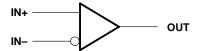

8 ¶ 3IN-

- Single Supply or Dual Supplies
- Wide Range of Supply Voltage ... 2 V to 36 V
- Low Supply-Current Drain Independent of Supply Voltage . . . 0.8 mA Typ
- Low Input Bias Current . . . 25 nA Typ
- Low Input Offset Current . . . 3 nA Typ (LM139)
- Low Input Offset Voltage . . . 2 mV Typ
- Common-Mode Input Voltage Range Includes Ground
- Differential Input Voltage Range Equal to Maximum-Rated Supply Voltage . . . ±36 V
- Low Output Saturation Voltage
- Output Compatible With TTL, MOS, and CMOS
- Package Options Include Plastic Small-Outline (D, NS), Shrink Small-Outline (DB), Thin Shrink Small-Outline (PW), and Ceramic Dual Flatpack (W) Packages, Ceramic Chip Carriers (FK), and Standard Plastic (N) and Ceramic (J) DIPs

1IN+ □

D, DB, J, N, NS, PW, OR W PACKAGE


NC - No internal connection

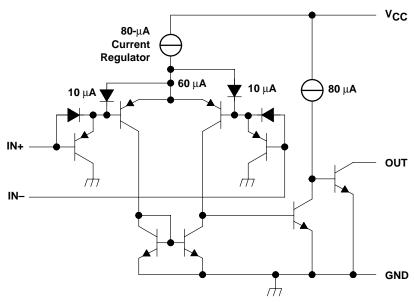
description

These devices consist of four independent voltage comparators that are designed to operate from a single power supply over a wide range of voltages. Operation from dual supplies also is possible as long as the difference between the two supplies is 2 V to 36 V and V_{CC} is at least 1.5 V more positive than the input common-mode voltage. Current drain is independent of the supply voltage. The outputs can be connected to other open-collector outputs to achieve wired-AND relationships.

The LM139 and LM139A are characterized for operation over the full military temperature range of –55°C to 125°C. The LM239 and LM239A are characterized for operation from –25°C to 125°C. The LM339 and LM339A are characterized for operation from 0°C to 70°C. The LM2901 is characterized for operation from –40°C to 125°C.

symbol (each comparator)

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



AVAILABLE OPTIONS

TA	V _{IO} (max) at 25°C	PLASTIC SOIC (D, NS)	PLASTIC SSOP (DB)	CERAMIC CHIP CARRIER (FK)	CERAMIC DIP (J)	PLASTIC DIP (N)	PLASTIC TSSOP (PW)	CERAMIC DUAL FLATPACK (W)
0°C to 70°C	5 mV 5 mV 2 mV 2 mV	LM339D LM339NS LM339AD LM339ANS	LM339DBR — — —	_	_	LM339N — LM339AN —	LM339PWR — — —	-
–25°C to 85°C	5 mV 2 mV	LM239D LM239AD			_	LM239N LM239AN	_	_
-40°C to 125°C	7 mV 7 mV	LM2901D LM2901NS	LM2901DBR		_	LM2901N	LM2901PWR	_
-55°C to 125°C	5 mV 2 mV	LM139D LM139AD	_	LM139FK LM139AFK	LM139J LM139AJ	_	_	LM139W LM139AW

The D and NS packages are available taped and reeled. Add the suffix R to the device type (e.g., LM339DR). The DB and PW packages are only available taped and reeled.

schematic (each comparator)

All current values shown are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

		36 V
Differential input voltage, V _{ID} (see Note	2)	±36 V
Input voltage range, V _I (either input)		0.3 V to 36 V
		36 V
		20 mA
•		Unlimited
		86°C/W
	DB package	96°C/W
	N package	80°C/W
		113°C/W
Continuous total dissipation		See Dissipation Rating Table
Case temperature for 60 seconds: FK pa	ackage	
		, DB, N, or PW package 260°C
• • • • • • • • • • • • • • • • • • • •		package 300°C
• • • • • • • • • • • • • • • • • • • •		

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values, except differential voltages, are with respect to network ground.
 - 2. Differential voltages are at IN+ with respect to IN-.
 - 3. Short circuits from outputs to $V_{\hbox{\footnotesize{CC}}}$ can cause excessive heating and eventual destruction.
 - 4. The package thermal impedance is calculated in accordance with JESD 51-7.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR	DERATE ABOVE T _A	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
FK	900 mW	11 mW/°C	68°C	880 mW	715 mW	275 mW
J	900 mW	11 mW/°C	68°C	880 mW	715 mW	275 mW

LM139, LM139A, LM239, LM239A, LM339, LM339A, LM2901 QUAD DIFFERENTIAL COMPARATORS

SLCS006F - OCTOBER 1979 - REVISED NOVEMBER 2001

electrical characteristics at specified free-air temperature, $V_{CC} = 5 \text{ V}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS†		- +	L	M139		LN	1139A		UNIT	
	PARAMETER	I EST CO	ADITIONS	T _A ‡	MIN	TYP	MAX	MIN	TYP	MAX	UNIT	
V _{IO}	Input offset voltage	$V_{CC} = 5 \text{ V to}$ $V_{IC} = V_{ICR}(n)$	CC = 5 V to 30 V,			2	5		1	2	mV	
VIO	input onset voltage	V _O = 1.4 V	,	Full range			9			4	IIIV	
lio	Input offset current	V _O = 1.4 V		25°C		3	25		3	25	nA	
lio	input onset current	VO = 1.4 V		Full range			100			100	ПА	
Iв	Input bias current	V _O = 1.4 V		25°C		-25	-100		-25	-100	nA	
IIB	input bias current	VO = 1.4 V		Full range			-300			-300	IIA	
	_			25°C	0 to			0 to				
VICR	Common-mode input-voltage range				V _{CC} -1.5	-		V _{CC} -1.5			V	
	input-voitage range			Full range	0 to V _{CC} -2			0 to V _{CC} -2				
AVD	Large-signal differential-voltage amplification	$V_{CC} \pm = \pm 7.5$ $V_{O} = -5 \text{ V to}$		25°C		200		50	200		V/mV	
lou	High-level output	V _{ID} = 1 V	V _{OH} = 5 V	25°C		0.1			0.1		nA	
ЮН	current	AID= 1 A	V _{OH} = 30 V	Full range			1			1	μΑ	
Vai	Low-level output	V _{ID} = -1 V,	loυ = 4 mΛ	25°C		150	400		150	400	mV	
VOL	voltage	$V \mid D = -1 V,$	$I_{OL} = 4 \text{ mA}$	Full range			700			700	IIIV	
lOL	Low-level output current	V _{ID} = -1 V,	V _{OL} = 1.5 V	25°C	6	16		6	16		mA	
Icc	Supply current (four comparators)	V _O = 2.5 V,	No load	25°C		0.8	2		0.8	2	mA	

[†] All characteristics are measured with zero common-mode input voltage, unless otherwise specified.

switching characteristics, V_{CC} = 5 V, T_A = 25°C

PARAMETER	TEST CON	IDITIONS		LM139 .M139A		UNIT
		MIN	TYP	MAX		
Bosponos timo	R _L connected to 5 V through 5.1 k Ω ,	100-mV input step with 5-mV overdrive		1.3		
Response time	C _L = 15 pF§, See Note 5	TTL-level input step		0.3		μs

[§] C_L includes probe and jig capacitance.

NOTE 5: The response time specified is the interval between the input step function and the instant when the output crosses 1.4 V.

[‡] Full range (MIN to MAX) for LM139 and LM139A is -55°C to 125°C. All characteristics are measured with zero common-mode input voltage, unless otherwise specified.

electrical characteristics at specified free-air temperature, $V_{CC} = 5 \text{ V}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS†		T _A ‡		M239 M339			1239A 1339A		UNIT	
					MIN	TYP	MAX	MIN	TYP	MAX		
\/	Input offset voltage	$V_{CC} = 5 \text{ V to}$ $V_{IC} = V_{ICR}(m)$		25°C		2	5		1	3	mV	
VIO	input onset voltage	$V_0 = 1.4 \text{ V}$	III 1),	Full range			9			4	IIIV	
lio.	Input offset current	V _O = 1.4 V		25°C		5	50		5	50	nA	
10	input onset current	VO = 1.4 V		Full range			150			150	ПА	
	Input bias current	V _O = 1.4 V		25°C		-25	-250		-25	-250	nA	
IB	input bias current	VO = 1.4 V		Full range			-400			-400	ПА	
\/	Common-mode			25°C	0 to V _{CC} -1.5			0 to V _{CC} -1.5			V	
VICR	input-voltage range			Full range	0 to V _{CC} -2			0 to V _{CC} -2			V	
AVD	Large-signal differential-voltage amplification	V_{CC} = 15 V, V_{O} = 1.4 V to $R_{L} \ge$ 15 kΩ to		25°C	50	200		50	200		V/mV	
	High-level output	V- 1V	V _{OH} = 5 V	25°C		0.1	50		0.1	50	nA	
ЮН	current	V _{ID} = 1 V	V _{OH} = 30 V	Full range			1			1	μΑ	
\/a.	Low-level output	V- 1V	1 1 1	25°C		150	400		150	400	mV	
VOL	voltage	$V_{ID} = -1 V$,	$I_{OL} = 4 \text{ mA}$	Full range			700			700	IIIV	
lOL	Low-level output current	V _{ID} = -1 V,	V _{OL} = 1.5 V	25°C	6	16		6	16		mA	
Icc	Supply current (four comparators)	V _O = 2.5 V,	No load	25°C		0.8	2		0.8	2	mA	

[†] All characteristics are measured with zero common-mode input voltage, unless otherwise specified.

switching characteristics, V_{CC} = 5 V, T_A = 25°C

PARAMETER	TEST CON	IDITIONS		9, LM23 89, LM33	′	UNIT
		MIN	TYP	MAX		
Response time	R _L connected to 5 V through 5.1 kΩ,	100-mV input step with 5-mV overdrive		1.3		
Response time	C _L = 15 pF§, See Note 5	TTL-level input step		0.3		μs

[§] C_L includes probe and jig capacitance.

NOTE 5: The response time specified is the interval between the input step function and the instant when the output crosses 1.4 V.

[‡] Full range (MIN to MAX) for LM239 and LM239A is -25°C to 85°C, for LM339 and LM339A is 0°C to 70°C. All characteristics are measured with zero common-mode input voltage, unless otherwise specified.

LM139, LM139A, LM239, LM239A, LM339, LM339A, LM2901 QUAD DIFFERENTIAL COMPARATORS

SLCS006F - OCTOBER 1979 - REVISED NOVEMBER 2001

electrical characteristics at specified free-air temperature, $V_{CC} = 5 \text{ V}$ (unless otherwise noted)

PARAMETER				T _A ‡	LN	/12901		UNIT
	PARAMETER	TEST CC	TEST CONDITIONS†			TYP	MAX	UNII
V	Input offset voltage	$V_{CC} = 5 \text{ V to } 30 \text{ V},$ $V_{IC} = V_{ICR}(\text{min}),$		25°C		2	7	mV
VIO	input onset voltage	$V_O = 1.4 \text{ V}$		Full range			15	IIIV
l.a	Input offset current	V _O = 1.4 V		25°C		5	50	nA
lio	input onset current	VO = 1.4 V		Full range			200	IIA
l.s	Input bing current	Vo - 1.4.V		25°C		-25	-250	nA
ΙΒ	Input bias current	V _O = 1.4 V		Full range			-500	IIA
Common-mode input-voltage				25°C	0 to V _{CC} -1.5			V
VICR	range		Full range	0 to V _{CC} -2			V	
AVD	Large-signal differential-voltage amplification	$V_{CC} = 15 \text{ V},$ $V_{O} = 1.4 \text{ V to } 11.4 \text{ V},$ $R_{L} \ge 15 \text{ k}\Omega \text{ to } V_{CC}$	/ ,	25°C	25	100		V/mV
	High lovel output ourrent	V 1 V	V _{OH} = 5 V	25°C		0.1	50	nA
ЮН	High-level output current	V _{ID} = 1 V	V _{OH} = 30 V	Full range			1	μΑ
\/ - .	Low lovel output voltage	V: 1 V	la. – 4 mΔ	25°C		150	500	mV
VOL	V_{OL} Low-level output voltage $V_{ID} = -1 V$,		$I_{OL} = 4 \text{ mA}$	Full range			700	IIIV
loL	Low-level output current	V _{ID} = −1 V,	V _{OL} = 1.5 V	25°C	6	16		mA
	Supply current	$V_0 = 2.5 V$,	No load			0.8	2	
ICC	(four comparators)	$1 \frac{1}{2} $	25°C		1	2.5	mA	

[†] All characteristics are measured with zero common-mode input voltage, unless otherwise specified.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER	TEST CON	IDITIONS	L	M2901		UNIT
PARAWETER	TEST CON	MIN	TYP	MAX	UNIT	
Response time	R _L connected to 5 V through 5.1 k Ω ,	100-mV input step with 5-mV overdrive		1.3		
	C _L = 15 pF [§] , See Note 5	TTL-level input step		0.3		μs

 $[\]$ C_L includes probe and jig capacitance.

NOTE 5: The response time specified is the interval between the input step function and the instant when the output crosses 1.4 V.

[‡] Full range (MIN to MAX) for LM2901 is -40°C to 125°C. All characteristics are measured with zero common-mode input voltage, unless otherwise specified.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third—party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265