TDA8029

Low power single card reader

Rev. 3.3 — 19 July 2016

Product data sheet

1. General description

The TDA8029 is a complete one chip, low cost, low power, robust smart card reader. Its different power reduction modes and its wide supply voltage range allow its use in portable equipment. Due to specific versatile hardware, a small embedded software program allows the control of most cards available in the market. The control from the host may be done through a standard serial interface.

The TDA8029 may be delivered with standard embedded software. For details on standard embedded software, please refer to "AN10207" for the TDA8029HL/C2.

2. Features and benefits

- 80C51 core with 16 kB ROM, 256 byte RAM and 512 byte XRAM
- Specific ISO7816 UART, accessible with MOVX instructions for automatic convention processing, variable baud rate, error management at character level for T = 0 and T = 1 protocols, extra guard time, etc.
- Specific versatile 24-bit Elementary Time Unit (ETU) counter for timing processing during Answer To Reset (ATR) and for T = 1 protocol
- V_{CC} generation with controlled rise and fall times see Section 11 "Characteristics"
- Card clock generation up to 20 MHz with three times synchronous frequency doubling (f_{XTAL}, ½f_{XTAL}, ¼f_{XTAL} and ⅓f_{XTAL})
- Card clock stop HIGH or LOW or 1.25 MHz from an integrated oscillator for card power reduction modes
- Automatic activation and deactivation sequences through an independent sequencer
- Supports asynchronous protocols T = 0 and T = 1 in accordance with:
 - ◆ ISO 7816 and EMVCo4.3 (TDA8029HL/C2).
- 1 to 8 characters FIFO in reception mode
- Parity error counter in reception mode and in transmission mode with automatic retransmission
- Versatile 24-bit time-out counter for ATR and waiting times processing
- Specific ETU counter for Block Guard Time (BGT) (22 ETU in T = 1 and 16 ETU in T = 0)
- Minimum delay between two characters in reception mode:
 - ◆ In protocol T = 0: 11.8 ETU (TDA8029HL/C2).
 - ◆ In protocol T = 1: 10.8 ETU (TDA8029HL/C2).
- Supports synchronous cards which do not use C4/C8
- Current limitations on card contacts

Low power single card reader

- Supply supervisor for power-on/off reset and spikes killing
- DC-to-DC converter (supply voltage from 2.7 to 6 V), doubler, tripler or follower according to V_{CC} and V_{DD}
- Shut-down input for very low power consumption
- Enhanced ESD protection on card contacts (6 kV minimum)
- Software library for easy integration
- Communication with the host through a standard full duplex serial link at programmable baud rates
- One external interrupt input and four general purpose I/Os.

3. Applications

- Portable card readers
- General purpose card readers
- EMV compliant card readers.

4. Quick reference data

Table 1. Quick reference data

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DD}	supply voltage		2.7	-	6.0	V
		NDS conditions	3	-	6.0	V
V _{DCIN}	input voltage for the DC-to-DC converter		V_{DD}	-	6.0	V
I _{DD(sd)}	supply current in Shut-down mode	V _{DD} = 3.3 V	-	-	20	μΑ
I _{DD(pd)}	supply current in Power-down mode	V _{DD} = 3.3 V; card inactive; microcontroller in Power-down mode	-	-	110	μΑ
I _{DD(sI)}	supply current in Sleep mode	V_{DD} = 3.3 V; card active at V_{CC} = 5 V; clock stopped; microcontroller in Power-down mode; I_{CC} = 0 A	-	-	800	μА
I _{DD(om)}	supply current in operating mode	$I_{CC} = 65 \text{ mA};$ $f_{XTAL} = 20 \text{ MHz};$ $f_{CLK} = 10 \text{ MHz}; 5 \text{ V card};$ $V_{DD} = 2.7 \text{ V}$	-	-	250	mA

Low power single card reader

Table 1. Quick reference data ...continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CC}	card supply voltage	active mode; I _{CC} < 65 mA; 5 V card	4.75	5	5.25	V
		active mode; I_{CC} < 65 mA if V_{DD} > 3.0 V else I_{CC} < 50 mA; 3 V card	2.80	3	3.20	V
		active mode; I _{CC} < 30 mA; 1.8 V card	1.62	1.8	1.98	V
		active mode; current pulses of 40 nAs with I < 200 mA, t < 400 ns, f < 20 MHz; 5 V card	4.6	-	5.3	V
		active mode; current pulses of 40 nAs with I < 200 mA, t < 400 ns, f < 20 MHz; 3 V card	2.75	-	3.25	V
		active mode; current pulses of 12 nAs with I < 200 mA, t < 400 ns, f < 20 MHz; 1.8 V card	1.62	-	1.98	V
I _{CC}	card supply current	5 V card; V _{CC} = 0 V to 5 V	-	-	65	mA
		3 V card; V_{CC} = 0 V to 3 V; V_{DD} > 3.0 V	-	-	65	mA
		3 V card; V_{CC} = 0 V to 3 V; V_{DD} < 3.0 V	-	-	50	mA
		1.8 V card; $V_{CC} = 0 \text{ V to}$ 1.8 V;	-	-	30	mA
I _{CC(det)}	overload detection current		-	100	-	mA
SR _r , SR _f	rise and fall slew rate on V_{CC}	maximum load capacitor 300 nF	0.05	0.16	0.22	V/µs
t _{de}	deactivation sequence duration		-	-	100	μS
t _{act}	activation sequence duration		-	-	225	μS
f _{XTAL}	crystal frequency	V _{DD} = 5 V	4	-	27	MHz
		V _{DD} < 3 V	4	-	16	MHz
		external input	0	-	27	MHz
T _{amb}	ambient temperature		-40	-	+90	°C

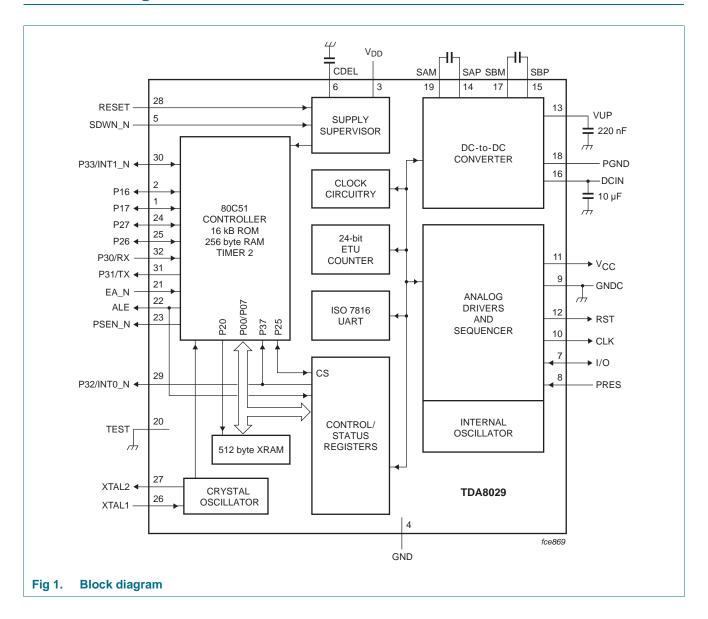
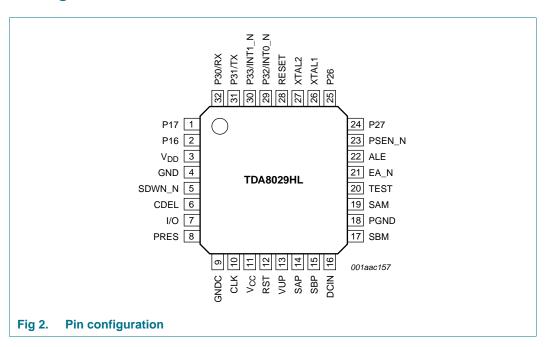

5. Ordering information

Table 2. Ordering information

Type number	Package	ackage						
	Name	Description	Version					
TDA8029HL/C207	LQFP32	plastic low profile quad flat package; 32 leads; body $7 \times 7 \times 1.4 \text{ mm}$	SOT358-1					

Low power single card reader


6. Block diagram

Low power single card reader

7. Pinning information

7.1 Pinning

7.2 Pin description

Table 3. Pin description

Symbol	Pin	Туре	Description
P17	1	I/O	general purpose I/O
P16	2	I/O	general purpose I/O
V_{DD}	3	power	supply voltage
GND	4	power	ground connection
SDWN_N	5	I	shut-down signal input (active LOW, no internal pull-up)
CDEL	6	I	connection for an external capacitor determining the power-on reset pulse width (typically 1 ms per 2 nF)
I/O	7	I/O	data input/output to/from the card (C7); 14 k Ω integrated pull-up resistor to V_{CC}
PRES	8	I	card presence detection contact (active HIGH); do not connect to any external pull-up or pull-down resistor; use with a normally open presence switch (see details in Section 8.12)
GNDC	9	power	card ground (C5); connect to GND in the application
CLK	10	0	clock to the card (C3)
V _{CC}	11	0	card supply voltage (C1)
RST	12	0	card reset (C2)
VUP	13	power	output of the DC-to-DC converter (low ESR 220 nF to PGND)

Low power single card reader

 Table 3.
 Pin description ...continued

Symbol	Pin	Type	Description
SAP	14	I/O	DC-to-DC converter capacitor connection (low ESR 220 nF between SAP and SAM)
SBP	15	I/O	DC-to-DC converter capacitor connection (low ESR 220 nF between SBP and SBM)
DCIN	16	I	power input for the DC-to-DC converter
SBM	17	I/O	DC-to-DC converter capacitor connection (low ESR 220 nF between SBP and SBM)
PGND	18	power	ground for the DC-to-DC converter
SAM	19	I/O	DC-to-DC converter capacitor connection (low ESR 220 nF between SAP and SAM)
TEST	20	I	used for test purpose; connect to GND in the application
EA_N	21	I	control signal for microcontroller; connect to V_{DD} in the application)
ALE	22	0	control signal for the microcontroller; leave open in the application)
PSEN_N	23	0	control signal for the microcontroller; leave open in the application)
P27	24	I/O	general purpose I/O
P26	25	I/O	general purpose I/O
XTAL1	26	I	external crystal connection or input for an external clock signal
XTAL2	27	0	external crystal connection; leave open if an external clock is applied to XTAL1
RESET	28	I	reset input from the host (active HIGH); no integrated pull-down resistor
P32/INT0_N	29	0	interrupt output for test purpose; leave open in the application
P33/INT1_N	30	I/O	external interrupt input, or general purpose I/O; may be left open if not used
P31/TX	31	0	transmission line for serial communication with the host
P30/RX	32	I	reception line for serial communication with the host

8. Functional description

Throughout this specification, it is assumed that the reader is aware of ISO7816 norm terminology.

8.1 Microcontroller

The embedded microcontroller is an 80C51FB with internal 16 kB ROM, 256 byte RAM and 512 byte XRAM. It has the same instruction set as the 80C51.

The controller is clocked by the frequency present on XTAL1.

The controller may be reset by an active HIGH signal on pin RESET, but it is also reset by the power-on reset signal generated by the voltage supervisor.

Low power single card reader

The external interrupt INTO_N is used by the ISO UART, by the analog drivers and the ETU counters. It must be left open in the application.

The second external interrupt INT1_N is available for the application.

A general description as well as added features are described in this chapter.

The added features to the 80C51 controller are similar to the 8XC51FB controller, except on the wake-up from Power-down mode, which is possible by a falling edge on INT0_N (Internally driven signalling card reader problems, see details in Section 8.9.1.2), on INT1_N or on RX due to the addition of an extra delay counter and enable configuration bits within register UCR2 (see detailed description in Section 8.9.3.2). For any further information please refer to the published specification of the 8XC51FB in "Data Handbook IC20; 80C51-Based 8-bit Microcontrollers".

The controller has four 8-bit I/O ports, three 16-bit timer/event counters, a multi-source, four-priority-level, nested interrupt structure, an enhanced UART and on-chip oscillator and timing circuits. For systems that require extra memory capability up to 64 kB, it can be expanded using standard TTL-compatible memories and logic.

Additional features of the controller are:

- 80C51 central processing unit
- Full static operation
- Security bits: ROM 2 bits
- Encryption array of 64 bits
- 4-level priority structure
- 6 interrupt sources
- Full-duplex enhanced UART with framing error detection and automatic address recognition
- Power control modes; clock can be stopped and resumed, Idle mode and Power-down mode
- Wake-up from power-down by falling edge on INT0_N, INT1_N and RX with an embedded delay counter
- Programmable clock out
- Second DPTR register
- · Asynchronous port reset
- Low EMI by inhibit ALE.

<u>Table 4</u> gives a list of main features to get a better understanding of the differences between a standard 80C51, an 8XC51FB and the embedded controller in the TDA8029.

Table 4. Principal blocks in 80C51, 8XC51FB and TDA8029

Feature	80C51	8XC51FB	TDA8029
ROM	4 kB	16 kB	16 kB
RAM	128 byte	256 byte	256 byte
ERAM (MOVX)	no	256 byte	512 byte
PCA	no	yes	no

TDA8029

Low power single card reader

Table 4. Principal blocks in 80C51, 8XC51FB and TDA8029

Feature	80C51	8XC51FB	TDA8029
WDT	no	yes	no
ТО	yes	yes	yes
T1	yes	yes	yes
T2	no	yes	yes
		lowest interrupt priority-vector at 002BH	lowest interrupt priority-vector at 002BH
4 level priority interrupt	no	yes	yes
enhanced UART	no	yes	yes
delay counter	no	no	yes

Table 5. Embedded C51 controller special function registers

Symbol	Description	Addr (hex)	Bit addre	Bit address, symbol or alternative port function							Reset value (binary)	
ACC[1]	accumulator	E0	E7	E6	E5	E4	E3	E2	E1	E0	0000 0000	
AUXR[2]	auxiliary	8E	-	-	-	-	-	-	EXTRAM	AO	xxxx xx00	
AUXR1[2]	auxiliary	A2	-	-		LPEP	GF	0	-	DPS	xxx0 00x0	
B[1]	B register	F0	F7	F6	F5	F4	F3	F2	F1	F0	0000 0000	
DPH	data pointer high	83	-	-	-	-	-	-	-	-	0000 0000	
DPL	data pointer low	82	-	-	-	-	-	-	-	-	0000 0000	
IE[1]	interrupt	A8	EA	-	ET2	ES	ET1	EX1	ET0	EX0	0x00 0000	
	enable		AF	AE	AD	AC	AB	AA	A9	A8		
IP[1]	interrupt	B8	-	-	PT2	PS	PT1	PX1	PT0	PX0	2X0 xx00 0000	
	priority		BF	BE	BD	ВС	ВВ	ВА	В9	B8		
IPH[2]	interrupt priority high	B7	-	-	PT2H	PSH	PT1H	PX1H	PT0H	PX0H	xx00 0000	
P0[1]	port 0	80	AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0	1111 1111	
			87	86	85	84	83	82	81	80		
P1[1]	port 1	90	-	-	-	-	-	-	T2EX	T2	1111 1111	
			97	96	95	94	93	92	91	90		
P2[1]	Port 2	A0	A15	A14	A13	A12	A11	A10	A9	A8	1111 1111	
			A7	A6	A5	A4	А3	A2	A1	A0		
P3[1]	Port 3	B0	RD	WR	T1	T0	INT0_N	INT1_N	TxD	RxD	1111 1111	
			B7	B6	B5	B4	В3	B2	B1	B0		
PCON[2][3]	power control	87	SMOD1	SMOD0	-	POF[4]	GF1	GF0	PD	IDL	00xx 0000	
PSW[1]	program	D0	CY	AC	F0	RS1	RS0	OV	-	Р	0000 00x0	
	status word		D7	D6	D5	D4	D3	D2	D1	D0		
RACAP2H	timer 2 capture high	СВ	-	-	-	-	-	-	-	-	0000 0000	

Low power single card reader

 Table 5.
 Embedded C51 controller special function registers ...continued

Symbol	Description	Addr (hex)	Bit addre	Bit address, symbol or alternative port function							it address, symbol or alternative port function				Reset value (binary)
RACAP2L	timer 2 capture low	CA	-	-	-	-	-	-	-	-	0000 0000				
SADDR[2]	slave address	A9	-	-	-	-	-	-	-	-	0000 0000				
SADEN[2]	slave address mask	B9	-	-	-	-	-	-	-	-	0000 0000				
SBUF	serial data buffer	99	-	-	-	-	-	-	-	-	xxxx xxxx				
SCON[1]	serial control	98	SM0/FE	SM1	SM2	REN	TB8	RB8	TI	RI	0000 0000				
			9F	9E	9D	9C	9B	9A	99	98					
SP	stack pointer	81									0000 0111				
TCON[1]	timer control	88	TF1	TR1	TF0	TE0	IE1	IT1	IE0	IT0	0000 0000				
			8F	8E	8D	8C	8B	8A	89	88					
T2CON ¹¹	timer 2	C8	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/RL2	0000 0000				
	control		CF	CE	CD	CC	СВ	CA	C9	C8					
T2MOD[2]	timer 2 mode control	C9	-	-	-	-	-	-	T2OE	DCEN	xxxx xx00				
TH0	timer high 0	8C	-	-	-	-	-	-	-	-	0000 0000				
TH1	timer high 1	8D	-	-	-	-	-	-	-	-	0000 0000				
TH2[2]	timer high 2	CD	-	-	-	-	-	-	-	-	0000 0000				
TL0	timer low 0	8A	-	-	-	-	-	-	-	-	0000 0000				
TL1	timer low 1	8B	-	-	-	-	-	-	-	-	0000 0000				
TL2 ^[2]	timer low 2	CC	-	-	-	-	-	-	-	-	0000 0000				
TMOD	timer mode	89	GATE	C/T	M1	MO	GATE	C/T	M1	MO	0000 0000				

- [1] SFRs are bit addressable.
- [2] SFRs are modified from or added to the 80C51 SFRs.
- [3] RESET value depends on reset source.
- [4] Bit will not be affected by RESET.

8.1.1 Port characteristics

Port 0 (P0.7 to P0.0): Port 0 is an open-drain, bidirectional I/O timer 2 generated commonly used baud rates port. Port 0 pins that have logic 1s written to them float and can be used as high-impedance inputs. Port 0 is also the multiplexed low-order address and data bus during access to external program and data memory. In this application, it uses strong internal pull-ups when emitting logic 1s. Port 0 also outputs the code bytes during program verification and received code bytes during EPROM programming. External

pull-ups are required during program verification.

Port 1 (P1.7 to P1.0): Port 1 is an 8-bit bidirectional I/O-port with internal pull-ups.

Port 1 pins that have logic 1s written to them are pulled HIGH by the internal pull-ups and can be used as inputs. As inputs, port 1 pins that are externally

Low power single card reader

pulled LOW will source current because of the internal pull-ups. Port 1 also receives the low-order address byte during program memory verification. Alternate functions for port 1 include:

- T2 (P1.0): timer/counter 2 external count input/clock out (see programmable clock out)
- T2EX (P1.1): timer/counter 2 reload/capture/direction control.
- Port 2 (P2.7 to P2.0): Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. Port 2 pins that have logic 1s written to them are pulled HIGH by the internal pull-ups and can be used as inputs. As inputs, port 2 pins that are externally being pulled LOW will source current because of the internal pull-ups. Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @DPTR). In this application, it uses strong internal pull-ups when emitting logic 1s. During access to external data memory that use 8-bit addresses (MOV @Ri), port 2 emits the contents of the P2 special function register. Some port 2 pins receive the high order address bits during EPROM programming and verification.
- Port 3 (P3.7 to P3.3, P3.1 and P3.0): Port 3 is a 7-bit bidirectional I/O port with internal pull-ups. Port 3 pins that have logic 1s written to them are pulled HIGH by the internal pull-ups and can be used as inputs. As inputs, port 3 pins that are externally being pulled LOW will source current because of the pull-ups. Port 3 also serves the special features of the 80C51 family, as listed:
 - RxD (P3.0): serial input port
 - TxD (P3.1): serial output port
 - INT0 (P3.2): external interrupt 0 (pin INT0_N)
 - INT1 (P3.3): external interrupt 1 (pin INT1_N)
 - T0 (P3.4): timer 0 external input
 - T1 (P3.5): timer 1external input
 - WR (P3.6): external data memory write strobe
 - RD (P3.7): external data memory read strobe.

8.1.2 Oscillator characteristics

XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier. The pins can be configured for use as an on-chip oscillator. To drive the device from an external clock source, XTAL1 should be driven while XTAL2 is left unconnected. There are no requirements on the duty cycle of the external clock signal, because the input to the internal clock circuitry is through a divide-by-two flip-flop. However, minimum and maximum HIGH and LOW times specified must be observed.

8.1.3 **Reset**

The microcontroller is reset when the TDA8029 is reset, as described in Section 8.10.

8.1.4 Low power modes

This section describes the low power modes of the microcontroller. Please refer to Section 8.14 for additional information of the TDA8029 power reduction modes.

TDA8029

Low power single card reader

Stop clock mode: The static design enables the clock speed to be reduced down to 0 MHz (stopped). When the oscillator is stopped, the RAM and special function registers retain their values. This mode allows step-by-step utilization and permits reduced system power consumption by lowering the clock frequency down to any value. For lowest power consumption the Power-down mode is suggested.

Idle mode: In the Idle mode, the CPU puts itself to sleep while all of the on-chip peripherals stay active. The instruction to invoke the Idle mode is the last instruction executed in the normal operating mode before the Idle mode is activated. The CPU contents, the on-chip RAM, and all of the special function registers remain intact during this mode. The Idle mode can be terminated either by any enabled interrupt (at which time the process is picked up at the interrupt service routine and continued), or by a hardware reset which starts the processor in the same manner as a Power-on reset.

Power-down mode: To save even more power, a Power-down mode can be invoked by software. In this mode, the oscillator is stopped and the instruction that invoked Power-down is the last instruction executed.

Either a hardware reset, external interrupt or reception on RX can be used to exit from Power-down mode. Reset redefines all the SFRs but does not change the on-chip RAM. An external interrupt allows both the SFRs and the on-chip RAM to retain their values.

With INT0_N, INT1_N or RX, the bits in register IE must be enabled. Within the INT0_N interrupt service routine, the controller has to read out the Hardware Status Register (HSR @ 0Fh) and/or the UART Status register (USR @ 0Eh) by means of MOVX-instructions in order to know the exact interrupt reason and to reset the interrupt source.

For enabling a wake up by INT1 N, the bit ENINT1 within UCR2 must be set.

For enabling a wake up by RX, the bits ENINT1 and ENRX within UCR2 must be set.

An integrated delay counter maintains internally INT0_N and INT1_N LOW long enough to allow the oscillator to restart properly, so a falling edge on pins RX, INT0_N and INT1_N is enough for awaking the whole circuit.

Once the interrupt is serviced, the next instruction to be executed after RETI will be the one following the instruction that put the device into power-down.

	•	•					
Mode	Program memory	ALE	PSEN_N	Port 0	Port 1	Port 2	Port 3
Idle	internal	1	1	data	data	data	data
Idle	external	1	1	float	data	address	data
Power-down	internal	0	0	data	data	data	data
Power-down	external	0	0	float	data	data	data

Table 6. External pin status during Idle and Power-down mode

8.2 Timer 2 operation

Timer 2 is a 16-bit timer and counter which can operate as either an event timer or an event counter, as selected by bit $C/\overline{12}$ in the special function register T2CON. Timer 2 has three operating modes: capture, auto-reload (up- or down counting), and baud rate generator, which are selected by bits in register T2CON.

Low power single card reader

8.2.1 Timer/counter 2 control register (T2CON)

Table 7. T2CON - timer/counter 2 control register (address C8h) bit allocation

7	6	5	4	3	2	1	0
TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/RL2

Table 8. T2CON - timer/counter 2 control register (address C8h) bit description

Bit	Symbol	Description
7	TF2	Timer 2 overflow flag set by a timer 2 overflow and must be cleared by software. TF2 will not be set when either RCLK or TCLK = 1.
6	EXF2	Timer 2 external flag set when either a capture or reload is caused by a negative transition on T2EX and EXEN2 = 1. When timer 2 interrupt is enabled, EXF2 = 1 will cause the CPU to vector to the timer 2 interrupt routine. EXF2 must be cleared by software. EXF2 does not cause an interrupt in up/down counter mode (DCEN = 1).
5	RCLK	Receive clock flag. When set, causes the serial port to use timer 2 overflow pulses for its receive clock in modes 1 and 3. RCLK = 0 causes timer 1 overflows to be used for the receive clock.
4	TCLK	Transmit clock flag. When set, causes the serial port to use timer 2 overflow pulses for its transmit clock in modes 1 and 3. TCLK = 0 causes timer 1 overflows to be used for the transmit clock.
3	EXEN2	Timer 2 external enable flag. When set, allows a capture or reload to occur as a result of a negative transition on T2EX if timer 2 is not being used to clock the serial port. EXEN2 = 0 causes timer 2 to ignore events at T2EX.
2	TR2	Start/stop control for timer 2. TR2 = 1 starts the timer.
1	C/T2	Counter or timer select timer 2.
		$0 = internal timer {}^{(1)}/{}_{12}f_{XTAL1})$
		1 = external event counter (falling edge triggered).
0	CP/RL2	Capture or reload flag. When set, captures will occur on negative transitions at T2EX if EXEN2 = 1. When cleared, auto-reloads will occur either with timer 2 overflows or negative transitions at T2EX when EXEN2 = 1. When either RCLK = 1 or TCLK = 1, this bit is ignored and the timer is forced to auto-reload on timer 2 overflow.

Table 9. Timer 2 operating modes

Mode RCLK and TCL		CP/RL2	TR2
16-bit auto-reload	0	0	1
Baud-rate generator	1	X	1
Off	X	X	0

8.2.2 Timer/counter 2 mode control register (T2MOD)

Table 10. T2MOD - timer/counter 2 mode control register (address C9h) bit allocation

7	6	5	4	3	2	1	0
-	-	-	-	-	-	T2OE	DCEN

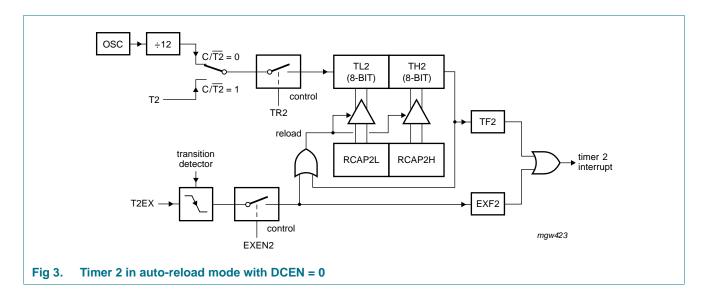
Low power single card reader

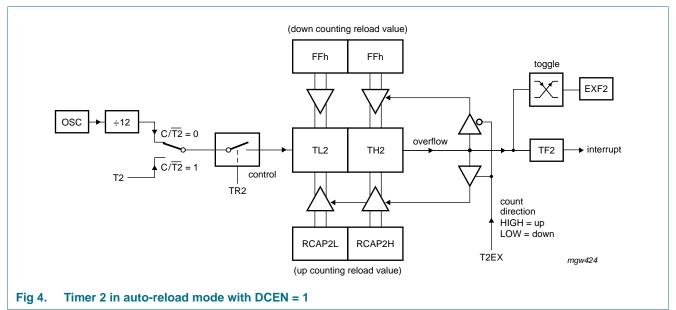
Table 11. T2MOD - timer/counter 2 mode control register (address C9h) bit description

Bit	Symbol	Description	
7 to 2	-	Not implemented. Reserved for future use.	
1	T2OE	Timer 2 output enable.	
0	DCEN	Down counter enable. When set, allows timer 2 to be configured as up- or down-counter.	

^[1] Do not write logic 1s to reserved bits. These bits may be used in future 80C51 family products to invoke new features. In that case, the reset or inactive value of the new bit will be logic 0, and its active value will be logic 1. The value read from a reserved bit is indeterminate.

8.2.3 Auto-reload mode (up- or down-counter)


In the 16-bit auto-reload mode, timer 2 can be configured as either a timer or counter (bit $C/\overline{T2}$ in register T2CON) and programmed to count up or down. The counting direction is determined by bit DCEN (down-counter enable) which is located in the T2MOD register. When reset, DCEN = 0 and timer 2 will default to counting up. If DCEN = 1, timer 2 can count up or down depending on the value of T2EX.


When DCEN = 0, timer 2 will count up automatically. In this mode there are two options selected by bit EXEN2 in register T2CON. If EXEN2 = 0, then timer 2 counts up to 0FFFFh and sets the TF2 overflow flag upon overflow. This causes the timer 2 registers to be reloaded with the 16-bit value in RCAP2L and RCAP2H. The values in RCAP2L and RCAP2H are preset by software. If EXEN2 = 1, then a 16-bit reload can be triggered either by an overflow or by a HIGH to LOW transition at controller input T2EX. This transition also sets the EXF2 bit. The timer 2 interrupt, if enabled, can be generated when either TF2 or EXF2 are logic 1. See Figure 3 for an overview.

DCEN = 1 enables timer 2 to count up- or down. This mode allows T2EX to control the direction of count. When a HIGH level is applied at T2EX timer 2 will count up. Timer 2 will overflow at 0FFFFh and set the TF2 flag, which can then generate an interrupt, if the interrupt is enabled. This timer overflow also causes the 16-bit value in RCAP2L and RCAP2H to be reloaded into the timer registers TL2 and TH2. When a LOW level is applied at T2EX this causes timer 2 to count down. The timer will underflow when TL2 and TH2 become equal to the value stored in RCAP2L and RCAP2H. Timer 2 underflow sets the TF2 overflow flag and causes 0FFFFh to be reloaded into the timer registers TL2 and TH2. See Figure 4 for an overview.

The external flag EXF2 toggles when timer 2 underflows or overflows. This EXF2 bit can be used as a 17th bit of resolution if needed. The EXF2 flag does not generate an interrupt in this mode of operation.

Low power single card reader

8.2.4 Baud rate generator mode

Bits TCLK and/or RCLK in register T2CON allow the serial port transmit and receive baud rates to be derived from either timer 1 or timer 2. When TCLK = 0, timer 1 is used as the serial port transmit baud rate generator. When TCLK = 1, timer 2 is used. RCLK has the same effect for the serial port receive baud rate. With these two bits, the serial port can have different receive and transmit baud rates, one generated by timer 1, the other by timer 2.

The baud rate generation mode is like the auto-reload mode, in that a rollover in TH2 causes the timer 2 registers to be reloaded with the 16-bit value in registers RCAP2H and RCAP2L, which are preset by software.

Low power single card reader

The baud rates in modes 1 and 3 are determined by the overflow rate of timer 2, given by Equation 1:

$$Baud\ rate = \frac{Timer\ 2\ overflow\ rate}{16} \tag{1}$$

The timer can be configured for either timer or counter operation. In many applications, it is configured for timer operation ($C/\overline{T2} = 0$). Timer operation is different for timer 2 when it is being used as a baud rate generator.

Usually, as a timer it would increment every machine cycle (i.e. $\frac{1}{12} f_{osc}$). As a baud rate generator, it increments every state time (i.e. $\frac{1}{2} f_{osc}$). Thus the modes 1 and 3 baud rate formula is as Equation 2:

$$Baud\ rate = \frac{Oscillator\ frequency}{32 \times [65536 - (RCAP2H, RCAP2L)]} \tag{2}$$

Where (RCAP2H, RCAP2L) is the contents of RCAP2H and RCAP2L registers taken as a 16-bit unsigned integer.

The timer 2 as a baud rate generator is valid only if RCLK = 1 and/or TCLK = 1 in the T2CON register. Note that a rollover in TH2 does not set TF2, and will not generate an interrupt. Thus, the timer 2 interrupt does not have to be disabled when timer 2 is in the baud rate generator mode. Also if the EXEN2 (T2 external enable) flag is set, a HIGH to LOW transition on T2EX (timer/counter 2 trigger input) will set the EXF2 (T2 external) flag but will not cause a reload from (RCAP2H and RCAP2L) to (TH2 and TL2). Therefore, when timer 2 is used as a baud rate generator, T2EX can be used as an additional external interrupt, if needed.

When timer 2 is in the baud rate generator mode, never try to read or write TH2 and TL2. As a baud rate generator, timer 2 is incremented every state time ($\frac{1}{2}f_{osc}$) or asynchronously from controller I/O T2; under these conditions, a read or write of TH2 or TL2 may not be accurate. The RCAP2 registers may be read, but should not be written to, because a write might overlap a reload and cause write and/or reload errors. The timer should be turned off (clear TR2) before accessing the timer 2 or RCAP2 registers. See Figure 5 for an overview.

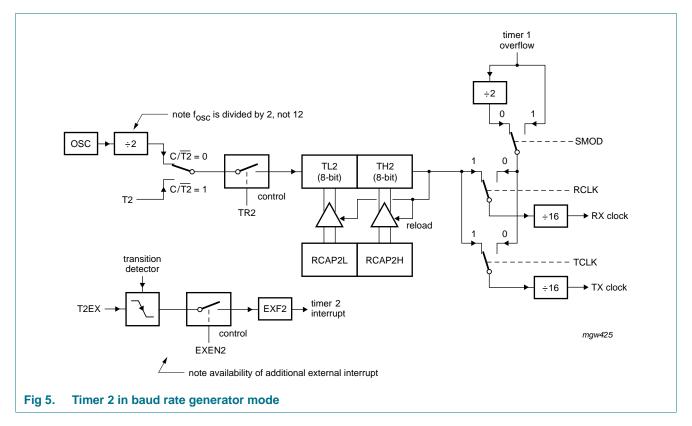
Table 12. Timer 2 generated commonly used baud rates

Baud rate (Bd)	Crystal oscillator	Timer	Timer		
	frequency (MHz)	RCAP2H (hex)	RCAP2L (hex)		
375k	12	FF	FF		
9.6k	12	FF	D9		
2.8k	12	FF	B2		
2.4k	12	FF	64		
1.2k	12	FE	C8		
300	12	FB	1E		
110	12	F2	AF		
300	6	FD	8F		
110	6	F9	57		

Low power single card reader

Summary of baud rate equations: Timer 2 is in baud rate generating mode. If timer 2 is being clocked through T2 (P1.0) the baud rate is:

$$Baud\ rate = \frac{Timer\ 2\ overflow\ rate}{16} \tag{3}$$


If timer 2 is being clocked internally, the baud rate is:

$$Baud\ rate = \frac{Oscillator\ frequency}{32 \times [65536 - (RCAP2H, RCAP2L)]} \tag{4}$$

To obtain the reload value for RCAP2H and RCAP2L, the above equation can be rewritten as:

$$RCAP2H, RCAP2L = 65536 - \frac{f_{osc}}{32 \times baud\ rate}$$
 (5)

where f_{osc} = oscillator frequency.

8.2.5 Timer/counter 2 set-up

Except for the baud rate generator mode, the values given in <u>Table 13</u> for T2CON do not include the setting of the TR2 bit. Therefore, bit TR2 must be set, separately, to turn the timer on.

Low power single card reader

Table 13. Timer 2 as a timer

Mode	T2CON			
	Internal control (hex)[1]	External control (hex)[2]		
16-bit auto-reload	00	08		
Baud rate generator receive and transmit same baud rate	34	36		
Receive only	24	26		
Transmit only	14	16		

^[1] Capture/reload occurs only on timer/counter overflow.

Table 14. Timer 2 as a counter

Mode	T2MOD		
	Internal control (hex)[1]	External control (hex)[2]	
16-bit	02	04	
Auto-reload	03	0B	

^[1] Capture/reload occurs only on timer/counter overflow.

8.3 Enhanced UART

The UART operates in all of the usual modes that are described in the first section of "Data Handbook IC20, 80C51-based 8-bit microcontrollers". In addition the UART can perform framing error detection by looking for missing stop bits and automatic address recognition. The UART also fully supports multiprocessor communication as does the standard 80C51 UART.

When used for framing error detection the UART looks for missing stop bits in the communication. A missing bit will set the bit FE or bit 7 in the SCON register. Bit FE is shared with bit SM0. The function of SCON bit 7 is determined by bit 6 in register PCON (bit SMOD0). If SMOD0 is set then bit 7 of register SCON functions as FE and as SM0 when SMOD0 is cleared. When used as FE this bit can only be cleared by software.

8.3.1 Serial port control register (SCON)

Table 15. SCON - serial port control register (address 98h) bit allocation

7	6	5	4	3	2	1	0
SM0/FE	SM1	SM2	REN	TB8	RB8	TI	RI

^[2] Capture/reload on timer/counter overflow and a 1-to-0 transition on T2EX (P1.1) pin except when timer 2 is used in the baud rate generator mode.

^[2] Capture/reload on timer/counter overflow and a HIGH-to-LOW transition on T2EX (P1.1) pin except when timer 2 is used in the baud rate generator mode.

Low power single card reader

Table 16. SCON - serial port control register (address 98h) bit description

Bit	Symbol	Description				
7	SM0/FE	The function of this bit is determined by SMOD0, bit 6 of register PCON. If SMOD0 is set then this bit functions as FE. This bit functions as SM0 when SMOD0 is reset. When used as FE, this bit can only be cleared by software.				
		SM0: Serial port mode bit 0. See <u>Table 17</u> .				
		FE: Framing Error bit. This bit is set by the receiver when an invalid stop bit is detected; see Figure 6 . The FE bit is not cleared by valid frames but should be cleared by software. The SMOD0 bit in register PCON must be set to enable access to FE.				
6	SM1	Serial port mode bit 1. See <u>Table 17</u>				
5	SM2	Serial port mode bit 2. Enables the automatic address recognition feature in modes 2 or 3. If SM2 = 1, bit RI will not be set unless the received 9th data bit (RB8) is logic 1; indicating an address and the received byte is a given or broadcast address. In mode 1, if SM2 = 1 then RI will not be activated unless a valid stop bit was received, and the received byte is a given or broadcast address. In mode 0, SM2 should be logic 0.				
4	REN	Enables serial reception. Set by software to enable reception. Cleared by software to disable reception.				
3	ТВ8	The 9th data bit transmitted in modes 2 and 3. Set or cleared by software as desired. In mode 0, TB8 is not used.				
2	RB8	The 9th data bit received in modes 2 and 3. In mode 1, if SM2 = 0, RB8 is the stop bit that was received. In mode 0, RB8 is not used.				
1	TI	Transmit interrupt flag. Set by hardware at the end of the 8th bit time in mode 0, or at the beginning of the stop bit in the other modes, in any serial transmission. Must be cleared by software.				
0	RI	Receive interrupt flag. Set by hardware at the end of the 8th bit time in mode 0, or halfway through the stop bit time in the other modes, in any serial reception (except if SM2 = 1, as described for SM2). Must be cleared by software.				

Table 17. Enhanced UART Modes

SM0	SM1	MODE	DESCRIPTION	BAUD-RATE
0	0	0	shift register	¹ / ₁₂ f _{XTAL1}
0	1	1	8-bit UART	variable
1	0	2	9-bit UART	1/ ₃₂ or 1/ ₆₄ f _{XTAL1}
1	1	3	9-bit UART	variable

8.3.2 Automatic address recognition

Automatic address recognition is a feature which allows the UART to recognize certain addresses in the serial bit stream by using hardware to make the comparisons. This feature saves a great deal of software overhead by eliminating the need for the software to examine every serial address which passes by the serial port. This feature is enabled by setting the SM2 bit in register SCON. In the 9-bit UART modes (modes 2 and 3), the Receive Interrupt flag (RI) will be automatically set when the received byte contains either the 'given' address or the 'broadcast' address. The 9-bit mode requires that the 9th information bit is a logic 1 to indicate that the received information is an address and not data. Figure 7 gives a summary.

Low power single card reader

The 8-bit mode is called mode 1. In this mode the RI flag will be set if SM2 is enabled and the information received has a valid stop bit following the 8 address bits and the information is either a given or a broadcast address.

Mode 0 is the shift register mode and SM2 is ignored.

Using the automatic address recognition feature allows a master to selectively communicate with one or more slaves by invoking the given slave address or addresses. All of the slaves may be contacted by using the broadcast address. Two special function registers are used to define the slave addresses, SADDR, and the address mask, SADEN. SADEN is used to define which bits in the SADDR are to be used and which bits are 'don't cares'. The SADEN mask can be logically AND-ed with the SADDR to create the given address which the master will use for addressing each of the slaves. Use of the given address allows multiple slaves to be recognized while excluding others. The following examples will help to show the versatility of this scheme.

Table 18. Slave 0 address definition; example 1

Register	Value (binary)
SADDR	1100 0000
SADEN	1111 1101
Given	1100 00X0

Table 19. Slave 1 address definition; example 1

Register	Value (binary)
SADDR	1100 0000
SADEN	1111 1110
Given	1100 000X

In the above example SADDR is the same and the SADEN data is used to differentiate between the two slaves. Slave 0 requires that bit 0 = 0 and ignores bit 1. Slave 1 requires that bit 1 = 0 and bit 0 is ignored. A unique address for slave 0 would be 1100 0010 since slave 1 requires bit 1 = 0. A unique address for slave 1 would be 1100 0001 since bit 0 = 1 will exclude slave 0. Both slaves can be selected at the same time by an address which has bit 0 = 0 (for slave 0) and bit 1 = 0 (for slave 1). Thus, both could be addressed with 1100 0000.

In a more complex system the following could be used to select slaves 1 and 2 while excluding slave 0.

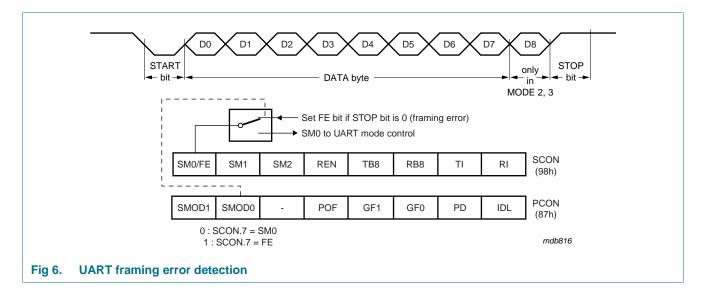
Table 20. Slave 0 address definition; example 2

Register	Value (binary)
SADDR	1100 0000
SADEN	1111 1001
Given	1100 0XX0

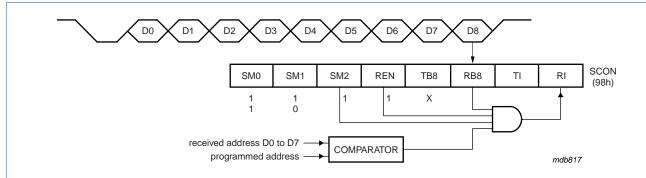
Table 21. Slave 1 address definition; example 2

Register	Value (binary)
SADDR	1110 0000
SADEN	1111 1010
Given	1110 0X0X

Low power single card reader


Table 22. Slave 2 address definition; example 2

Register	Value (binary)
SADDR	1110 0000
SADEN	1111 1100
Given	1110 00XX


In the above example the differentiation among the 3 slaves is in the lower 3 address bits. Slave 0 requires that bit 0 = 0 and it can be uniquely addressed by 1110 0110. Slave 1 requires that bit 1 = 0 and it can be uniquely addressed by 1110 and 0101. Slave 2 requires that bit 2 = 0 and its unique address is 1110 0011. To select slaves 0 and 1 and exclude slave 2 use address 1110 0100, since it is necessary to make bit 2 = 1 to exclude slave 2.

The broadcast address for each slave is created by taking the logical OR of SADDR and SADEN. Zeros in this result are treated as don't cares. In most cases, interpreting the don't cares as ones, the broadcast address will be FFh.

Upon reset SADDR (SFR address 0A9h) and SADEN (SFR address 0B9h) are leaded with 0s. This produces a given address of all 'don't cares' as well as a broadcast address of all 'don't cares'. This effectively disables the automatic addressing mode and allows the microcontroller to use standard 80C51 type UART drivers which do not make use of this feature.

Low power single card reader

UART modes 2 or 3 and SM2 = 1: there is an interrupt if REN = 1, RB8 = 1 and received address is equal to programmed address.

When own address is received, reset SM2 to receive the data bytes. When all data bytes are received, set SM2 to wait for the next address.

Fig 7. UART multiprocessor communication, automatic address recognition

8.4 Interrupt priority structure

The TDA8029 has a 6-source 4-level interrupt structure.

There are three SFRs associated with the 4-level interrupt: IE, IP and IPH. The Interrupt Priority High (IPH) register implements the 4-level interrupt structure. The IPH is located at SFR address B7h.

The function of the IPH is simple and when combined with the IP determines the priority of each interrupt. The priority of each interrupt is determined as shown in Table 23.

Table 23. Priority bits

IPH bit n	IP bit n	Interrupt priority level				
0	0	level 0 (lowest priority)				
0	1	level 1				
1	0	level 2				
1	1	level 3 (highest priority)				

Table 24. Interrupt Table

Source	Polling priority	Request bits	Hardware clear	Vector address (hex)
X0	1	IE0	N[1], Y[2]	03
T0	2	TF0	Υ	0B
X1	3	IE1	N[1], Y[2]	13
T1	4	TF1	Υ	1B
SP	5	RI, TI	N	23
T2	6	TF2, EXF2	N	2B

^[1] Level activated.

[2] Transition activated.

Low power single card reader

8.4.1 Interrupt enable register (IE)

Table 25. IE - interrupt enable register (address A8h) bit allocation

7	6	5	4	3	2	1	0
EA	-	ET2	ES	ET1	EX1	ET0	EX0

Table 26. IE - interrupt enable register (address A8h) bit description [1]

Bit	Symbol	Description
7	EA	Global disable. If EA = 0, all interrupts are disabled; If EA = 1, each interrupt can be individually enabled or disabled by setting or clearing its enable bit.
6	-	Not implemented. Reserved for future use[2]
5	ET2	Timer 2 interrupt enable. ET2 = 1 enables the interrupt; ET2 = 0 disables the interrupt.
4	ES	Serial port interrupt enable. ES = 1 enables the interrupt; ES = 0 disables the interrupt.
3	ET1	Timer 1 interrupt enable. ET1 = 1 enables the interrupt; ET1 = 0 disables the interrupt.
2	EX1	External interrupt 1 enable. EX1 = 1 enables the interrupt; EX1 = 0 disables the interrupt.
1	ET0	Timer 0 interrupt enable. ET0 = 1 enables the interrupt; ET0 = 0 disables the interrupt.
0	EX0	External interrupt 0 enable. EX0 = 1 enables the interrupt; EX0 = 0 disables the interrupt.

^[1] Details on interaction with the UART behavior in Power-down mode are described in Section 8.14.

8.4.2 Interrupt priority register (IP)

Table 27. IP - interrupt priority register (address B8h) bit allocation

7	6	5	4	3	2	1	0
-	-	PT2	PS	PT1	PX1	PT0	PX0

Table 28. IP - interrupt priority register (address B8h) bit description

Each interrupt priority is assigned with a bit in register IP and a bit in register IPH, see Table 23.

Bit	Symbol	Description				
7 and 6	-	Not implemented. Reserved for future use[1]				
5	PT2	Timer 2 interrupt priority.				
4	PS	Serial port interrupt priority.				
3	PT1	Timer 1 interrupt priority.				
2	PX1	External interrupt 1 priority.				
1	PT0	Timer 0 interrupt priority.				
0	PX0	External interrupt 0 priority.				

^[1] Do not write logic 1s to reserved bits. These bits may be used in future 80C51 family products to invoke new features. In that case, the reset or inactive value of the new bit will be logic 0, and its active value will be logic 1. The value read from a reserved bit is indeterminate.

^[2] Do not write logic 1s to reserved bits. These bits may be used in future 80C51 family products to invoke new features. In that case, the reset or inactive value of the new bit will be logic 0, and its active value will be logic 1. The value read from a reserved bit is indeterminate.

Low power single card reader

8.4.3 Interrupt priority high register (IPH)

Table 29. IPH - interrupt priority high register (address B7h) bit allocation

7	6	5	4	3	2	1	0
-	-	PT2H	PSH	PT1H	PX1H	PT0H	PX0H

Table 30. IPH - interrupt priority high register (address B7h) bit description

Each interrupt priority is assigned with a bit in register IP and a bit in register IPH, see Table 23.

Bit	Symbol	Description			
7 and 6	-	Not implemented. Reserved for future use[1]			
5	PT2H	Timer 2 interrupt priority.			
4	PSH	Serial port interrupt prioritizes.			
3	PT1H	Timer 1 interrupt priority.			
2	PX1H	External interrupt 1 priority.			
1	PT0H	Timer 0 interrupt priority.			
0	PX0H	External interrupt 0 priority.			

^[1] Do not write logic 1s to reserved bits. These bits may be used in future 80C51 family products to invoke new features. In that case, the reset or inactive value of the new bit will be logic 0, and its active value will be logic 1. The value read from a reserved bit is indeterminate.

8.5 Dual DPTR

The dual DPTR structure is a way by which the TDA8029 will specify the address of an external data memory location. There are two 16-bit DPTR registers that address the external memory, and a single bit called DPS (bit 0 of the AUXR1 register) that allows the program code to switch between them.

The DPS bit should be saved by software when switching between DPTR0 and DPTR1.

The GF bit (bit 2 in register AUXR1) is a general purpose user-defined flag. Note that bit 2 is not writable and is always read as a logic 0. This allows the DPS bit to be quickly toggled simply by executing an INC AUXR1 instruction without affecting the GF or LPEP bits.

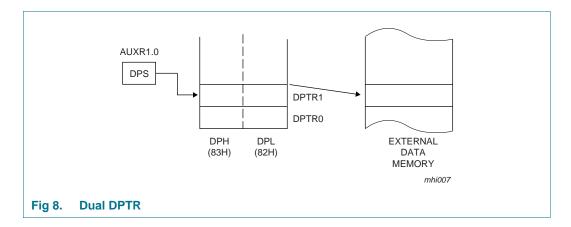

The instructions that refer to DPTR refer to the data pointer that is currently selected using bit 0 of the AUXR1 register. The six instructions that use the DPTR are listed in Table 31 and an illustration is given in Figure 8.

Table 31. DPTR Instructions

Instruction	Comment
INC DPTR	increments the data pointer by 1
MOV DPTR, #data 16	loads the DPTR with a 16-bit constant
MOV A, @A + DPTR	move code byte relative to DPTR to ACC
MOVX A, @DPTR	move external RAM (16-bit address) to ACC
MOVX @DPTR, A	move ACC to external RAM (16-bit address)
JMP @A + DPTR	jump indirect relative to DPTR

The data pointer can be accessed on a byte-by-byte basis by specifying the low or high byte in an instruction which accesses the SFRs.

Low power single card reader

8.6 Expanded data RAM addressing

The TDA8029 has internal data memory that is mapped into four separate segments.

The four segments are:

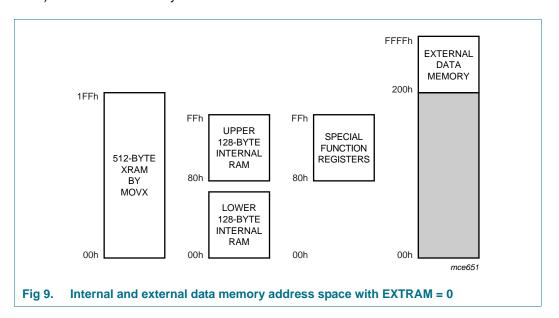
- 1. The lower 128 byte of RAM (addresses 00h to 7Fh), which are directly and indirectly addressable.
- 2. The upper 128 byte of RAM (addresses 80h to FFh), which are indirectly addressable only.
- 3. The Special Function Registers, SFRs, (addresses 80h to FFh), which are directly addressable only.
- 4. The 512 byte expanded RAM (XRAM 00h to 1FFh) are indirectly accessed by move external instructions, MOVX, if the EXTRAM bit (bit 1 of register AUXR) is cleared.

The lower 128 byte can be accessed by either direct or indirect addressing. The upper 128 byte can be accessed by indirect addressing only. The upper 128 byte occupy the same address space as the SFRs. That means they have the same address, but are physically separate from SFR space.

When an instruction accesses an internal location above address 7Fh, the CPU knows whether the access is to the upper 128 byte of data RAM or to the SFR space by the addressing mode used in the instruction. Instructions that use direct addressing access SFR space. For example: MOV A0h, #data accesses the SFR at location 0A0h (which is register P2).

Instructions that use indirect addressing access the upper 128 byte of data RAM. For example: MOV @R0, #data where R0 contains 0A0h, accesses the data byte at address 0A0h, rather than P2 (whose address is 0A0h).

The XRAM can be accessed by indirect addressing, with EXTRAM bit (register AUXR bit 1) cleared and MOVX instructions. This part of memory is physically located on-chip, logically occupies the first 512 byte of external data memory.


When EXTRAM = 0, the XRAM is indirectly addressed, using the MOVX instruction in combination with any of the registers R0, R1 of the selected bank or DPTR. An access to XRAM will not affect ports P0, P3.6 (\overline{WR}) and P3.7 (\overline{RD}). P2 is output during external addressing. For example: MOVX @R0, A where R0 contains 0A0h, access the EXTRAM at address 0A0h rather than external memory. An access to external data memory

Low power single card reader

locations higher than 1FFh (i.e., 0200h to FFFFh) will be performed with the MOVX DPTR instructions in the same way as in the standard 80C51, so with P0 and P2 as data/address bus, and P3.6 and P3.7 as write and read timing signals.

When EXTRAM = 1, MOVX @Ri and MOVX @DPTR will be similar to the standard 80C51. MOVX @Ri will provide an 8-bit address multiplexed with data on port 0 and any output port pins can be used to output higher order address bits. This is to provide the external paging capability. MOVX @DPTR will generate a 16-bit address. Port 2 outputs the high order eight address bits (the contents of DPH) while port 0 multiplexes the low-order eight address bits (DPL) with data. MOVX @Ri and MOVX @DPTR will generate either read or write signals on P3.6 (WR) and P3.7 (RD).

The stack pointer (SP) may be located anywhere in the 256 byte RAM (lower and upper RAM) internal data memory. The stack must not be located in the XRAM.

8.6.1 Auxiliary register (AUXR)

Table 32. AUXR - auxiliary register (address 8Eh) bit allocation

7	6	5	4	3	2	1	0
-	-	-	-	-	-	EXTRAM	AO

Low power single card reader

Table 33. AUXR - auxiliary register (address 8Eh) bit description

Bit	Symbol	Description
7 to 2	-	Not implemented. Reserved for future use ^[1]
1	EXTRAM	External RAM access. Internal or external RAM access using MOVX @Ri/@DPTR. If EXTRAM = 0, internal expanded RAM (0000h to 01FFh) access using MOVX @Ri/@DPTR; if EXTRAM = 1, external data memory access.
0	AO	ALE enable or disable. If AO = 0, ALE is emitted at a constant rate of $\frac{1}{6}f_{XTAL}$; if AO = 1, ALE is active only during a MOVX or MOVC instruction.

^[1] Do not write logic 1s to reserved bits. These bits may be used in future 80C51 family products to invoke new features. In that case, the reset or inactive value of the new bit will be logic 0, and its active value will be logic 1. The value read from a reserved bit is indeterminate.

8.7 Reduced EMI mode

When bit AO = 1 (bit 0 in the AUXR register), the ALE output is disabled.

8.8 Mask ROM devices

Security bits: With none of the security bits programmed the code in the program memory can be verified. If the encryption table is programmed, the code will be encrypted when verified. When only security bit 1 is programmed, MOVC instructions executed from external program memory are disabled from fetching code bytes from the internal memory. When security bits 1 and 2 are programmed, in addition to the above, verify mode is disabled.

Encryption array: 64 byte of encryption array are initially unprogrammed (all 1s).

Table 34. Program security bits for TDA8029

Program lock bits[1]		Protection description
SB1	SB2	
no	no	no program security features enabled. If the encryption array is programmed, code verify will still be encrypted.
yes	no	MOVC instructions executed from external program memory are disabled from fetching code bytes from internal memory
yes	yes	same as above, also verify is disabled

^[1] Any other combination of the security bits is not defined.

Low power single card reader

8.9 Smart card reader control registers

The TDA8029 has one analog interface for five contacts cards. The data to or from the card are fed into an ISO UART.

The Card Select Register (CSR) contains a bit for resetting the ISO UART (logic 0 = active). This bit is reset after power-on, and must be set to logic 1 before starting any operation. It may be reset by software when necessary.

Dedicated registers allow to set the parameters of the ISO UART:

- Programmable Divider Register (PDR)
- Guard Time Register (GTR)
- UART Control Registers (UCR1 and UCR2)
- Clock Configuration Register (CCR).

The parameters of the ETU counters are set by:

- Time-Out Configuration register (TOC)
- Time-Out Registers (TOR1, TOR2 and TOR3).

The Power Control Register (PCR) is a dedicated register for controlling the power to the card.

When the specific parameters of the card have been programmed, the UART may be used with the following registers:

- UART Receive and Transmit Registers (URR and UTR)
- UART Status Register (USR)
- Mixed Status Register (MSR).

In reception mode, a FIFO of 1 to 8 characters may be used, and is configured with the FIFO Control Register (FCR). This register is also used for the automatic retransmission of NAKed characters in transmission mode.

The Hardware Status Register (HSR) gives the status of the supply voltage, the hardware protections, the SDWN request and the card movements.

USR and HSR give interrupts on INTO_N when some of their bits have been changed.

MSR does not give interrupts, and may be used in polling mode for some operations. For this use, the bit TBE/RBF within USR may be masked.

A 24-bit time-out counter may be started for giving an interrupt after a number of ETU programmed in registers TOR1, TOR2 and TOR3. It will help the controller for processing different real time tasks (ATR, WWT, BWT, etc.) mainly if controllers and card clock are asynchronous.

This counter is configured with register TOC, that may be used as a 24-bit or as a 16-bit + 8-bit counter. Each counter may be set for starting to count once data written, on detection of a start bit on I/O, or as auto-reload.

Low power single card reader

8.9.1 General registers

8.9.1.1 Card select register (CSR)

This register is used for resetting the ISO UART.

Table 35. CSR - card select register (address 0h) bit allocation

Bit	7	6	5	4	3	2	1	0
Symbol	-	-	-	-	RIU	-	-	-
Reset	0	0	0	0	0	0	0	0
Access		read and write						

Table 36. CSR - card select register (address 0h) bit description

Bit	Symbol	Description
7 to 4	-	Not used
1	RIU	Reset ISO UART. If $\overline{RIU} = 0$, this bit resets a large part of the UART registers to their initial value. Bit \overline{RIU} must be reset to logic 0 for at least 10 ns duration before any activation. Bit \overline{RIU} must be set to logic 1 by software before any action on the UART can take place.
2 to 0	-	Not used

8.9.1.2 Hardware status register (HSR)

This register gives the status of the chip after a hardware problem has been signalled or when pin SDWN_N has been activated.

When PRTL1, PRL1, PTL or SDWN is logic 1, then pin INT0_N is LOW. The bits having caused the interrupt are cleared when HSR is read (two f_{int} cycles after the rising edge of signal \overline{RD}).

In case of emergency deactivation by PRTL1, SUPL, PRL1 and PTL, bit START in the power control register is automatically reset by hardware.

Table 37. HSR - hardware status register (address Fh) bit allocation

Bit	7	6	5	4	3	2	1	0
Symbol	SDWN	-	PRTL1	SUPL	-	PRL1	-	PTL
Reset	-	0	0	0	0	0	0	0
Access	read							

Low power single card reader

Table 38. HSR - hardware status register (address Fh) bit description

Bit	Symbol	Description
7	SDWN	Enter Shut-down mode. This bit is used for entering the Shut-down mode. SDWN is set when the SDWN_N pin is active (LOW). When the software reads the status, it must:
		Deactivate the card if active
		 Set all ports to logic 1 (for minimizing the current consumption)
		Inhibit the interrupts
		Go to Power-down mode.
		The same must be done when the chip is powered-on with SDWN_N pin active.
		The only way to leave Shut-down mode is when pin SDWN_N is HIGH.
6	-	Not used.
5	PRTL1	Protection 1. PRTL1 = 1 when a fault has been detected on the card reader. PRTL1 is the OR of the protection on V_{CC} and on RST.
4	SUPL	Supervisor Latch. SUPL = 1 when the supervisor has been active. At power-on, or after a supply voltage dropout, then SUPL is set and INT0_N is LOW. INT0_N will return to HIGH at the end of the internal Power-on reset pulse defined by CDEL, except if pin SDWN_N was active during power-on. SUPL will be reset only after a status register read-out outside the Power-on reset pulse; see Figure 11 . When leaving Shut-down mode, the same situation occurs.
3	-	Not used.
2	PRL1	Presence Latch. PRL1 = 1 when bit PR1 in the mixed status register has changed state.
1	-	Not used.
0	PTL	Overheat. PTL = 1 if an overheating has occurred.

8.9.1.3 Time-out registers (TOR1, TOR2 and TOR3)

Table 39. TOR1 - time-out register 1 (address 9h) bit allocation

Bit	7	6	5	4	3	2	1	0
Symbol	TOL7	TOL6	TOL5	TOL4	TOL3	TOL2	TOL1	TOL0
Reset	0	0	0	0	0	0	0	0
Access	write							

Table 40. TOR1 - time-out register 1 (address 9h) bit description

Bit	Symbol	Description
7 to 0	TOL[7:0]	The 8-bit value for the auto-reload counter or the lower 8-bits of the 24-bits counter.

Table 41. TOR2 - time-out register 2 (address Ah) bit allocation

Bit	7	6	5	4	3	2	1	0
Symbol	TOL15	TOL14	TOL13	TOL12	TOL11	TOL10	TOL9	TOL8
Reset	0	0	0	0	0	0	0	0
Access	write							

Table 42. TOR2 - time-out register 2 (address Ah) bit description

Bit	Symbol	Description
7 to 0	TOL[15:8]	The lower 8-bits of the 16-bits counter or the middle 8-bits of the 24-bits counter.

Low power single card reader

Table 43. TOR3 - time-out register 3 (address Bh) bit allocation

Bit	7	6	5	4	3	2	1	0
Symbol	TOL23	TOL22	TOL21	TOL20	TOL19	TOL18	TOL17	TOL16
Reset	0	0	0	0	0	0	0	0
Access	write							

Table 44. TOR3 - time-out register 3 (address Bh) bit description

Bit	Symbol	Description
7 to 0	TOL[23:16]	The upper 8-bits of the 16-bits counter or the upper 8-bits of the 24-bits counter.

8.9.1.4 Time-out configuration register (TOC)

The time-out counter is very useful for processing the clock counting during ATR, the Work Waiting Time (WWT) or the waiting times defined in protocol T = 1. It should be noted that the 200 and n_{max} clock counter (n_{max} = 368 for TDA8029HL/C2) used during ATR is done by hardware when the start session is set. Specific hardware controls the functionality of BGT in T = 1 and T = 0 protocols and a specific register is available for processing the extra guard time.

Writing to register TOC is not allowed as long as the card is not activated with a running clock.

Before restarting the 16-bit counter (counters 3 and 2) by writing 61h, 65h, 71h, 75h, F1h or F5h in the TOC register, or the 24-bit counter (counters 3, 2 and 1) by writing 68h or 7C in the TOC register, it is mandatory to stop them by writing 00h in the TOC register.

Detailed examples of how to use these specific timers can be found in application note "AN01010".

Table 45. TOC - time-out configuration register (address 8h) bit allocation

Bit	7	6	5	4	3	2	1	0
Symbol	TOC7	TOC6	TOC5	TOC4	TOC3	TOC2	TOC1	TOC0
Reset	0	0	0	0	0	0	0	0
Access	read and write							

Table 46. TOC - time-out configuration register (address 8h) bit description

Bit	Symbol	Description
7 to 0	TOC[7:0]	Time-out counter configuration. The time-out configuration register is used for setting different configurations of the time-out counter as given in Table 47 , all other configurations are undefined.

Table 47. Time-out counter configurations

TOC[7:0] (hex)	Operating mode
00	All counters are stopped.
05	Counters 2 and 3 are stopped; counter 1 continues to operate in auto-reload mode.
61	Counter 1 is stopped, and counters 3 and 2 form a 16-bit counter. Counting the value stored in registers TOR3 and TOR2 is started after 61h is written in register TOC. When the terminal count is reached, an interrupt is given, and bit TO3 in register USR is set. The counter is stopped by writing 00h in register TOC, and should be stopped before reloading new values in registers TOR2 and TOR3.

TDA8029

Low power single card reader

 Table 47.
 Time-out counter configurations ...continued

TOC[7:0] (hex)	Operating mode
65	Counter 1 is an 8-bit auto-reload counter, and counters 3 and 2 form a 16-bit counter. Counter 1 starts counting the content of register TOR1 on the first start-bit (reception or transmission) detected on pin I/O after 65h is written in register TOC. When counter 1 reaches its terminal count, an interrupt is given, bit TO1 in register USR is set and the counter automatically restarts the same count until it is stopped. It is not allowed to change the content of register TOR1 during a count. Counters 3 and 2 are wired as a single 16-bit counter and start counting the value in registers TOR3 and TOR2 when 65h is written in register TOC. When the counter reaches its terminal count, an interrupt is given and bit TO3 is set within register USR. Both counters are stopped when 00h is written in register TOC. Counters 3 and 2 shall be stopped by writing 05h in register TOC before reloading new values in registers TOR2 and TOR3.
68	Counters 3, 2 and 1 are wired as a single 24-bit counter. Counting the value stored in registers TOR3, TOR2 and TOR1 is started after 68h is written in register TOC. The counter is stopped by writing 00h in register TOC. It is not allowed to change the content of registers TOR3, TOR2 and TOR1 within a count.
71	Counter 1 is stopped, and counters 3 and 2 form a 16-bit counter. After writing this value, counting the value stored in registers TOR3 and TOR2 is started on the first start-bit detected on pin I/O (reception or transmission) and then on each subsequent start-bit. It is possible to change the content of registers TOR3 and TOR2 during a count, the current count will not be affected and the new count value will be taken into account at the next start-bit. The counter is stopped by writing 00h in register TOC. In this configuration, registers TOR3, TOR2 and TOR1 must not be all zero.
75	Counter 1 is an 8-bit auto-reload counter, and counters 3 and 2 form a 16-bit counter. After 75h is written in register TOC, counter 1 starts counting the content of register TOR1 on the first start-bit (reception or transmission) detected on pin I/O. When counter 1 reaches its terminal count, an interrupt is given, bit TO1 in register USR is set and the counter automatically restarts the same count until it is stopped. Changing the content of register TOR1 during a count is not allowed. Counting the value stored in registers TOR3 and TOR2 is started on the first start-bit detected on pin I/O (reception or transmission) after 75h is written, and then on each subsequent start-bit. It is possible to change the content of registers TOR3 and TOR2 during a count, the current count will not be affected and the new count value will be taken into account at the next start-bit. The counter is stopped by writing 00h in register TOC. In this configuration, registers TOR3, TOR2 and TOR1 must not be all zero.
7C	Counters 3, 2 and 1 are wired as a single 24-bit counter. Counting the value stored in registers TOR3, TOR2 and TOR1 is started on the first start-bit detected on pin I/O (reception or transmission) after the value has been written, and then on each subsequent start-bit. It is possible to change the content of registers TOR3, TOR2 and TOR1 during a count. The current count will not be affected and the new count value will be taken into account at the next start-bit. The counter is stopped by writing 00h in register TOC. In this configuration, registers TOR3, TOR2 and TOR1 must not be all zero.
85	Same as value 05h, except that all the counters will be stopped at the end of the 12th ETU following the first received start-bit detected after 85h has been written in register TOC.
E5	Same configuration as value 65h, except that counter 1 will be stopped at the end of the 12th ETU following the first start-bit detected after E5h has been written in register TOC.
F1	Same configuration as value 71h, except that the 16-bit counter will be stopped at the end of the 12th ETU following the first start-bit detected after F1h has been written in register TOC.
F5	Same configuration as value 75h, except the two counters will be stopped at the end of the 12th ETU following the first start-bit detected after F5h has been written in register TOC.

Low power single card reader

8.9.2 ISO UART registers

8.9.2.1 UART transmit register (UTR)

Table 48. UTR - UART transmit register (address Dh) bit allocation

Bit	7	6	5	4	3	2	1	0
Symbol	UT7	UT6	UT5	UT4	UT3	UT2	UT1	UT0
Reset	0	0	0	0	0	0	0	0
Access		write						

Table 49. UTR - UART transmit register (address Dh) bit description

Bit	Symbol	Description
7 to 0	UT[7:0]	UART transmit bits. When the microcontroller wants to transmit a character to the card, it writes the data in direct convention in this register. The transmission:
		 Starts at the end of writing (on the rising edge of signal WR) if the previous character has been transmitted and if the extra guard time has expired
		Starts at the end of the extra guard time if this one has not expired
		Does not start if the transmission of the previous character is not completed
		 With a synchronous card (bit SAN within register UCR2 is set), only UT0 is relevant and is copied on pin I/O of the card.

8.9.2.2 UART receive register (URR)

Table 50. URR - UART receive register (address Dh) bit allocation

Bit	7	6	5	4	3	2	1	0
Symbol	UR7	UR6	UR5	UR4	UR3	UR2	UR1	UR0
Reset	0	0	0	0	0	0	0	0
Access		read						

Table 51. URR - UART receive register (address Dh) bit description

Bit	Symbol	Description
7 to 0	UR[7:0]	UART receive bits. When the microcontroller wants to read data from the card, it reads it from this register in direct convention:
		 With a synchronous card, only UR0 is relevant and is a copy of the state of the selected card I/O
		 When needed, this register may be tied to a FIFO whose length 'n' is programmable between 1 and 8; if n > 1, then no interrupt is given until the FIFO is full and the controller may empty the FIFO when required
		With a parity error:
		 In protocol T = 0, the received byte is not stored in the FIFO and the error counter is incremented. The error counter is programmable between 1 and 8. When the programmed number is reached, then bit PE is set in the status register USR and INTO_N falls LOW. The error counter must be reprogrammed to the desired value after its count has been reached
		 In protocol T = 1, the character is loaded in the FIFO and the bit PE is set to the programmed value in the parity error counter.
		 When the FIFO is full, then bit RBF in the status register USR is set. This bit is reset when at least one character has been read from URR
		 When the FIFO is empty, then bit FE is set in the status register USR as long as no character has been received.

TDA8029

Low power single card reader

8.9.2.3 Mixed status register (MSR)

This register relates the status of the card presence contact PR1, the BGT counter, the FIFO empty indication, the transmit/receive ready indicator TBE/RBF and the completion of clock switching to or from $\frac{1}{2}f_{int}$.

Table 52. MSR - mixed status register (address Ch) bit allocation

Bit	7	6	5	4	3	2	1	0
Symbol	CLKSW	FE	BGT	-	-	PR1	-	TBE/RBF
Reset	-	1	0	-	-	-	-	-
Access				re	ad			

Table 53. MSR - mixed status register (address Ch) bit description

Bit	Symbol	Description
7	CLKSW	Clock Switch. CLKSW is set when the TDA8029 has performed a required clock switch from \(^1/_n f_{XTAL}\) to \(^1/_2 f_{int}\) and is reset when the TDA8029 has performed a required clock switch from \(^1/_2 f_{int}\) to \(^1/_n f_{XTAL}\). The application shall wait this bit before entering Power-down mode or restarting sending commands after leaving power-down (only needed when the clock is not stopped during power-down). This bit is also reset by RIU and at power-on. When the microcontroller wants to transmit a character to the card, it writes the data in direct convention to this register.
6	FE	FIFO Empty. FE is set when the reception FIFO is empty. It is reset when at least one character has been loaded in the FIFO.
5	BGT	Block Guard Time. In T = 1 protocol, the bit BGT is linked with a 22 ETU counter, which is started at every start-bit on pin I/O. If the count is finished before the next start-bit, BGT is set. This helps checking that the card has not answered before 22 ETU after the last transmitted character, or that the reader is not transmitting a character before 22 ETU after the last received character. In T = 0 protocol, the bit BGT is linked to a 16 ETU counter, which is started at every start-bit on I/O. If the count is finished before the next start-bit, then the bit BGT is set. This helps checking that the reader is not transmitting too early after the last received character.
4 and 3	-	Not used.
2	PR1	Presence 1. PR1 = 1 when the card is present.
1	-	Not used.
0	TBE/RBF	Transmit Buffer Empty / Receive Buffer Full. This bit is set when: Changing from reception mode to transmission mode A character has been transmitted by the UART (except when a character has been parity error free transmitted whilst LCT = 1) The reception buffer is full. This bit is reset: After power-on When bit RIU in register CSR is reset When a character has been written in register UTR When the character has been read from register URR When changing from transmission mode to reception mode.

Low power single card reader

8.9.2.4 FIFO control register (FCR)

Table 54. FCR - FIFO control register (address Ch) bit allocation

Bit	7	6	5	4	3	2	1	0
Symbol	-	PEC2	PEC1	PEC0	-	FL2	FL1	FL0
Reset	-	0	0	0	-	0	0	0
Access	write							

Table 55. FCR - FIFO control register (address Ch) bit description

Bit	Symbol	Description
7	-	Not used.
6 to 4	PEC[2:0]	Parity Error Counter. These bits determine the number of parity errors before setting bit PE in register USR and pulling INT0_N LOW. PEC[2:0] = 000 means that if only one parity error has occurred, bit PE is set; PEC[2:0] = 111 means that bit PE will be set after 8 parity errors.
		In protocol $T = 0$:
		 If a correct character is received before the programmed error number is reached, the error counter will be reset
		 If the programmed number of allowed parity errors is reached, bit PE in register USR will be set as long as the USR has not been read
		 If a transmitted character is NAKed by the card, then the TDA8029 will automatically retransmit it a number of times equal to the value programmed in PEC[2:0]. The character will be resent at 15 ETU.
		 In transmission mode, if PEC[2:0] = 000, then the automatic retransmission is invalidated. The character manually rewritten in register UTR will start at 13.5 ETU.
		In protocol T = 1:
		 The error counter has no action (bit PE is set at the first wrong received character).
3	-	Not used.
2 to 0	FL[2:0]	FIFO Length. These bits determine the depth of the FIFO: FL[2:0] = 000 means length 1, FL[2:0] = 111 means length 8.

8.9.2.5 UART status register (USR)

The UART Status Register (USR) is used by the microcontroller to monitor the activity of the ISO UART and that of the time-out counter. If any of the status bits FER, OVR, PE, EA, TO1, TO2 or TO3 are set, then signal INT0_N = LOW. The bit having caused the interrupt is reset 2 μs after the rising edge of signal \overline{RD} during a read operation of register USR.

If bit TBE/RBF is set and if the mask bit DISTBE/RBF within register UCR2 is not set, then also signal INT0_N = LOW. Bit TBE/RBF is reset three clock cycles after data has been written in register UTR, or three clock cycles after data has been read from register URR, or when changing from transmission mode to reception mode.

If LCT mode is used for transmitting the last character, then bit TBE is not set at the end of the transmission.

Low power single card reader

Table 56. USR - UART status register (address Eh) bit allocation

Bit	7	6	5	4	3	2	1	0
Symbol	TO3	TO2	TO1	EA	PE	OVR	FER	TBE/RBF
Reset	0	0	0	0	0	0	0	0
Access	read							

Table 57. USR - UART status register (address Eh) bit description

Bit	Symbol	Description				
7	TO3	Time-out counter 3. TO3 = 1 when counter 3 has reached its terminal count.				
6	TO2	Time-out counter 2. TO2 = 1 when counter 2 has reached its terminal count.				
5	TO1	Time-out counter 1. TO1 = 1 when counter 1 has reached its terminal count.				
4	EA	Early Answer. EA = 1 if the first start-bit on the I/O pin during ATR has been detected between the first 200 and n_{max} clock pulses with pin RST in LOW state (all activities on the I/O during the first 200 clock pulses with pin RST LOW are not taken into account) and before the first n_{max} clock pulses with pin RST in HIGH state. These two features are re-initialized at each toggling of pin RST. $n_{max} = 368$ for TDA8029HL/C2.				
3	PE	Parity error.				
		In protocol T = 0, bit PE = 1 if the UART has detected a number of received characters with parity errors equal to the number written in bits PEC[2:0] or if a transmitted character has been NAKed by the card a number of times equal to the value programmed in bits PEC[2:0]. It is set at 10.5 ETU in the reception mode and at 11.5 ETU in the transmission mode. A character received with a parity error is not stored in register FIFO in protocol T = 0; the card should repeat this character.				
		In protocol T = 1, a character with a parity error is stored in the FIFO and the parity error counter is not active.				
2	OVR	Overrun. OVR = 1 if the UART has received a new character whilst URR was full. In this case, at least one character has been lost.				
1	FER	Framing Error. FER = 1 when I/O was not in high-impedance state at 10.25 ETU after a start-bit. It is reset when USR has been read.				
0	TBE/RBF	Transmit Buffer Empty / Receive Buffer Full. TBE and RBF share the same bit within register USR: when in transmission mode the relevant bit is TBE; when in reception mode it is RBF.				
		TBE = 1 when the UART is in transmission mode and when the microcontroller may write the next character to transmit in register UTR. It is reset when the microcontroller has written data in the transmit register or when bit T/R in register UCR1 has been reset either automatically or by software. After detection of a parity error in transmission, it is necessary to wait 13.5 ETU before rewriting the character which has been NAKed by the card (manual mode, see Table 55). RBF = 1 when register FIFO is full. The microcontroller may read some of the characters in register URR, which clears bit RBF.				

8.9.3 Card registers

When working with a card, the following registers are used for programming some specific parameters.

8.9.3.1 Programmable divider register (PDR)

This register is used for counting the card clock cycles forming the ETU. It is an auto-reload 8 bits counter counting from the programmed value down to 0.

Low power single card reader

Table 58. PDR - programmable divider register (address 2h) bit allocation

Bit	7	6	5	4	3	2	1	0
Symbol	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
Reset	0	0	0	0	0	0	0	0
Access	read and write							

Table 59. PDR - programmable divider register (address 2h) bit description

Bit	Symbol	Description
7 to 0	PD[7:0]	Programmable divider value.

8.9.3.2 UART configuration register 2 (UCR2)

Table 60. UCR2 - UART configuration register 2 (address 3h) bit allocation

Bit	7	6	5	4	3	2	1	0
Symbol	ENINT1	DISTBE/RBF	-	ENRX	SAN	AUTOCONV	CKU	PSC
Reset	0	0	-	0	0	0	0	0
Access	read and write							

Table 61. UCR2 - UART configuration register 2 (address 3h) bit description

Bit	Symbol	Description
7	ENINT1	Enable INT1. If ENINT1 = 1, a HIGH to LOW transition on pin INT1_N will wake-up the TDA8029 from the Power-down mode. Note that in case of reception of a character when in Power-down mode, the start of the frame will be lost. When not in Power-down mode ENINT1 has no effect. For details on Power-down mode see Section 8.14
6	DISTBF/RBF	Disable TBE/RBF interrupts. If DISTBE/RBF is set, then reception or transmission of a character will not generate an interrupt. This feature is useful for increasing communication speed with the card; in this case, the copy of TBE/RBF bit within MSR must be polled, and not the original, in order not to loose priority interrupts which can occur in USR.
5	-	Not used.
4	ENRX	Enable RX. If ENRX = 1, a HIGH to LOW transition on pin RX will wake-up the TDA8029 from the Power-down mode. Note that in case of reception of a character when in Power-down mode, the start of the frame will be lost. When not in Power-down mode ENRX has no effect. For details on Power-down mode see Section 8.14 .
3	SAN	Synchronous or asynchronous. SAN is set by software if a synchronous card is expected. The UART is then bypassed and only bit 0 in registers URR and UTR is connected to pin I/O. In this case the clock is controlled by bit SC in register CCR.
2	AUTOCONV	Automatic set convention. If AUTOCONV = 1, then the convention is set by software using bit CONV in register UCR1. If AUTOCONV = 0, then the configuration is automatically detected on the first received character whilst the start session (bit SS) is set. AUTOCONV must not be changed during a card session.
1	СКИ	Clock Unit. For baud rates other than those given in <u>Table 62</u> , there is the possibility to set bit CKU = 1. In this case, the ETU will last half the number of card clock cycles equal to prescaler PDR. Note that bit CKU = 1 has no effect if $f_{CLK} = f_{XTAL}$. This means, for example, that 76 800 baud is not possible when the card is clocked with the frequency on pin XTAL1.
0	PSC	Prescaler value. If PSC = 1, then the prescaler value is 32; if PSC = 0, then the prescaler value is 31. One ETU will last a number of card clock cycles equal to prescaler \times PDR. All baud rates specified in ISO 7816 norm are achievable with this configuration. See Figure 10 and Table 62.

Low power single card reader

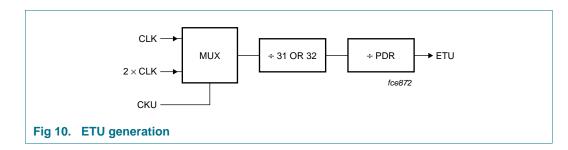


Table 62. Baud rate selection using values F and D

Card clock frequency $f_{CLK} = 3.58$ MHz for PSC = 31 and $f_{CLK} = 4.92$ MHz for PSC = 32 (example: in this table; 12 means prescaler set to 31 and PDR set to 12)

D	F	F											
	0	1	2	3	4	5	6	9	10	11	12	13	
1	31;12 9600	31;12 9600	31;18 6400	31;24 4800	31;36 3200	31;48 2400	31;60 1920	32;16 9600	32;24 6400	32;32 4800	32;48 3200	32;64 2400	
2	31;6 19200	31;6 19200	31;9 12800	31;12 9600	31;18 6400	31;24 4800	31;30 3840	32;8 19200	32;12 12800	32;16 9600	32;24 6400	32;32 4800	
3	31;3 38400	31;3 38400	-	31;6 19200	31;9 12800	31;12 9600	31;15 7680	32;4 38400	32;6 25600	32;8 19200	32;12 12800	32;16 9600	
4	-	-	-	31;3 38400	-	31;6 19200	-	32;2 76800	32;3 51300	32;4 38400	32;6 25600	32;8 19200	
5	-	-	-	-	-	31;3 38400	-	32;1 153600	-	32;2 76800	32;3 51300	32;4 38400	
6	-	-	-	-	-	-	-	-	-	32;1 153600	-	32;2 76800	
8	31;1 115200	31;1 115200	-	31;2 57200	31;3 38400	31;4 28800	31;5 23040	-	32;2 76800	-	32;4 38400	-	
9	-	-	-	-	-	-	31;3 38400	-	-	-	-	-	

8.9.3.3 Guard time register (GTR)

The guard time register is used for storing the number of guard ETUs given by the card during ATR. In transmission mode, the UART will wait this number of ETUs before transmitting the character stored in register UTR.

Table 63. GTR - UART guard time register (address 5h) bit allocation

Bit	7	6	5	4	3	2	1	0			
Symbol	GT7	GT6	GT5	GT4	GT3	GT2	GT1	GT0			
Reset	0	0	0	0	0	0	0	0			
Access		read and write									

Low power single card reader

Table 64. GTR - UART guard time register (address 5h) bit description

Bit	Symbol	Description
7 to 0	GT[7:0]	Guard time value. When GT[7:0] = FFh:
		• In protocol T = 1:
		TDA8029HL/C2 operates at 10.8 ETU.
		• In protocol T = 0:
		 TDA8029HL/C2 operates at 11.8 ETU.

8.9.3.4 UART configuration register 1 (UCR1)

This register is used for setting the parameters of the ISO UART.

Table 65. UCR1 - UART configuration register 1 (address 6h) bit allocation

Bit	7	6	5	4	3	2	1	0		
Symbol	-	FIP	FC	PROT	T/R	LCT	SS	CONV		
Reset	-	0	0	0	0	0	0	0		
Access	read and write									

Table 66. UCR1 - UART configuration register 1 (address 6h) bit description

Bit	Symbol	Description
7	-	Not used.
6	FIP	Force Inverse Parity. If FIP = 1, then the UART will NAK a correct received character, and will transmit characters with wrong parity bit.
5	FC	Test bit. FC must be left to logic 0.
4	PROT	Protocol. If PROT = 1, then protocol type is asynchronous $T = 1$; if PROT = 0, the protocol is $T = 0$.
3	T/R	Transmit/Receive. This bit is set by software for transmission mode. A change from logic 0 to logic 1 will set bit TBE in register USR. T/R is automatically reset by hardware if LCT has been used before transmitting the last character.
2	LCT	Last Character to Transmit. This bit is set by software before writing the last character to be transmitted in register UTR. It allows automatic change to reception mode. It is reset by hardware at the end of a successful transmission. When LCT is being reset, the bit T/R is also reset and the ISO 7816 UART is ready for receiving a character.
1	SS	Start Session. This bit is set by software before ATR for automatic convention detection and early answer detection. It is automatically reset by hardware at 10.5 ETU after reception of the initial character.
0	CONV	Convention. This bit is set if the convention is direct. Bit CONV is either automatically written by hardware according to the convention detected during ATR, or by software if bit AUTOCONV in register UCR2 is set.

8.9.3.5 Clock configuration register (CCR)

This register defines the clock to the card and the clock to the ISO UART. Note that if bit CKU in the prescaler register of the selected card (register UCR2) is set, then the ISO UART is clocked at twice the frequency to the card, which allows to reach baud rates not foreseen in ISO 7816 norm.

Low power single card reader

Table 67. CCR - Clock configuration register (address 1h) bit allocation

Bit	7	6	5	4	3	2	1	0		
Symbol	-	-	SHL	CST	SC	AC2	AC1	AC0		
Reset	-	-	0	0	0	0	0	0		
Access	read and write									

Table 68. CCR - Clock configuration register (address 1h) bit description

Bit	Symbol	Description
7 and 6	-	Not used.
5	SHL	Select HIGH Level. This bit determines how the clock is stopped when bit CST = 1. If SHL = 0, then the clock is stopped at LOW level, if SHL = 1 at HIGH level.
4	CST	Clock Stop. In case of an asynchronous card, bit CST defines whether the clock to the card is stopped or not. If CST = 1, then the clock is stopped. If CST = 0, then the clock is determined by bits $AC[2:0]$ according to Table 69. All frequency changes are synchronous, ensuring that no spike or unwanted pulse width occurs during changes.
3	SC	Synchronous Clock. In the event of a synchronous card, then pin CLK is the copy of the value of bit SC. In reception mode, the data from the card is available to bit UR0 after a read operation of register URR. In transmission mode, the data is written on the I/O line of the card when register UTR has been written to.
2 to 0	AC[2:0]	Asynchronous card clock. When CST = 0, the clock is determined by the state of these bits according to <u>Table 69</u> .
		f _{int} is the frequency delivered by the internal oscillator clock circuitry.
		For switching from $\frac{1}{n}f_{XTAL}$ to $\frac{1}{2}f_{int}$ and reverse, only the bit AC2 must be changed (AC1 and AC0 must remain the same). For switching from $\frac{1}{n}f_{XTAL}$ or $\frac{1}{2}f_{int}$ to stopped clock and reverse, only bits CST and SHL must be changed.
		When switching from $\frac{1}{n}f_{XTAL}$ to $\frac{1}{2}f_{int}$ and reverse, a delay can occur between the command and the effective frequency change on pin CLK. The fastest switch is from $\frac{1}{2}f_{XTAL}$ to $\frac{1}{2}f_{int}$ and reverse, the best regarding duty cycle is from $\frac{1}{8}f_{XTAL}$ to $\frac{1}{2}f_{int}$ and reverse. The bit CLKSW in register MSR tells the effective switch moment.
		In case of $f_{CLK} = f_{XTAL}$, the duty cycle must be ensured by the incoming clock signal on pin XTAL1.

Table 69. CLK value for an asynchronous card

AC2	AC1	AC0	CLK
0	0	0	f _{XTAL}
0	0	1	½f _{XTAL}
0	1	0	1/ ₄ f _{XTAL}
0	1	1	1/8f _{XTAL}
1	0	0	½f _{int}
1	0	1	½f _{int}
1	1	0	½f _{int}
1	1	1	½f _{int}

8.9.3.6 Power control register (PCR)

This register is used for starting or stopping card sessions.

Low power single card reader

Table 70. PCR - power control register (address 7h) bit allocation

Bit	7	6	5	4	3	2	1	0		
Symbol	-	-	-	-	1V8	RSTIN	3V/5V	START		
Reset	-	-	-	-	0	0	0	0		
Access	read and write									

Table 71. PCR - power control register (address 7h) bit description

Bit	Symbol	Description
7 to 4	-	Not used.
3	1V8	Select 1.8 V. If $1V8 = 1$, then $V_{CC} = 1.8$ V. It should be noted that specifications are not guaranteed at this voltage when the supply voltage V_{DD} is less than 3 V.
2	RSTIN	Card reset. When the card is activated, pin RST is the copy of the value written in RSTIN.
1	3V/5V	Select 3 V or 5 V. If $3V/5V = 1$, then $V_{CC} = 3$ V. If $3V/5V = 0$, then $V_{CC} = 5$ V.
0	START	Activate and deactivate card. If START = 1 is written by the controller, then the card is activated (see description in Section 8.15 "Activation sequence"). If the controller writes START = 0, then the card is deactivated (see description in Section 8.16 "Deactivation Section 8.16 "Deactiva

8.9.4 Register summary

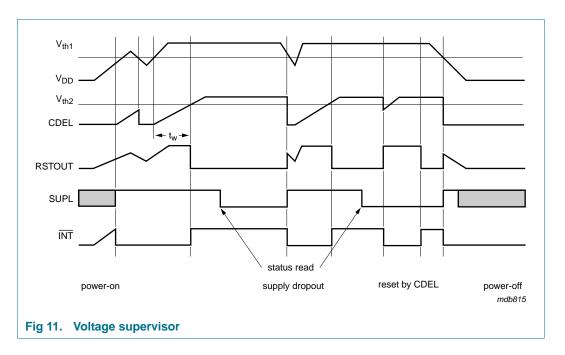
Table 72. Register summary

Name	Addr.	R/W	Bit								Value at	Value when
	(hex)		7	6	5	4	3	2	1	0	reset[1]	RIU = $0^{[1]}$
CSR	00	R/W	-	-	-	-	RIU	-	-	-	XXXX 0XXX	XXXX 0XXX
CCR	01	R/W	-	-	SHL	CST	SC	AC2	AC1	AC0	XX00 0000	XXuu uuuu
PDR	02	R/W	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0	0000 0000	uuuu uuuu
UCR2	03	R/W	ENINT1	DISTBE/ RBF	-	ENRX	SAN	AUTO CONV	CKU	PSC	00X0 0000	uuuu uuuu
GTR	05	R/W	GT7	GT6	GT5	GT4	GT3	GT2	GT1	GT0	0000 0000	uuuu uuuu
UCR1	06	R/W	-	FIP	FC	PROT	T/R	LCT	SS	CONV	X000 0000	Xuuu 00uu
PCR	07	R/W	-	-	-	-	1V8	RSTIN	3V/5V	START	XXXX 0000	XXXX uuuu
TOC	08	R/W	TOC7	TOC6	TOC5	TOC4	TOC3	TOC2	TOC1	TOC0	0000 0000	0000 0000
TOR1	09	W	TOL7	TOL6	TOL5	TOL4	TOL3	TOL2	TOL1	TOL0	0000 0000	uuuu uuuu
TOR2	0A	W	TOL15	TOL14	TOL13	TOL12	TOL11	TOL10	TOL9	TOL8	0000 0000	uuuu uuuu
TOR3	0B	W	TOL23	TOL22	TOL21	TOL20	TOL19	TOL18	TOL17	TOL16	0000 0000	uuuu uuuu
FCR	0C	W	-	PEC2	PEC1	PEC0	-	FL2	FL1	FL0	X000 X000	Xuuu Xuuu
MSR	0C	R	CLKSW	FE	BGT	-	-	PR1	-	TBE/ RBF	010X XXX0	u10X XuX0
URR	0D	R	UR7	UR6	UR5	UR4	UR3	UR2	UR1	UR0	0000 0000	0000 0000
UTR	0D	W	UT7	UT6	UT5	UT4	UT3	UT2	UT1	UT0	0000 0000	0000 0000
USR	0E	R	TO3	TO2	TO1	EA	PE	OVR	FER	TBE/ RBF	0X00 0000	0000 0000
HSR	0F	R	SDWN	-	PRTL1	SUPL	-	PRL1	-	PTL	XX01 X0X0	uXuu XuXu

^[1] X = undefined, u = no change.

Low power single card reader

8.10 Supply


The circuit operates within a supply voltage range of 2.7 V to 6 V. The supply pins are V_{DD} , DCIN, GND and PGND. Pins DCIN and PGND supply the analog drivers to the cards and have to be externally decoupled because of the large current spikes the card and the step-up converter can create. V_{DD} and GND supply the rest of the chip. An integrated spike killer ensures the contacts to the card to remain inactive during power-up or -down. An internal voltage reference is generated which is used within the step-up converter, the voltage supervisor, and the V_{CC} generators.

 V_{DCIN} may be higher than V_{DD} .

The voltage supervisor generates an alarm pulse, whose length is defined by an external capacitor connected to the CDEL pin, when V_{DD} is too low to ensure proper operation (1 ms per 2 nF typical). This pulse is used as a Power-on reset pulse, and also to block either any spurious signals on card contacts during controllers reset or to force an automatic deactivation of the contacts in the event of supply drop-out (see Section 8.15 and Section 8.16).

After power-on or after a voltage drop, the bit SUPL is set within the Hardware Status Register (HSR) and remains set until HSR is read when the alarm pulse is inactive. As long as the Power-on reset is active, INTO_N is LOW.

The same occurs when leaving Shut-down mode or when the RESET pin has been set active.

8.11 DC-to-DC converter

Except for V_{CC} generator, and the other card contacts buffers, the whole circuit is powered by V_{DD} and DCIN. If the supply voltage is 2.7 V, then a higher voltage is needed for the ISO contacts supply. When a card session is requested by the controller, the sequencer first starts the DC-to-DC converter, which is a switched capacitors type, clocked by an internal oscillator at a frequency of approximately 2.5 MHz.

Low power single card reader

There are several possible situations:

- V_{DCIN} = 3 V and V_{CC} = 3 V: In this case the DC-to-DC converter is acting as a doubler with a regulation of about 4.0 V
- V_{DCIN} = 3 V and V_{CC} = 5 V: In this case the DC-to-DC converter is acting as a tripler with a regulation of about 5.5 V
- $V_{DCIN} = 5 \text{ V}$ and $V_{CC} = 3 \text{ V}$: In this case, the DC-to-DC converter is acting as a follower, V_{DD} is applied on VUP
- V_{DCIN} = 5 V and V_{CC} = 5 V. In this case, the DC-to-DC converter is acting as a doubler with a regulation of about 5.5 V
- V_{CC} = 1.8 V. In this case, whatever value of V_{DCIN}, the DC-to-DC converter is acting as a follower, V_{DD} is applied on VUP.

The switch between different modes of the DC-to-DC converter is done by the TDA8029 at about $V_{DCIN} = 3.5 \text{ V}$.

The output voltage is fed to the V_{CC} generator. V_{CC} and GNDC are used as a reference for all other card contacts.

8.12 ISO 7816 security

The correct sequence during activation and deactivation of the card is ensured through a specific sequencer, clocked by a division ratio of the internal oscillator.

Activation (bit START = 1 in register PCR) is only possible if the card is present (pin PRES is HIGH) and if the supply voltage is correct (supervisor not active).

Pin PRES is internally biased with a current source of 45 μ A typical to ground when the pin is open (No card present). When pin PRES becomes HIGH, via the detection switch connected to V_{DD} , this internal bias current is reduced to 2.5 μ A to ground. This feature allows direct connection of the detect switch to V_{DD} without a pull-down resistor.

The presence of the card is signalled to the controller by the HSR.

Bit PR1 in register MSR is set if the card is present. Bit PRL1 in register HSR is set if PR1 has toggled.

During a session, the sequencer performs an automatic emergency deactivation on the card in the event of card take-off, short-circuit, supply dropout or overheating. The card is also automatically deactivated in case of supply voltage drop or overheating. The HSR register is updated and the INTO_N line falls down, so the system controller is aware of what happened.

8.13 Protections and limitations

The TDA8029 features the following protections and limitations:

- I_{CC} limited to 100 mA, and deactivation when this limit is reached
- Current to or from pin RST limited to 20 mA, and deactivation when this limit is reached
- Deactivation when the temperature of the die exceeds 150 °C
- Current to or from pin I/O limited to 10 mA

Low power single card reader

- · Current to or from pin CLK limited to 70 mA
- ESD protection on all card contacts and pin PRES at minimum 6 kV, thus no need of extra components for protecting against ESD flash caused by a charged card being introduced in the slot
- Short circuit between any card contacts can have any duration without any damage.

8.14 Power reduction modes

On top of the standard controller power reduction features described in the microcontroller section, the TDA8029 has several power reduction modes that allow its use in portable equipment, and help protecting the environment:

- 1. Shut-down mode: when SDWN_N pin is LOW, then the bit SDWN within HSR will be set, causing an interrupt on INT0_N. The TDA8029 will read the status, deactivate the card if it was active, set all ports to logic 1 and enter Power-down mode by setting bit PD in the controller's PCON register. In this mode, it will consume less than 20 μA , because the internal oscillator is stopped, and all biasing currents are cut.
 - When SDWN_N returns to HIGH, a Power-on reset operation is performed, so the chip is in the same state than at power-on.
- 2. Power-down mode: the microcontroller is in Power-down mode, and the card is deactivated. The bias currents in the chip and the frequency of the internal oscillator are reduced. In this mode, the consumption is less than 100 μ A.
- 3. Sleep mode: the microcontroller is in Power-down mode, the card is activated, but with the clock stopped HIGH or LOW. In this case, the card is supposed not to draw more than 2 mA from V_{CC} . The bias currents and the frequency of the internal oscillator are also reduced. With a current of 100 μ A drawn by the card, the consumption is less than 500 μ A in tripler mode, 400 μ A in doubler mode, or 300 μ A in follower mode.

When in Power-down or Sleep mode, card extraction or insertion, overcurrent on pins RST or V_{CC} , or HIGH level on pin RESET will wake up the chip.

The same occurs in case of a falling edge on RX if bit ENRX is set, or on INT1_N if bit ENINT1 is set and if INT1_N is enabled within the controller.

If only INT1_N should wake up the TDA8029, then INT1_N must be enabled in the controller, and ENINT1 only should be set.

If RX should wake up the TDA8029, then INT1_N must be enabled in the controller, and ENRX and ENINT1 should be set.

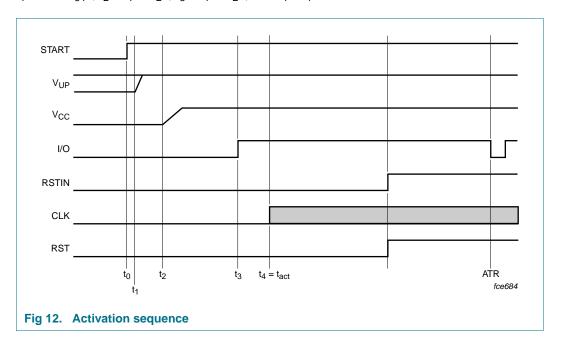
In case of wake up by RX, then the first received characters may be lost, depending on the baud rate on the serial link. (The controller waits for 1536 clock cycles before leaving Power-down mode).

For more details about the use of these modes, please refer to the application notes "AN00069" and "AN01005".

8.15 Activation sequence

When the card is inactive, V_{CC} , CLK, RST and I/O are LOW, with low impedance with respect to GNDC. The DC-to-DC converter is stopped.

Low power single card reader


When everything is satisfactory (voltage supply, card present and no hardware problems), the system controller may initiate an activation sequence of the card. <u>Figure 12</u> shows the activation sequence.

After leaving the UART reset mode, and then configuring the necessary parameters for the UART, it may set the bit START in register PCR (t_0) . The following sequence will take place:

- The DC-to-DC converter is started (t₁)
- V_{CC} starts rising from 0 V to 5 V or 3 V with a controlled rise time of 0.17 V/μs typically (t₂)
- I/O rises to V_{CC} (t₃), (Integrated 14 k Ω pull-up to V_{CC})
- CLK is sent to the card and RST is enabled (t₄).

After a number of clock pulses that can be counted with the time-out counter, bit RSTIN may be set by software, then pin RST rises to V_{CC} .

The sequencer is clocked by $\frac{1}{64}f_{int}$ which leads to a time interval T of 25 μ s typical. Thus $t_1 = 0$ to $\frac{3}{64}T$, $t_2 = t_1 + \frac{3}{2}T$, $t_3 = t_1 + \frac{7}{2}T$, and $t_4 = t_1 + 4T$.

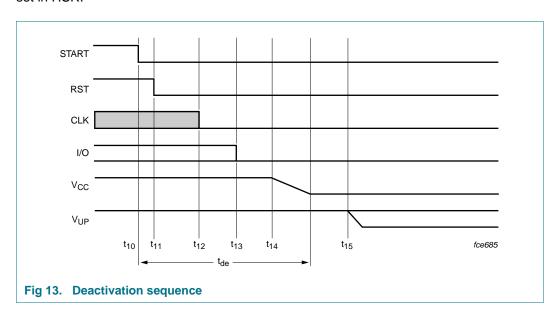
8.16 Deactivation sequence

When the session is completed, the microcontroller resets bit START (t_{10}). The circuit then executes an automatic deactivation sequence shown in Figure 13:

- Card reset (pin RST falls LOW) (t₁₁)
- Clock (pin CLK) is stopped LOW (t₁₂)
- Pin I/O falls to 0 V (t₁₃)
- V_{CC} falls to 0 V with typical 0.17 V/µs slew rate (t₁₄)
- The DC-to-DC converter is stopped and CLK, RST, V_{CC} and I/O become low-impedance to GNDC (t₁₅).

Low power single card reader

$$t_{11} = t_{10} + \frac{3}{64}T$$
, $t_{12} = t_{11} + \frac{1}{2}T$, $t_{13} = t_{11} + T$, $t_{14} = t_{11} + \frac{3}{2}T$, $t_{15} = t_{11} + \frac{7}{2}T$.


 t_{de} is the time that V_{CC} needs for going down to less than 0.4 V.

Automatic emergency deactivation is performed in the following cases:

- Withdrawal of the card (PRES LOW)
- Overcurrent detection on V_{CC} (bit PRTL1 set)
- Overcurrent detection on RST (bit PRTL1 set)
- Overheating (bit PTL set)
- V_{DD} low (bit SUPL set)
- RESET pin active HIGH.

If the reason of the deactivation is a card take off, an overcurrent or an overheating, then INT0_N is LOW. The corresponding bit in the hardware status register is set. Bit START is automatically reset.

If the reason is a supply dropout, then the deactivation sequence occurs, and a complete reset of the chip is performed. When the supply will be OK again, then the bit SUPL will be set in HSR.

9. Limiting values

Table 73. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{DCIN}	input voltage for the DC-to-DC converter		-0.5	+6.5	V
V_{DD}	supply voltage		-0.5	+6.5	V
V _n	voltage limit				
	on pins SAM, SBM, SAP, SBP, VUP		-0.5	+7.5	V
	on all other pins		-0.5	V _{DD} + 0.5	V

TDA8029

All information provided in this document is subject to legal disclaimers.

© NXP Semiconductors N.V. 2016. All rights reserved.

Low power single card reader

Table 73. Limiting values ...continued

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit		
P _{tot}	continuous total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +90 ^{\circ}\text{C}$	-	500	mW		
T _{stg}	storage temperature		-55	+150	°C		
Tj	junction temperature		-	125	°C		
V _{esd}	electrostatic discharge human body model[1]						
	on pins I/O, V _{CC} , RST, CLK and GNDC		-6	+6	kV		
	on pin PRES		-1.5	+1.5	kV		
	on pins SAM and SBM		-1	+1	kV		
	on other pins		-2	+2	kV		

^[1] Human body model as defined in JEDEC Standard JESD22-A114-B, dated June 2000.

10. Thermal characteristics

Table 74. Thermal characteristics

Symbol	Parameter	Conditions	Тур	Unit
R _{th(j-a)}	thermal resistance from junction to ambient	in free air	80	K/W

11. Characteristics

Table 75. Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Supply	'		<u> </u>	1		
V_{DD}	supply voltage		2.7	-	6.0	V
		NDS conditions	3	-	6.0	V
V _{DCIN}	input voltage for the DC-to-DC converter		V_{DD}	-	6.0	V
I _{DD(sd)}	supply current in Shut-down mode	V _{DD} = 3.3 V	-	-	20	μΑ
I _{DD(pd)}	supply current in Power-down mode	V _{DD} = 3.3 V; card inactive; microcontroller in Power-down mode	-	-	110	μΑ
I _{DD(sl)}	supply current in Sleep mode	$V_{DD} = 3.3 \text{ V}$; card active at $V_{CC} = 5 \text{ V}$; clock stopped; microcontroller in Power-down mode; $I_{CC} = 0 \text{ A}$	-	-	800	μΑ

Low power single card reader

 Table 75.
 Characteristics ...continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{DD(om)}	supply current operating mode	I_{CC} = 65 mA; f_{XTAL} = 20 MHz; f_{CLK} = 10 MHz; 5 V card; V_{DD} = 2.7 V	-	-	250	mA
		I_{CC} = 50 mA; f_{XTAL} = 20 MHz; f_{CLK} = 10 MHz; 3 V card; V_{DD} = 2.7 V	-	-	125	mA
		I_{CC} = 50 mA; f_{XTAL} = 20 MHz; f_{CLK} = 10 MHz; 3 V card; V_{DD} = 5 V	-	-	65	mA
V_{th1}	threshold voltage on V _{DD} (falling)		2.15	-	2.45	V
V _{hys1}	hysteresis on V _{th1}		50	-	170	mV
V_{th2}	threshold voltage on pin CDEL		-	1.25	-	V
V _{CDEL}	voltage on pin CDEL		-	-	V _{DD} + 0.3	V
I _{CDEL}	output current at	pin grounded (charge)	-	-2	-	μΑ
	CDEL	V _{CDEL} = V _{DD} (discharge)	-	2	-	mA
C _{CDEL}	capacitance value		1	-	-	nF
t _{W(alarm)}	alarm pulse width	C _{CDEL} = 22 nF	-	10	-	ms
Crystal os	cillator: pins XTAL1 ar	nd XTAL2			-	
f _{XTAL}	crystal frequency		4	-	25	MHz
f _{ext}	external frequency applied on XTAL1		0	-	27	MHz
V_{IH}	HIGH-level input voltage on XTAL1		0.7V _{DD}	-	V _{DD} + 0.2	V
V _{IL}	LOW-level input voltage on XTAL1		-0.3	-	0.3V _{DD}	V
DC-to-DC						1
f _{int}	oscillation frequency		2	2.6	3.2	MHz
V_{VUP}	voltage on pin VUP	5 V card	-	5.7	-	V
		3 V card	-	4.1	-	V
V _{det}	detection voltage on pin DCIN for \times 2/ \times 3 selection	follower/doubler for 3 V card, doubler/tripler for 5 V card	3.4	3.5	3.6	V
Reset outp	out to the card pin: RS	Т				
V _{O(inactive)}	output voltage in	no load	0	-	0.1	V
	inactive mode	I _{O(inactive)} = 1 mA	0	-	0.3	V
I _{O(inactive)}	current from RST	inactive and pin grounded	0	-	-1	mA
V _{OL}	LOW-level output voltage	I _{OL} = 200 μA	0	-	0.2	V
V _{OH}	HIGH-level output voltage	I _{OH} = -200 μA	0.9V _{CC}	-	V _{CC}	V
t _r	rise time	C _L = 250 pF	-	-	0.1	μS
t _f	fall time	C _L = 250 pF	_	_	0.1	μS

Low power single card reader

 Table 75.
 Characteristics ...continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Clock outp	out to the card pin: CLK		1		'	
V _{O(inactive)}	output voltage in	no load	0	-	0.1	V
inactive mode		I _{O(inactive)} = 1 mA	0	-	0.3	V
I _{O(inactive)}	current from pin CLK	inactive and pin grounded	0	-	-1	mA
V _{OL}	LOW-level output voltage	I _{OL} = 200 μA	0	-	0.15 Vcc	V
V _{OH}	HIGH-level output voltage	$I_{OH} = -200 \mu A$	0.9V _{CC}	-	V _{CC}	V
t _r	rise time	$C_L = 35 \text{ pF}, V_{CC} = 5 \text{ V or } 3 \text{ V}$	-	-	10	ns
t _f	fall time	$C_L = 35 \text{ pF}, V_{CC} = 5 \text{ V or } 3 \text{ V}$	-	-	10	ns
f _{CLK}	card clock frequency	internal clock configuration	1	-	1.5	MHz
		external clock configuration	0	-	20	MHz
δ	duty cycle	except for XTAL; C _L = 35 pF	45	-	55	%
SR _r , SR _f	slew rate, rise and fall	C _L = 35 pF	0.2	-	-	V/ns
Card supp	ly voltage: pin V _{CC} [1]		1			
V _{O(inactive)}	output voltage inactive	no load	0	-	0.1	V
		I _{O(inactive)} = 1 mA	0	-	0.3	V
I _{O(inactive)}	current from V _{CC}	inactive and pin grounded	-	-	-1	mA
V _{CC}	output voltage	active mode; I _{CC} < 65 mA; 5 V card	4.75	5	5.25	V
		active mode; I_{CC} < 65 mA if V_{DD} > 3.0 V else I_{CC} < 50 mA; 3 V card	2.80	3	3.20	V
		active mode; I _{CC} < 30 mA; 1.8 V card	1.62	1.8	1.98	V
		active mode; current pulses of 40 nAs with I < 200 mA, t < 400 ns, f < 20 MHz; 5 V card	4.6	-	5.3	V
		active mode; current pulses of 40 nAs with I < 200 mA, t < 400 ns, f < 20 MHz; 3 V card	2.75	-	3.25	V
		active mode; current pulses of 12 nAs with I < 200 mA, t < 400 ns, f < 20 MHz; 1.8 V card	1.64	-	1.94	V

Low power single card reader

 Table 75.
 Characteristics ...continued

 $V_{DD} = V_{DCIN} = 3.3 \text{ V; } T_{amb} = 25 \text{ °C; unless otherwise specified.}$

Symbol	ymbol Parameter Conditions		Min	Тур	Max	Unit				
I _{CC}	output current	5 V card; V _{CC} = 0 V to 5 V	-	-	65	mA				
		3 V card; $V_{CC} = 0 \text{ V to 3 V}$; $V_{DD} > 3.0 \text{ V}$	-	-	65	mA				
		3 V card; V_{CC} = 0 V to 3 V; V_{DD} < 3.0 V	-	-	50	mA				
		1.8 V card; V _{CC} = 0 V to 1.8 V;	-	-	30	mA				
		V _{CC} shorted to ground (current limitation)	-	-	120	mA				
SR _r , SR _f	slew rate, rise and fall	maximum load capacitor = 300 nF	0.05	0.16	0.22	V/μs				
V _{ripple(p-p)}	ripple voltage on V _{CC} (peak-to-peak value)	20 kHz < f < 200 MHz								
Data line:	pin I/O, with an integrat	ed 14kΩ pull-up resistor to V _{CC}	;	,						
V _{O(inactive)}	output voltage inactive	no load	0	-	0.1	V				
		I _{O(inactive)} = 1 mA	-	-	0.3	V				
I _{O(inactive)}	current from I/O	inactive; pin grounded	-	-	-1	mA				
V _{OL}	LOW-level output voltage	I/O configured as output; I _{OL} = 1 mA	0.15 Vcc	V						
V _{OH}	HIGH-level output voltage	I/O configured as output; V _{CC} = 5 V or 3 V								
		I _{OH} < -40 μA	0.75V _{CC}	-	V _{CC}	V				
		I _{OH} < -20 μA	0.8V _{CC}	-	V _{CC}	٧				
		I _{OH} = 0 A	0.9V _{CC}	-	V _{CC} + 0.25	V				
V _{IL}	LOW-level input voltage	I/O configured as input	-0.3	-	0.2 Vcc	V				
V_{IH}	HIGH-level input voltage	I/O configured as input	1.5	-	V _{CC}	V				
I _{IL}	input current LOW	V _{IL} = 0 V	-	-	500	μΑ				
I _{LI(H)}	input leakage current HIGH	$V_{IH} = V_{CC}$	-	-	10	μΑ				
$t_{i(T)}$	input transition time	$C_L \le 65 \text{ pF}$	-	-	1	μS				
t _{o(T)}	output transition time	$C_L \le 65 \text{ pF}$	-	-	0.1	μS				
R _{pu}	internal pull-up resistance between I/O and V _{CC}		11	14	17	kΩ				
t _{edge}	width of active pull-up pulse	I/O configured as output, rising from LOW to HIGH	2/f _{XTAL1}	-	3/f _{XTAL1}	ns				
l _{edge}	current from I/O when active pull-up	$V_{OH} = 0.9V_{CC}, C = 60 \text{ pF}$	-1	-	-	mA				
Timings	1		1	1		!				
t _{act}	activation sequence duration		-	-	130	μS				
t _{de}	deactivation sequence duration		-	-	100	μS				

Low power single card reader

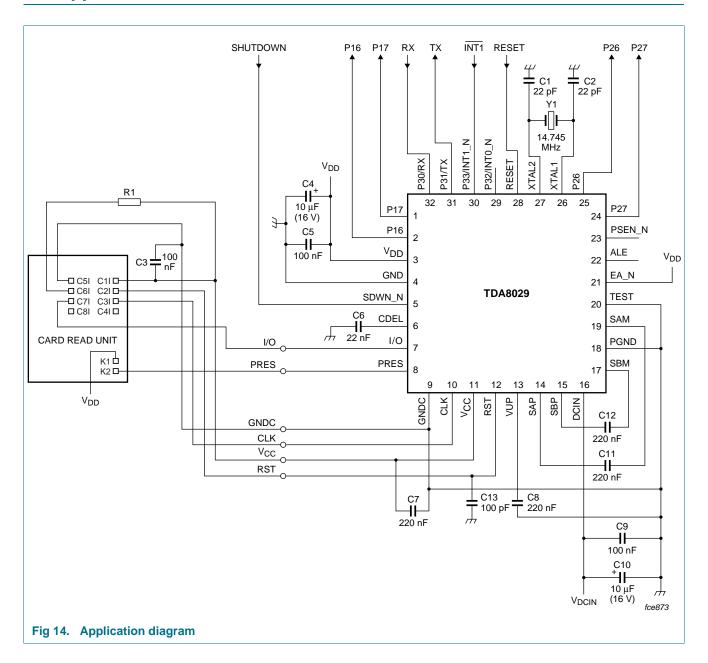
 Table 75.
 Characteristics ...continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Protection	ns and limitations					
I _{CC(sd)}	shut-down and limitation current at V _{CC}	[2]	-	-100	-	mA
I _{I/O(lim)}	limitation current on pin I/O		-15	-	+15	mA
I _{CLK(lim)}	limitation current on pin CLK		-70	-	+70	mA
I _{RST(sd)}	shut-down current on pin RST		-	-20	-	mA
I _{RST(lim)}	limitation current on RST		-20	-	+20	mA
T _{sd}	shut-down temperature		-	150	-	°C
Card pres	ence input: pin PRES	1	1	1	+	
V _{IL}	LOW-level input voltage		-	-	0.3V _{DD}	V
V _{IH}	HIGH-level input voltage		0.7V _{DD}	-	-	V
I _{IL}	LOW-level input current	V _I < 0.5V _{DD}	25	-	100	μА
I _{IH}	HIGH-level input current	$V_I = V_{DD}$	-	-	10	μΑ
Shut-dow	n input: pin SDWN_N				'	
V _{IL}	LOW-level input voltage		-	-	0.3V _{DD}	V
V _{IH}	HIGH-level input voltage		0.7V _{DD}	-	-	V
I _{LI(L)}	input leakage current LOW	V _I = 0 V	-	-	±20	μΑ
I _{LI(H)}	input leakage current HIGH	$V_I = V_{DD}$	-	-	±20	μΑ
I/O: Gene	ral purpose I/O pins P10	6, P17, P26 and P27; interrupt pin IN	T1_N; and ser	rial link pins	RX and TX	[3]
V_{IL}	LOW-level input voltage		-	-	0.3V _{DD}	V
V _{IH}	HIGH-level input voltage		0.2V _{DD} + 0.9	-	-	V
V _{OL}	LOW-level input voltage	I _{OL} = 1.6 mA	-	-	0.4	V
V _{OH}	HIGH-level input voltage	$I_{OH} = -30 \ \mu A$	V _{DD} - 0.7	-	-	V
I _{IL}	input current LOW	V _I = 0.4 V	-1	-	-50	μΑ
I _{THL}	HIGH to LOW transition current	V _I = 2 V	-	-	-650	μА

Low power single card reader

Table 75. Characteristics ...continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit				
Reset input: pin RESET, active HIGH										
V _{IL}	LOW-level input voltage		-	-	0.3V _{DD}	V				
V _{IH}	HIGH-level input voltage		0.7V _{DD}	-	-	V				

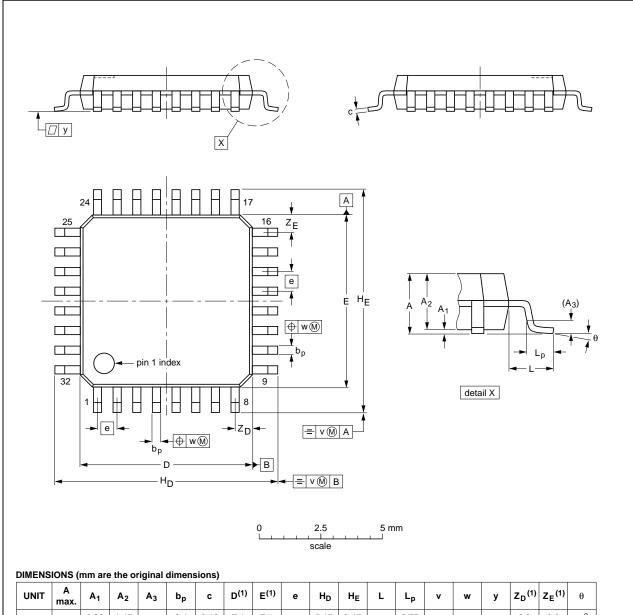

^[1] Two ceramic multilayer capacitances with low ESR of minimum 100 nF should be used in order to meet these specifications.

^[2] This is an overload detection.

^[3] These ports are standard C51 ports. An active pull-up ensures fast LOW to HIGH transitions.

Low power single card reader

12. Application information


TDA8029 NXP Semiconductors

Low power single card reader

13. Package outline

LQFP32: plastic low profile quad flat package; 32 leads; body 7 x 7 x 1.4 mm

SOT358-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	C	D ⁽¹⁾	E ⁽¹⁾	е	H _D	HE	L	Lp	٧	w	у	Z _D ⁽¹⁾	Z _E ⁽¹⁾	θ
mm	1.6	0.20 0.05	1.45 1.35	0.25	0.4 0.3	0.18 0.12	7.1 6.9	7.1 6.9	0.8	9.15 8.85	9.15 8.85	1	0.75 0.45	0.2	0.25	0.1	0.9 0.5	0.9 0.5	7° 0°

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	IEC JEDEC J			PROJECTION	ISSUE DATE	
SOT358 -1	136E03	MS-026				03-02-25 05-11-09	

Fig 15. Package outline SOT358-1 (LQFP32)

Low power single card reader

14. Handling information

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be completely safe, it is desirable to take normal precautions appropriate to handling integrated circuits.

15. Soldering of SMD packages

This text provides a very brief insight into a complex technology. A more in-depth account of soldering ICs can be found in Application Note *AN10365* "Surface mount reflow soldering description".

15.1 Introduction to soldering

Soldering is one of the most common methods through which packages are attached to Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both the mechanical and the electrical connection. There is no single soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high densities that come with increased miniaturization.

15.2 Wave and reflow soldering

Wave soldering is a joining technology in which the joints are made by solder coming from a standing wave of liquid solder. The wave soldering process is suitable for the following:

- Through-hole components
- Leaded or leadless SMDs, which are glued to the surface of the printed circuit board

Not all SMDs can be wave soldered. Packages with solder balls, and some leadless packages which have solder lands underneath the body, cannot be wave soldered. Also, leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered, due to an increased probability of bridging.

The reflow soldering process involves applying solder paste to a board, followed by component placement and exposure to a temperature profile. Leaded packages, packages with solder balls, and leadless packages are all reflow solderable.

Key characteristics in both wave and reflow soldering are:

- Board specifications, including the board finish, solder masks and vias
- · Package footprints, including solder thieves and orientation
- The moisture sensitivity level of the packages
- Package placement
- Inspection and repair
- Lead-free soldering versus SnPb soldering

15.3 Wave soldering

Key characteristics in wave soldering are:

All information provided in this document is subject to legal disclaimers.

© NXP Semiconductors N.V. 2016. All rights reserved

Low power single card reader

- Process issues, such as application of adhesive and flux, clinching of leads, board transport, the solder wave parameters, and the time during which components are exposed to the wave
- Solder bath specifications, including temperature and impurities

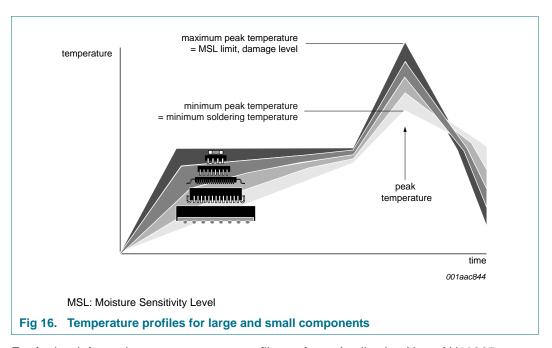
15.4 Reflow soldering

Key characteristics in reflow soldering are:

- Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to higher minimum peak temperatures (see <u>Figure 16</u>) than a SnPb process, thus reducing the process window
- Solder paste printing issues including smearing, release, and adjusting the process window for a mix of large and small components on one board
- Reflow temperature profile; this profile includes preheat, reflow (in which the board is heated to the peak temperature) and cooling down. It is imperative that the peak temperature is high enough for the solder to make reliable solder joints (a solder paste characteristic). In addition, the peak temperature must be low enough that the packages and/or boards are not damaged. The peak temperature of the package depends on package thickness and volume and is classified in accordance with Table 76 and 77

Table 76. SnPb eutectic process (from J-STD-020D)

Package thickness (mm)	Package reflow temperature (°C)						
	Volume (mm³)						
	< 350	≥ 350					
< 2.5	235	220					
≥ 2.5	220	220					


Table 77. Lead-free process (from J-STD-020D)

Package thickness (mm)	Package reflow temperature (°C)							
	Volume (mm³)							
	< 350	350 to 2000	> 2000					
< 1.6	260	260	260					
1.6 to 2.5	260	250	245					
> 2.5	250	245	245					

Moisture sensitivity precautions, as indicated on the packing, must be respected at all times.

Studies have shown that small packages reach higher temperatures during reflow soldering, see Figure 16.

Low power single card reader

For further information on temperature profiles, refer to Application Note *AN10365* "Surface mount reflow soldering description".

Low power single card reader

16. Revision history

Table 78. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes			
TDA8029 v.3.3	20160719	Product data sheet	- TDA8029 v.3.2				
Modifications:	Section 1 "	Section 1 "General description": reference AN10207 updated Section 5 "Ordering information": type number updated					
	• Section 5 "						
TDA8029 v.3.2	20160608	Product data sheet	-	TDA8029 v.3.1			
Modifications:	• <u>Table 75 "C</u>	Table 75 "Characteristics": VOL, VOH and VIL values updated, as per EMVCo 4.3					
TDA8029 v.3.1	20130311	Product data sheet	-	TDA8029_3			
Modifications:	Modifications: • Type number TDA8029HL/C1 removed						
	<u>Table 75 "Characteristics"</u> : V _{CC} values updated						
	 The format of this data sheet has been redesigned to comply with the new identity NXP Semiconductors. 						
	 Legal texts 	have been adapted to the new company na	me where appropri	ate.			
TDA8029_3	20050222	Product data sheet	-	TDA8029_2			
Modifications:	 The format of this data sheet has been redesigned to comply with the presentation and information standard of Philips Semiconductors. 						
	Section 2: Modified feature on V _{CC} generation						
	Section 4: Modified various values and added external crystal frequency specification						
	 Section 7: Modified descriptions of pins 2, 5, 8, 28 and 29; added a pin type column to the pinning table 						
	Section 8.1: Added a reference to the hardware status register description						
	 Section 8.12: Added an additional paragraph describing bias current on pin PRES 						
	Section 8.14: Added information on wake-up						
	 Section 8.16: Added a V_{DD} low condition to emergency deactivation conditions list 						
	 <u>Section 11</u>: Modified various values; added external crystal frequency, doubler/tripler voltage, pin PRES input current specifications and added a note for the General purpose I/O 						
	• Section 12: Added a capacitor C13 and modified a capacitor C7 in the application						
TDA8029_2	20031030	Product specification	-	-			

Low power single card reader

17. Legal information

17.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

17.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

17.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

TDA8029

All information provided in this document is subject to legal disclaimers.

© NXP Semiconductors N.V. 2016. All rights reserved.

Low power single card reader

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the

product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

17.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

18. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Low power single card reader

19. Contents

1	General description	. 1	8.9.3.1	Programmable divider register (PDR)	
2	Features and benefits	. 1	8.9.3.2	UART configuration register 2 (UCR2)	
3	Applications	. 2	8.9.3.3	Guard time register (GTR)	
4	Quick reference data		8.9.3.4	UART configuration register 1 (UCR1)	
			8.9.3.5	Clock configuration register (CCR)	
5	Ordering information		8.9.3.6	Power control register (PCR)	
6	Block diagram		8.9.4	Register summary	
7	Pinning information	. 5	8.10	Supply	
7.1	Pinning	. 5	8.11	DC-to-DC converter	
7.2	Pin description	. 5	8.12	ISO 7816 security	
8	Functional description	. 6	8.13	Protections and limitations	
8.1	Microcontroller	. 6	8.14	Power reduction modes	
8.1.1	Port characteristics		8.15	Activation sequence	
8.1.2	Oscillator characteristics	10	8.16	Deactivation sequence	
8.1.3	Reset	10	9	Limiting values	45
8.1.4	Low power modes	10	10	Thermal characteristics	46
8.2	Timer 2 operation	11	11	Characteristics	46
8.2.1	Timer/counter 2 control register (T2CON)	12	12	Application information	52
8.2.2	Timer/counter 2 mode control register	12	13	Package outline	53
8.2.3	(T2MOD)		14	Handling information	54
8.2.4	Baud rate generator mode		15	Soldering	
8.2.5	Timer/counter 2 set-up		15.1	Introduction to soldering surface mount	
8.3	Enhanced UART			packages	54
8.3.1	Serial port control register (SCON)		15.2	Reflow soldering	
8.3.2	Automatic address recognition		15.3	Wave soldering	
8.4	Interrupt priority structure		15.4	Manual soldering	
8.4.1	Interrupt enable register (IE)		15.5	Package related soldering information	
8.4.2	Interrupt priority register (IP)		16	Revision history	
8.4.3	Interrupt priority high register (IPH)		17	Legal information	
8.5	Dual DPTR		17.1	Data sheet status	
8.6	Expanded data RAM addressing		17.1	Definitions	
8.6.1	Auxiliary register (AUXR)		17.2	Disclaimers	
8.7	Reduced EMI mode		17.3	Trademarks	
8.8	Mask ROM devices	26			
8.9	Smart card reader control registers	27	18	Contact information	
8.9.1	General registers	28	19	Contents	60
8.9.1.1	Card select register (CSR)	28			
8.9.1.2	Hardware status register (HSR)	28			
8.9.1.3	Time-out registers (TOR1, TOR2 and TOR3).				
8.9.1.4	Time-out configuration register (TOC)				
8.9.2	ISO UART registers				
8.9.2.1	UART transmit register (UTR)				
8.9.2.2	UART receive register (URR)				
8.9.2.3	Mixed status register (MSR)				
8.9.2.4	FIFO control register (FCR)				
8.9.2.5	UART status register (USR)				
893	Card registers	35			

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP Semiconductors N.V. 2016.

All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com