤ V _{IN} ≤ +15 V				2.3	mΑ		
lin	Input Current (Under Test)	$V_{IN} = -15 \text{ V}$, Other Input $-15 \text{ V} \le V_{IN} \le +15 \text{ V}$				-2.8	mΑ		
Vон	Output HIGH Voltage	Vcc = Min., /	$\Delta V_{IN} = +1.0 V$	loн = -12 mA	2.0			Ι.,	
		VENABLE = 0.8 V IOH = -1		Iон = -1 mA	2.4			V	
Vol	Output LOW Voltage	Vcc = Min., ΔVIN = -1.0 V VENABLE = 0.8 V		loL = 16 mA			0.4	٧	
				loL = 24 mA			0.5		
VIL	Enable LOW Voltage	(Note 2)			_	0.8	V		
ViH	Enable HIGH Voltage	(Note 2)			2.0			V	
Vic	Enable Clamp Voltage	Vcc = Min.,	lın = -18 mA				-1.5	V	
lo	Off-State (High Impedance)	Vcc = Max.		Vo = 2.4 V			50		
	Output Current			Vo = 0.4 V			-50	μΑ	
lıL	Enable LOW Current	$V_{IN} = 0.4 V$	Vcc = Max.			-0.2	-0.36	mA	
Ін	Enable HIGH Current	V _{IN} = 2.7 V, V _{CC} = Max.				20	μА		
lı	Enable Input High Current	Vin = 5.5 V, Vcc = Max.				100	μΑ		
Isc	Output Short Circuit Current	$V_0 = 0 \text{ V}, V_{CC} = \text{Max.}, \Delta V_{IN} = +1.0 \text{ V}$ (Note 3)		-30	65	-120	mA		
Icc	Power Supply Current	Vcc = Max., All V _{IN} = GND, Outputs Disabled			52	70	mA		

Notes:

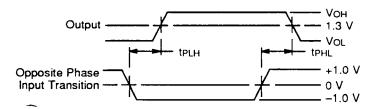
- 1. All typical values are Vcc = 5.0 V, TA = 25°C.
- 2. Input thresholds are tested during DC tests and may be done in combination with testing of other DC parameters.
- 3. Not more than one output should be shorted at a time. Duration of short circuit test should not exceed one second.
- 4. Rin is not directly tested but is correlated. (See Attachment I)
- 5. Input voltage is not tested directly due to tester accuracy limitations but is tester correlated. (See Attachment II)

SWITCHING CHARACTERISTICS (T_A = +25°C, V_{CC} = 5.0 V)

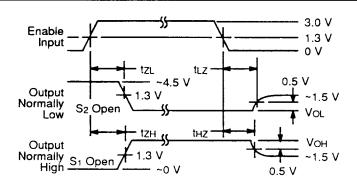

Parameter Symbol	Parameter Description	Test Conditions	Min.	Тур.	Max.	Unit
tplh	December 10 decemb	C _L = 50 pF See test circuit		16	21	ns
t _{PHL}	Propagation Delay, Input to Output			17	21	ns
tskew	Propagation Delay Skew, tplh - tphl			1.5	3.0	ns
tzL	Output Fookis Time FAIABLE to Output			16	22	ns
tzн	Output Enable Time, ENABLE to Output			10	16	ns
tız	Outrot Disable Time ENABLE to Outrot	CL = 5 pF See test circuit		11	18	ns
tHZ	Output Disable Time, ENABLE to Output			13	18	ns

SWITCHING CHARACTERISTICS over operating ranges unless otherwise specified

Parameter Symbol	Parameter Description		Commercial		Military		
		Test Conditions	Min.	Max.	Min.	Мах.	Unit
tрын				26		26	ns
t _{PHL}	Propagation Delay, Input to Output	C _L = 50 pF See test circuit		26		26	ns
tskew	Propagation Delay Skew, tpln - tphl			4.0		4.0	ns
tzL	Output Frankla Time SNARI 5 to Output			33		33	ns
tzн	Output Enable Time, ENABLE to Output			22		22	ns
tız	Outside Disable Time ENABLE As Outside	C _L = 5 pF See test circuit		27		27	ns
tHZ	Output Disable Time, ENABLE to Output			27		27	ns


Parameter Symbol	Parameter Description	Test Conditions	Min.	Тур.	Max.	Unit		
Tristate De	Tristate Delays for ENABLE (T _A = +25°C)							
tрzн	Propagation Delay From ENABLE to Output	C_L 50 pF, R_{L1} = 1 k Ω , R_{L2} = 280 Ω			26	ns		
tpzL	Propagation Delay From ENABLE to Output	CL50 pF, RL1 = 1 k Ω , RL2 = 280 Ω			33	ns		
tрнz	Propagation Delay From ENABLE to Output	C _L 5 pF, R_{L1} = 1 k Ω , R_{L2} = 280 Ω			20	ns		
tpLZ	Propagation Delay From ENABLE to Output	$\begin{array}{l} C_L \ 5 \ pF, \ R_{L1} = 1 \ k\Omega, \\ R_{L2} = 280 \ \Omega \end{array}$			20	ns		
Tristate De	elays for ENABLE (-55°C to	+125°C)						
tрzн	Propagation Delay From ENABLE to Output	C_L 50 pF, R_{L1} = 1 k Ω , R_{L2} = 280 Ω			39	ns		
tpzL	Propagation Delay From ENABLE to Output	C_L 50 pF, R_{L1} = 1 k Ω , R_{L2} = 280 Ω			49	ns		
tpHZ	Propagation Delay From ENABLE to Output	C _L 5 pF, R _{L1} = 1 k Ω , R _{L2} = 280 Ω			30	ns		
tPLZ	Propagation Delay From ENABLE to Output	$\begin{array}{l} \text{C}_{L} \text{ 5 pF, R}_{L1} = 1 \text{ k}\Omega, \\ \text{R}_{L2} = 280 \Omega \end{array}$			30	ns		

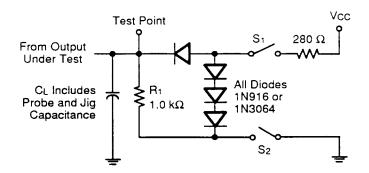
KEY TO SWITCHING WAVEFORMS


KS000010

SWITCHING WAVEFORMS

Propagation Delay (Notes 1 and 3)

01024-005A


Enable and Disable Times (Notes 2 and 3)

Notes:

01024-006A

- 1. Diagram shown for ENABLE LOW.
- 2. S1 and S2 of Load Circuit are closed except where shown.
- 3. Pulse Generator for All Pulses: Rate ≤ 1.0 MHz; $Z_0 = 50 \Omega$; $t_r \leq 2.5$ ns; $t_f \leq 2.5$ ns.

SWITCHING TEST CIRCUIT FOR THREE-STATE OUTPUTS

01024-007A

Am26LS32/32B/33/34 Input Resistance and Input Current (Attachment I)

Input resistance measurement for differential inputs on line receivers are generally not measured directly. Instead they are correlated to an input current measurement and to the process resistor temperature coefficient. The assumptions made include 1) Process resistor temperature coefficient is known and 2) The open input bias voltage for the input is known or measured within the same test sequence.

Under the above assumptions R_{IN} can be correlated to the input current measured. The expression

$$R_{IN} = \frac{(V_{ICM} - V_{IN}) (R_T)}{(I_{IN}) (R25)} .$$

where Vicm is the open input bias voltage of the Line Receiver. When applying this correlation to the 26LS32 die, the following criteria have been set.

- 1) VICM and IIN are the values screened at wafer sort.
- Temperature coefficients are for 800 ohm/square which gives 0.96 at 0°C and 0.93 at -55°C.

When setting limits, characterized values for V_{ICM} have been used instead of the test programmed limit value. R_{IN} (dif) is R_{IN} (dif) = 2 R_{IN}.

For the Am26LS32/32B/33/34

RIN Min. =
$$\frac{(2.56 - -15) \ 0.96}{\text{lin (Max.)}} = 16.8/\text{lin (Max.)}$$
 Comm.,

and

Rin Min. = 16.3/lin (Max.) Mil.

Worst Case Measurement for Input Current

Two considerations have been used to determine the test condition for input current of the data path for the Am26LS32 Line Receiver.

- 1) Input current is tested on the 26LS32 with the pin under test at one end of the range (+15 V for example) and the untested pin at the opposite extreme of the input range under test. If both pins were at the same test voltage the internal bias generator would have a lower output voltage for tests at -15 V V_{IN} and a higher output voltage at +15 V V_{IN}. This would produce test currents less than maximum.
- 2) For the 26LS32, breakdown of the differential inputs is the primary failure to the data sheet specification. Hence, both breakdown voltage and input current are tested during the input current tests.

Test Documentation For Am26LS32/32B/34 V_{TH} (Attachment II)

Input threshold (V_{TH}) for the Am26LS32/32B/34 is described by the equation.

 $V_{TH} = (N+1) (1+R1/R) K^*T/Q (1+Rh/(m (Rc+Rh))) /(1-Rh/(M(Rc+Rh))).$

Where N+1 is the attenuator ratio, R1/R is the attenuator ratio mismatch, M is the ratio of the input stage current to hysteresis stage current, and Rh and Rc are input stage loads. For Am26LS32 – 34 devices which pass function tests, VoH and VoL tests, thresholds for all inputs within the operating range of the circuit.

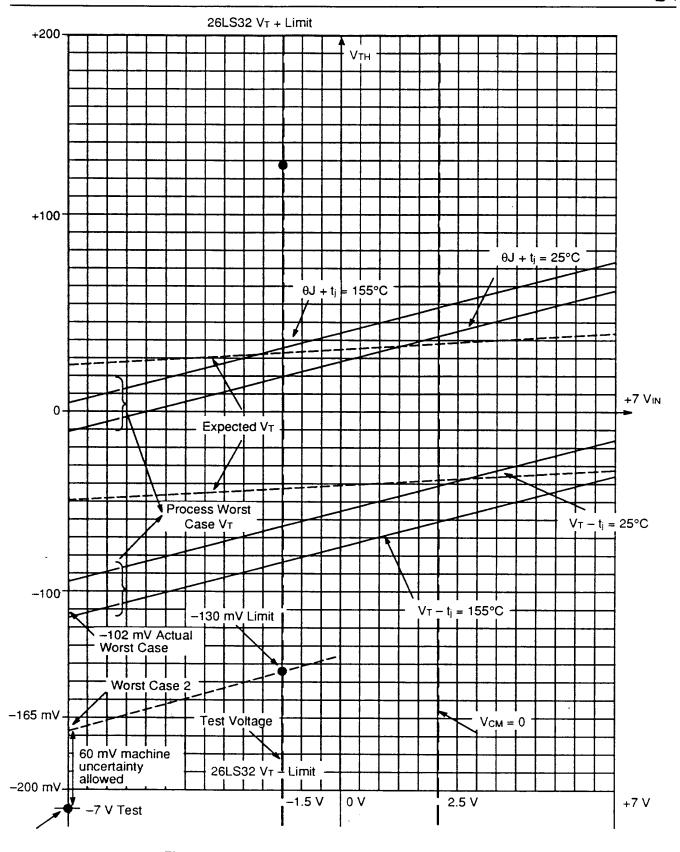
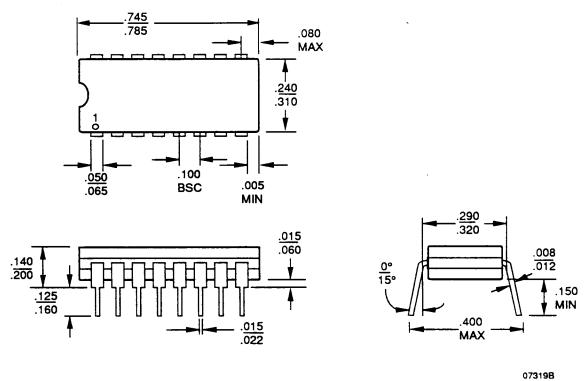
The Test system is unable to force input thresholds within the accuracy required for the Am26LS32 - 34 specifications. Figure 1 plots the expected values for VTH, the worst case values at 25°C and 155°C. Also shown are the test values for VTH at the -1.5 V input (VIN). In addition, the test voltage at -7 V VIN is shown. For the figure it is seen that the worst case value for the test limit shown would be +/-165 mV, where +/-102 mV

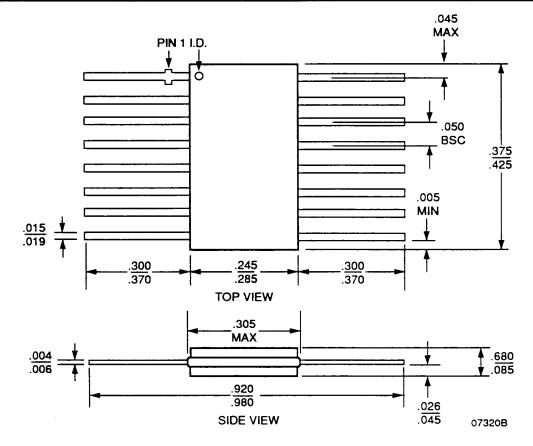
is expected for process parameters and the equation for V_{TH} . Further the 25 mV negative guardband used for -7 V testing is less than half the machine uncertainty of 60 mV.

When QA testing for Am26LS32/32B/34 is done, thresholds are screened for Vc $_{M}$ other than -1.5 V. These additional tests are considered functional tests only, and the precision threshold tests which insure compliance with data sheet limits are those tests performed where the inputs are tested near -1.5 V.

The actual threshold tests are done as a sequence where a setup is performed which preconditions the DUT to a logic one state, then the threshold correlation for a logic zero is tested followed by a threshold correlation for logic one to complete the sequence. The limit values for the setup (Vt SET), logic zero test (Vt "-"), and logic one test (Vt "+") are listed under VTH for supply value of 5.0 V.

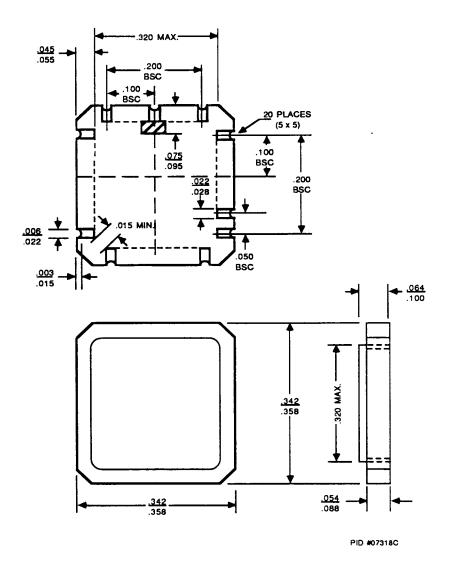
11

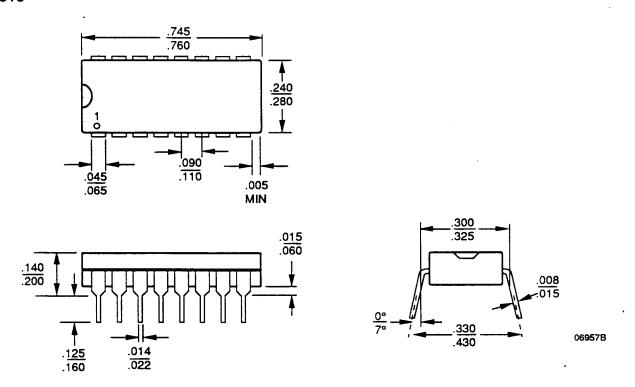




Figure 1. 26LS32 Input Threshold V_T vs. Input Voltage V_{IN}

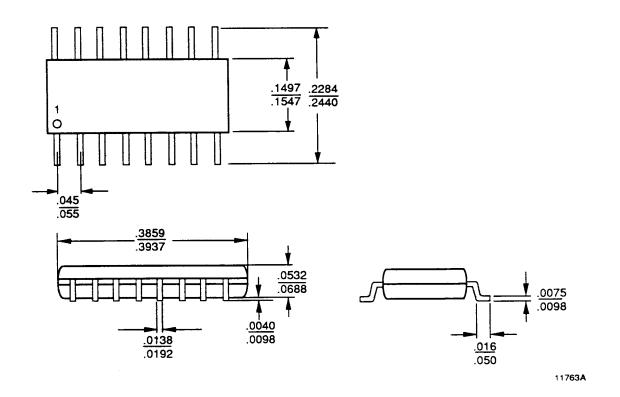
PHYSICAL DIMENSIONS*

CD 016





*For reference only. All dimensions are measured in inches, unless otherwise noted, BSC is an ANSI standard for Basic Space Centering.


PHYSICAL DIMENSIONS* CL 020

PHYSICAL DIMENSIONS* PD 016

SO 016

