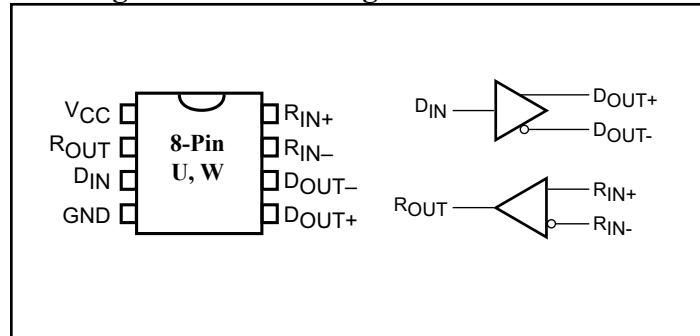


3.3V LVDS High-Speed Differential Line Driver and Receiver

Features

- Signaling Rates >660 Mbps (330 MHz)
- Single 3.3V Power Supply Design
- Driver:
 - $\pm 350\text{mV}$ Differential Swing into a 100-ohm load
 - Propogation Delay of 1.5ns Typ.
 - Low Voltage TTL (LVTTL) Inputs are 5V Tolerant
- Receiver:
 - Accepts $\pm 50\text{mV}$ (min.) Differential Swing with up to 2.0V ground potential difference
 - Propagation Delay of 3.3ns Typ.
 - Low Voltage TTL (LVTTL) Outputs
 - Open, Short, and Terminated Fail Safe
- Industrial Temperature Operating Range: -40°C to 85°C
- Meets or Exceeds IEEE 1596.3 SCI Standard
- Meets or Exceeds ANSI/TIA/EIA-644 LVDS Standard
- Bus terminal ESD = 2KV HBM
- Packaging (Pb-free & Green available):
 - 8-pin SOIC or MSOP

Description


The PI90LV179 is a differential line driver and receiver (transceiver) that is compliant with the IEEE 1596.3 SCI and ANSI/TIA/EIA-644 LVDS standards. This device uses low-voltage differential signaling (LVDS) to achieve data rates in excess of 660 Mbps while being less susceptible to noise than single-ended transmission.

The driver translates a low-voltage TTL/CMOS input into a low-voltage (350mV typical) differential output signal. The receiver translates a differential 350mV input signal to a 3V CMOS output level.

Applications

Applications include point-to-point and multidrop baseband data transmission over a controlled impedance media of approximately 100 ohms. These include intra-system connections via printed circuit board traces or cables, hubs and routers for data communications; PBXs, switches, repeaters and base stations for telecommunications and other applications such as digital cameras, printers and copiers.

Pin Diagram & Block Diagram

Function Tables

PI90LV179 Receiver

Inputs	Output
$V_{ID} = V_{RIN+} - V_{RIN-}$	H
$V_{ID} \geq 50\text{mV}$	H
$-50\text{mV} < V_{ID} < 50\text{mV}$?
$V_{ID} \leq -50\text{mV}$	L
open	H

PI90LV179 Driver

Input	Output	
D_{IN}	D_{OUT+}	D_{OUT-}
L	L	H
H	H	L
open	L	H

Notes:

H = High Level, L = Low Level, ? = Indeterminate,
 Z = High-Impedance, X = Don't Care

Pin Descriptions

Pin Name	Description
D_{IN}	TTL/CMOS driver input pin
D_{OUT+}	Non-inverting driver output pin
D_{OUT-}	Inverting driver output pin
R_{OUT}	TTL/CMOS receiver output pin
R_{IN+}	Non-inverting receiver input pin
R_{IN-}	Inverting receiver input pin
GND	Ground pin
V_{CC}	Positive power supply pin, $+3.3\text{V} \pm 10\%$

Absolute Maximum Ratings

Supply Voltage (V _{CC})	−0.5V to +4.0V
Driver	
Input Voltage (D _{IN})	−0.3V to (V _{CC} + 0.3V)
Output Voltage (D _{OUT+} , D _{OUT−})	−0.3V to +3.9V
Short Circuit Duration (D _{OUT+} , D _{OUT−})	Continuous
Receiver	
Input Voltage (R _{IN+} , R _{IN−})	−0.3V to +3.9V
Output Voltage (R _{OUT})	−0.3V to (V _{CC} + 0.3V)
Storage Temperature Range	−65°C to +150°C
ESD Rating	2kV HBM

Note: Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Recommended Operating Conditions

	Min.	Typ.	Max.	Units	
Supply Voltage (V _{CC})	3	3.3	3.6	V	
High Level Input Voltage, V _{IH}	2				
Low Level Input Voltage, V _{IL}			0.8		
Magnitude of Differential Input Voltage V _{ID}	0.1		0.6		
Common-mode Input Voltage, V _{IC} (Fig 5)	V _{ID} /2		2.4 − V _{ID} /2		
			V _{CC} − 0.8		
Operating Free Air Temperature T _A	−40		85	°C	

Electrical Characteristics (Over recommended operating conditions unless otherwise noted).

Parameter	Test Condition	Min.	Typ. ⁽¹⁾	Max.	Units
I _{CC} ⁽²⁾ Supply Current	No receiver load, Driver R _L = 100 ohms		8.0	10.8	mA

Notes:

1. All typical values are at 25°C with a 3.3V supply
2. I_{CC} measured with all TTL input. V_{IN} = V_{CC} or GND.

Electrical Characteristics (Over recommended operating conditions unless otherwise noted).

Parameter	Test Conditions	Min.	Typ.	Max.	Units	
V _{OD}	Differential output voltage magnitude	R _L = 100 ohms See Figures 1 and 2	247	390	470	mV
Δ V _{OD}	Change in differential output voltage magnitude between logic states		−50		50	
V _{OC(SS)}	Steady-state common-mode output voltage	See Figure 3	1.125	1.25	1.375	V
ΔV _{OC(SS)}	Change in steady-state common-mode output voltage between logic states		−50		50	
V _{OC(PP)}	Peak-to-peak common-mode output voltage		50	150		

Parameter			Test Conditions	Min.	Typ.	Max.	Units
I_{IH}	High-level input current	D_{IN}	$V_{IH} = 5V$		2	20	μA
I_{IL}	Low-level input current	D_{IN}	$V_{IL} = 0.8V$		2	10	
I_{OS}	Short-circuit output current		$V_{OY} \text{ or } V_{OZ} = 0V$		-6	-9	mA
			$V_{OD} = 0V$		-8	-11	
$I_{O(OFF)}$	Power-off output current		$V_{CC} = 0V, V_O = 3.6V$			± 1	μA
C_{IN}	Input capacitance				7		pF

Receiver Electrical Characteristics (Over recommended operating conditions unless otherwise noted).

Parameter		Test Conditions	Min.	Typ.	Max.	Units
V_{ITH+}	Positive-going differential input voltage threshold	See Figures 4 & Table 1			50	mV
V_{ITH-}	Negative-going differential input voltage threshold		-50			
V_{OH}	High-level output voltage	$I_{OH} = -8mA$	2.4			V
V_{OL}	Low-level output voltage	$I_{OL} = 8mA$			0.4	V
I_I	Input current (R_{IN+} or R_{IN-})	$V_I = 0$	-2	-11	-20	μA
		$V_I = 2.4V$	-1.2	-3		
$I_{I(OFF)}$	Power-off input current (R_{IN+} or R_{IN-})	$V_{CC} = 0$			± 20	
I_H	High-level input current (enables)	$V_{IH} = 2V$			± 10	
I_L	Low-level input current (enables)	$V_{IL} = 0.8V$			± 10	
C_I	Input capacitance			5		pF

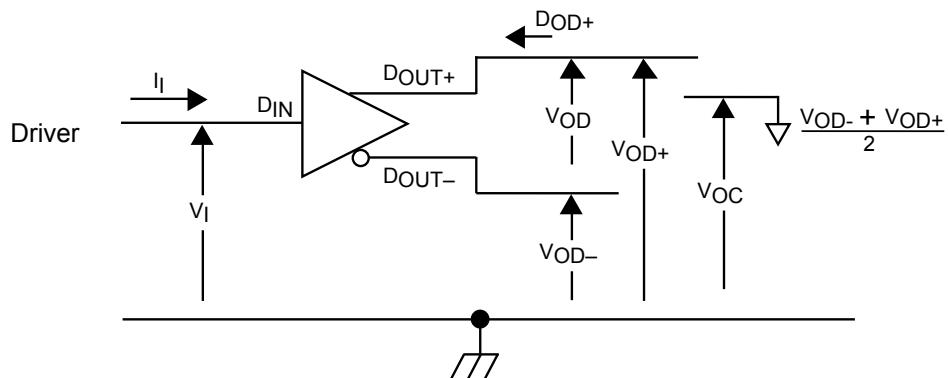
Note: All typical values are at 25°C with a 3.3V supply

Driver Switching Characteristics (Over recommended operating conditions unless otherwise noted).

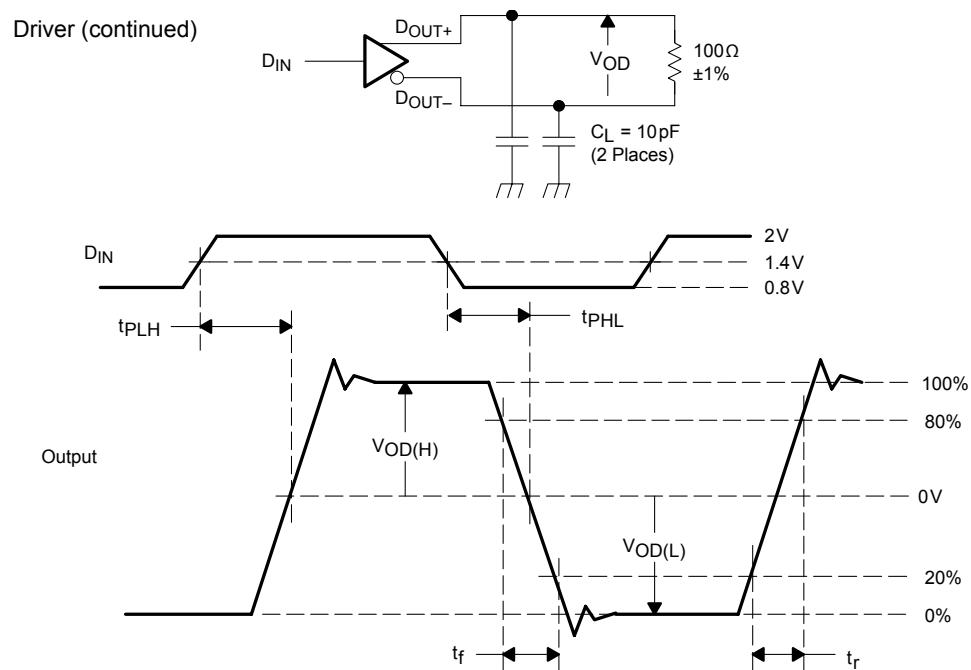
Parameter	Test Conditions	Min.	Typ. ⁽¹⁾	Max.	Units
t_{PLH}	$R_L = 100$ ohms $C_L = 10\text{pF}$ See Figure 2		1.9	2.5	ns
t_{PHL}			1.9	2.5	
t_r			0.6	1.1	
t_f			0.6	1.1	
$t_{sk(p)}$		270			ps
$t_{sk(pp)}$			0.9		ns

Notes:

1. All typical values are at 25°C with a 3.3V supply.
2. $t_{sk(pp)}$: magnitude of difference in propagation delay times between any specific terminals of two devices (all things being equal).


Receiver Switching Characteristics (Over recommended operating conditions unless otherwise noted).

Parameter	Test Conditions	Min.	Typ. ⁽¹⁾	Max.	Units
t_{PLH}	$C_L = 10\text{pF}$ See Figure 5		2.0	3.1	ns
t_{PHL}			2.2	3.1	
$t_{sk(pp)}^{(2)}$			1.3		
$t_{sk(p)}$		300	500		ps
t_r		0.9	1.5		ns
t_f		1.0	1.8		ns


Notes:

1. All typical values are at 25°C with a 3.3V supply
2. $t_{sk(pp)}$: magnitude of difference in propagation delay times between any specific terminals of two devices (all things being equal)

Parameter Measurement Information

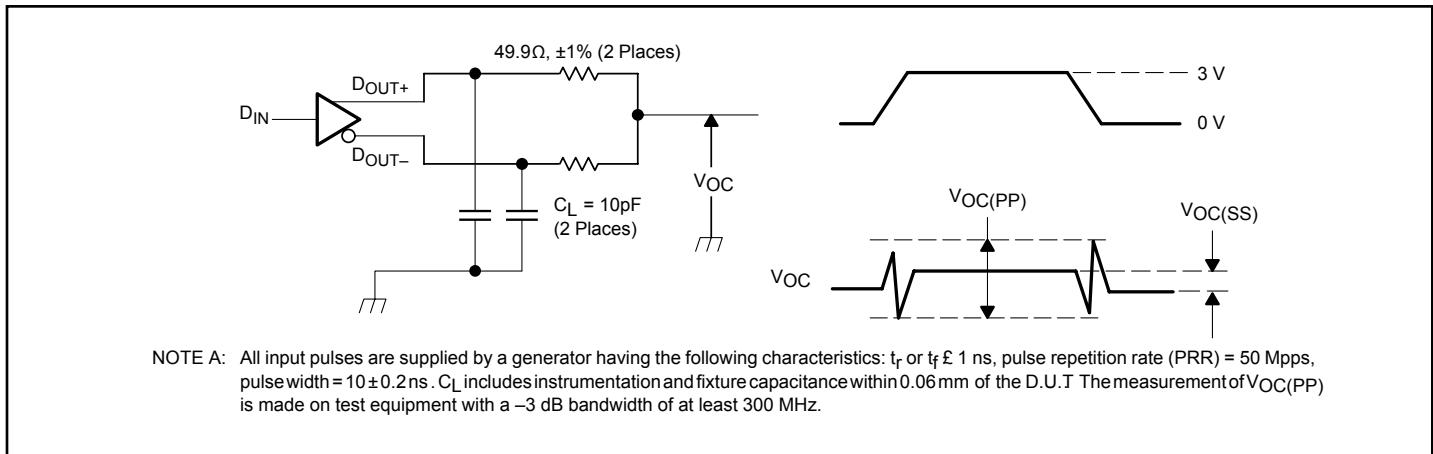
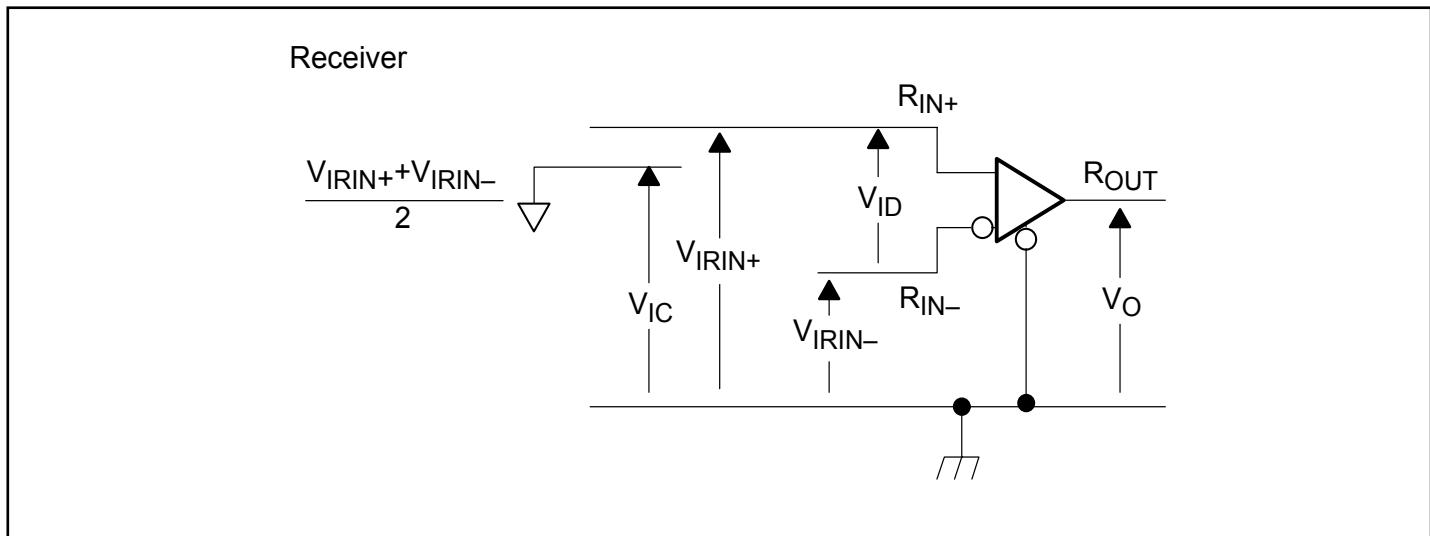


Figure 1. Driver Voltage and Current Definitions



NOTE A: All input pulses are supplied by a generator having the following characteristics: t_r or $t_f \leq 1$ ns, pulse repetition rate (PRR) = 50 Mpps, pulse width = 10 ± 0.2 ns. C_L includes instrumentation and fixture capacitance within 0.06 mm of the D.U.T.

Figure 2. Test Circuit, Timing, and Voltage Definitions for the Differential Output Signal

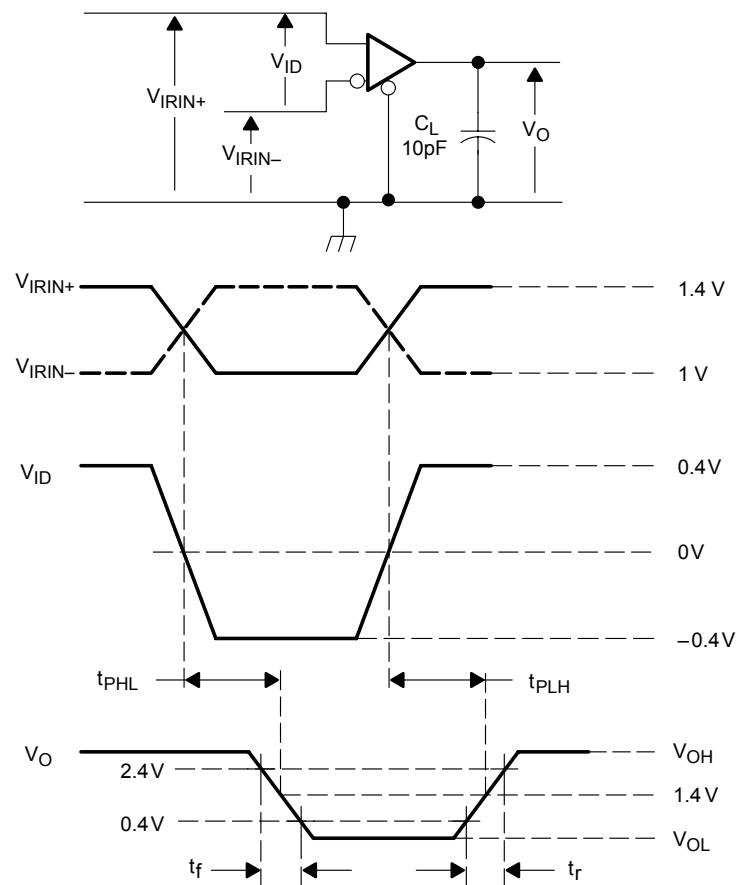
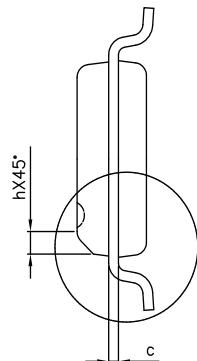
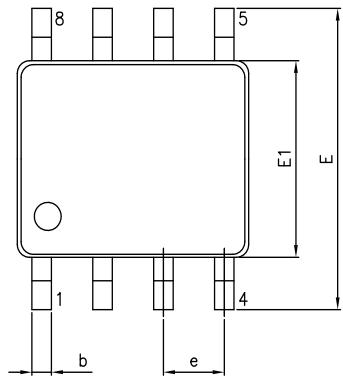

Figure 3. Test Circuit and Definitions for the Driver Common-Mode Output Voltage

Figure 4. Receiver Voltage Definitions



Table 1. Receiver Minimum and Maximum Input Threshold Test Voltages

APPLIED VOLTAGES (V)		RESULTING DIFFERENTIAL INPUT VOLTAGE (mV)	RESULTING COMMON- MODE INPUT VOLTAGE (V)
V_{IRIN+}	V_{IRIN+}	V_{ID}	V_{IC}
1.225	1.175	50	1.2
1.175	1.225	-50	1.2
2.375	2.325	50	2.35
2.325	2.375	-50	2.35
0.1	0	50	0.05
0	0.05	-50	0.05
1.5	0.9	600	1.2
0.9	1.5	-600	1.2
2.4	1.8	600	2.1
1.8	2.4	-600	2.1
0.6	0	600	0.3
0	0.6	-600	0.3

Receiver (continued)

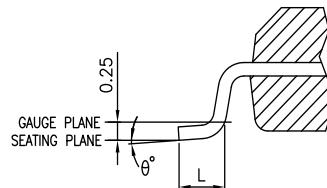
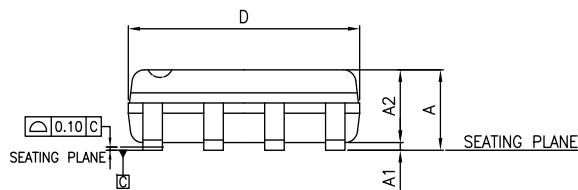


Note A: All input pulses are supplied by a generator having the following characteristics: t_r or t_f 1ns, pulse repetition rate (PRR) = 50 Mpps, pulse width = $10 \pm 0.2\text{ns}$. C_L includes instrumentation and fixture capacitance within 0.06m of the D.U.T.

Figure 5. Timing Test Circuit and Waveforms

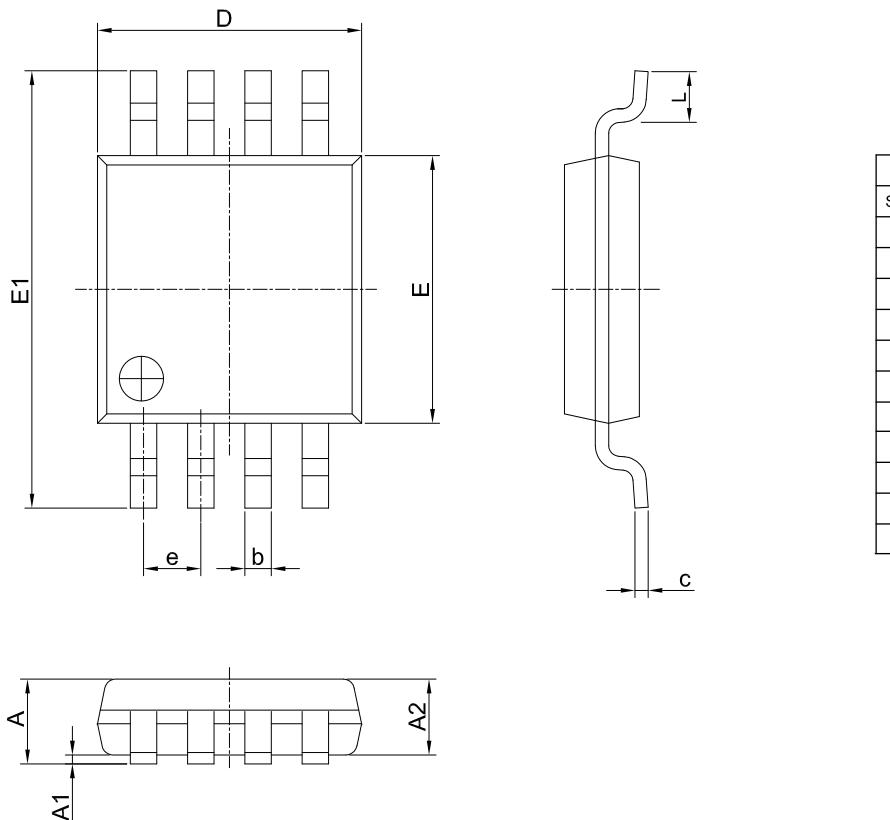
Packaging Mechanical: 8-Pin SOIC (W)

SYMBOLS	MIN.	NOM.	MAX.
A	—	—	1.75
A1	0.10	—	0.25
A2	1.25	—	—
b	0.31	—	0.51
c	0.10	—	0.25
D	4.80	4.90	5.00
E	5.80	6.00	6.20
E1	3.80	3.90	4.00
e	1.27 BSC		
L	0.40	—	1.27
h	0.25	—	0.50
θ°	0	—	8

UNIT : mm

NOTE :
 1. ALL DIMENSIONS ARE IN mm. ANGLES IN DEGREES
 2. DIMENSIONS EXCLUDE BURRS, MOLD FLASH OR PROTRUSIONS
 3. REFER JEDEC MS-012

15-0103


DATE: 02/21/14

DESCRIPTION: 8-Pin, 150mIL-Wide, SOIC

PACKAGE CODE: W (W8)

DOCUMENT CONTROL #: PD-1001

REVISION: G

Packaging Mechanical: 8-Pin MSOP (U)

PKG. DIMENSIONS(MM)		
SYMBOL	Min.	Max.
A	—	1.10
A1	0.00	0.15
A2	0.75	0.95
b	0.22	0.38
c	0.08	0.23
D	2.90	3.10
E	2.90	3.10
E1	4.65	5.15
e	0.65 BSC	
L	0.40	0.80
θ	0°	8°

NOTE:
 1. ALL DIMENSIONS ARE IN MILLIMETERS.
 2. REFER JEDEC MO-187E/AA
 3. PACKAGE OUTLINE DIMENSIONS DO NOT INCLUDE MOLD FLASH AND METAL BURR.

DATE: 10/20/14

DESCRIPTION: 8-Pin, Mini Small Outline Package, MSOP

PACKAGE CODE: U (U8)

DOCUMENT CONTROL #: PD-1261

REVISION: E

14-0272

Note: For latest package info, please check: <http://www.pericom.com/support/packaging/packaging-mechanicals-and-thermal-characteristics/>

Ordering Information

Ordering Number	Package Code	Package Description
PI90LV179WE	W	8-Pin, 150mil-Wide (SOIC)
PI90LV179WEX	W	8-Pin, 150mil-Wide (SOIC), Tape & Reel
PI90LV179UE	U	8-Pin, Mini Small Outline Package (MSOP)
PI90LV179UEX	U	8-Pin, Mini Small Outline Package (MSOP), Tape & Reel

Notes:

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- E = Pb-free and Green
- X suffix = Tape/Reel