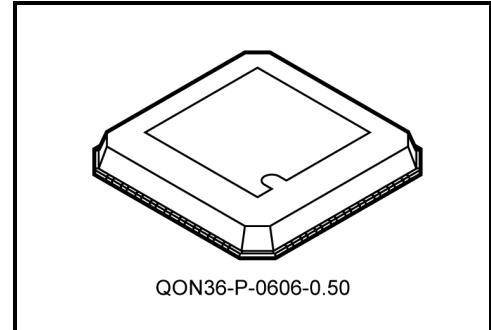


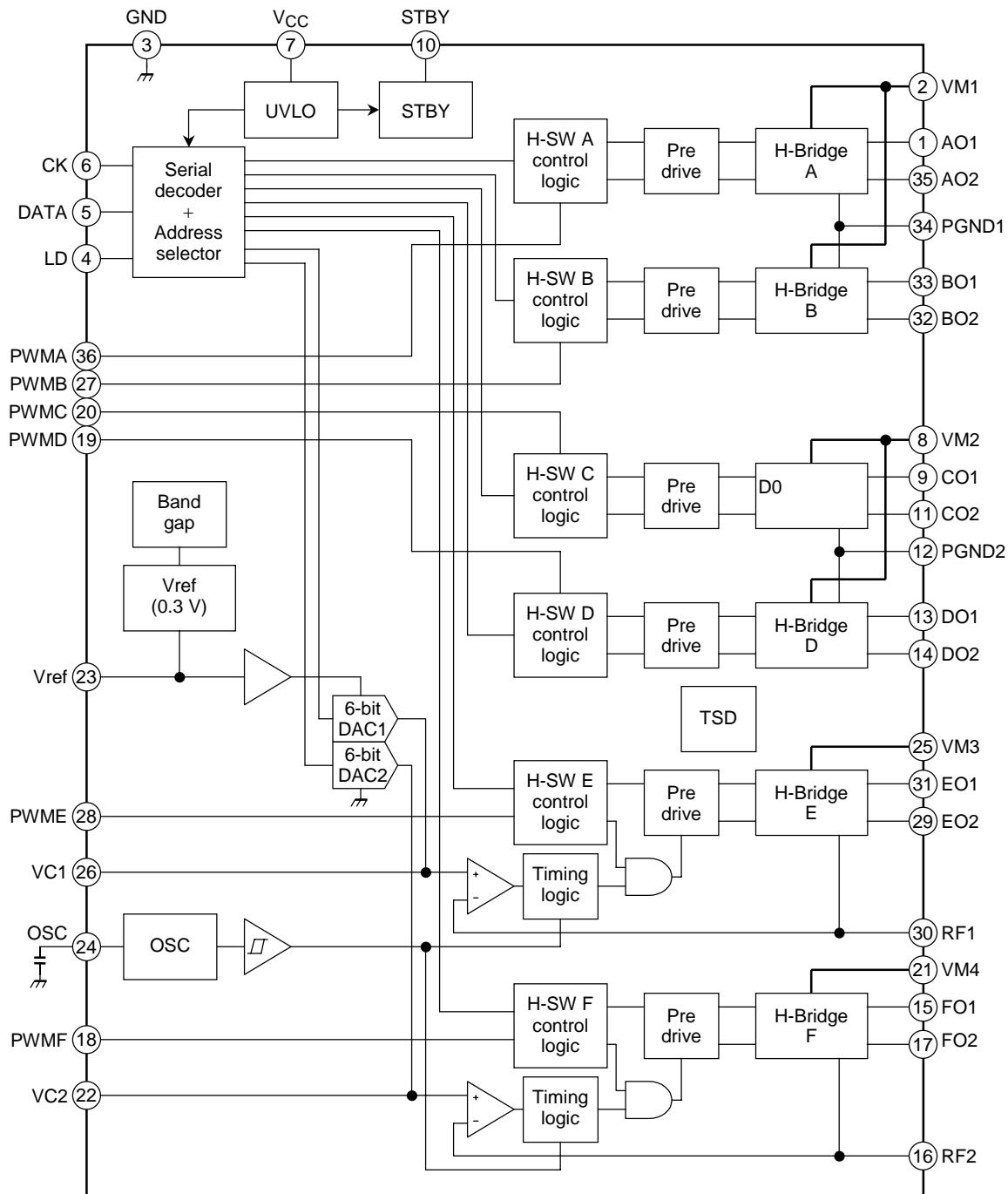
TOSHIBA BiCD Integrated Circuit Silicon Monolithic


TB6557FLG

DC Motor Driver

The TB6557FLG is a driver IC for driving DC motors. Its employs LDMOS devices with low ON resistance for output drive transistors. The TB6557FLG incorporates two constant current-controlled H-bridge drivers and four voltage-controlled H-bridge drivers, making it ideal for controlling Zoom/AF/IRIS lens motors in digital still cameras and camcorders. It supports three-wire serial data to control motors, thus reducing the number of lines for interfacing the control IC.

Features

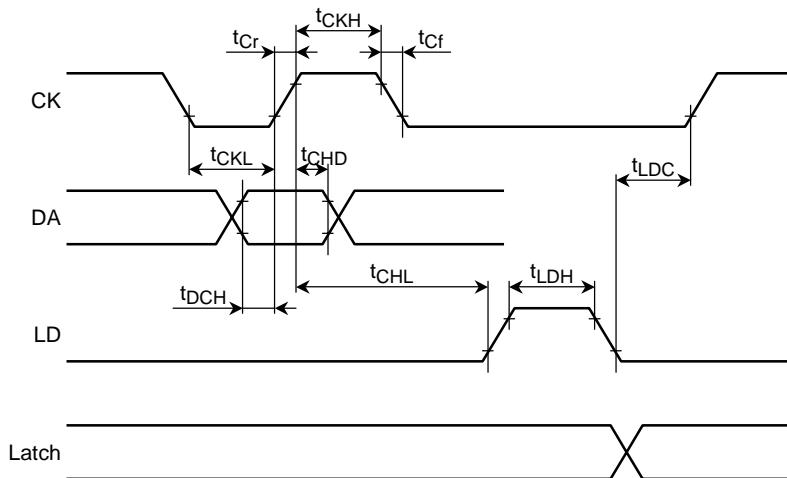

- Motor power supply voltage: $V_M \leq 15$ V (max)
- Control power supply voltage: $V_{CC} = 2.7$ to 6 V
- Output current: $I_{out} \leq 0.8$ A (max)
- P-/N-ch LDMOS complementary output transistors
- Output ON resistance: R_{on} (upper + lower) = 1.5 Ω (typ.)
- High-speed PWM chopping control at 100 kHz or higher (constant-current H-SW)
- Independent standby (Power save) feature
- Two 6-bit DACs for setting current value for constant-current H-SW
- Thermal shutdown (TSD) protective circuit
- Circuit for preventing malfunction at low voltage (shuts down internal circuits at UVLO: $V_{CC} \leq 2.2$ V (typ.))
- Small QON-36 package (0.5-mm lead pitch)
- Supports Pb-free reflow mounting

Weight: 0.08 g (typ.)

Note: This product has a MOS structure and is sensitive to electrostatic discharge. When handling this product, ensure that the environment is protected against electrostatic discharge by using an earth strap, a conductive mat and an ionizer. Ensure also that the ambient temperature and relative humidity are maintained at reasonable levels.

Block Diagram

Maximum Ratings (Ta = 25°C)

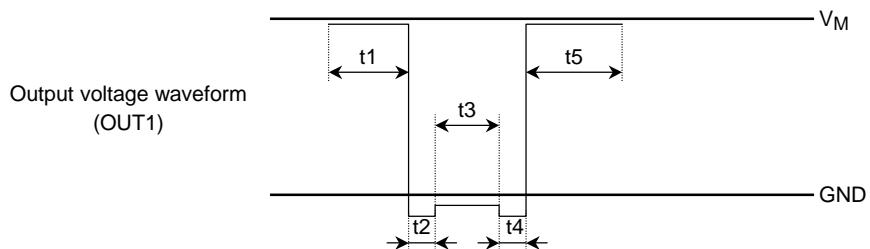
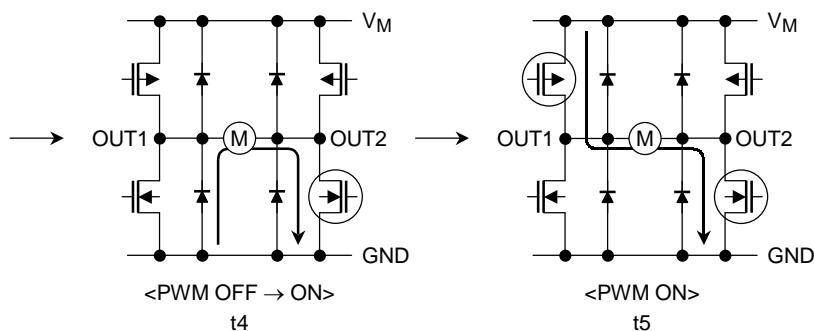
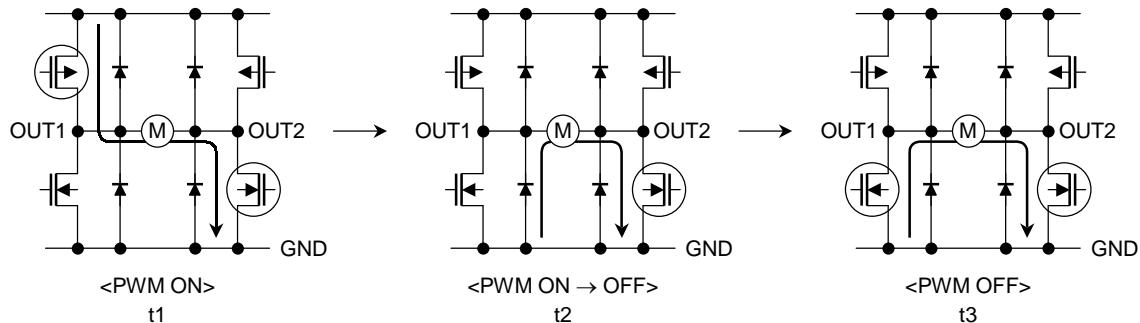

Characteristics	Symbol	Rating	Unit	Remarks
Supply voltage	V _{CC}	6	V	V _{CC}
Motor supply voltage	V _M	15	V	V _M
Output pin voltage	V _{OUT}	15	V	
Output current	I _{OUT}	0.8	A	
Input voltage	V _{IN}	-0.2 to 6	V	Each control input pin
Power dissipation	P _D	0.6	W	IC only
Operating temperature	T _{opr}	-20 to 85	°C	
Storage temperature	T _{stg}	-55 to 150	°C	

Recommended Operating Conditions (Ta = -20 to 85°C)

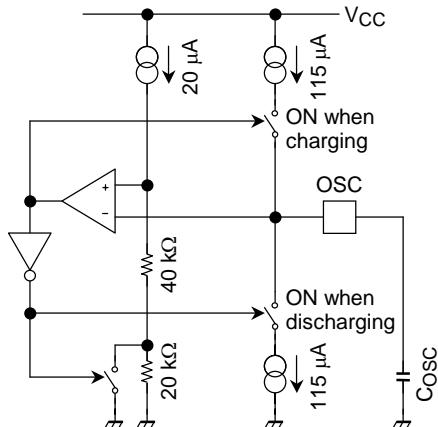
Characteristics	Symbol	Rating			Unit
		Min	Typ.	Max	
Small signal supply voltage	V _{CC}	2.7	3	5.5	V
Motor supply voltage	V _M	2.5	5	13.5	V
Output current	I _{OUT}	—	—	600	mA
PWM frequency	f _{PWM}	—	—	100	kHz
OSC oscillation frequency	f _{OSC}	—	—	1	MHz

Recommended Operating Conditions 2: Serial Data Controller ($T_a = -20$ to 85°C)

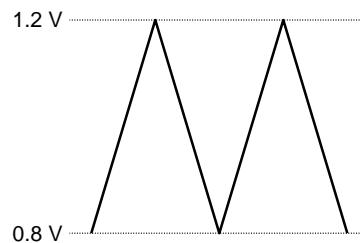
Characteristics	Symbol	Rating		Unit
		Min	Max	
Low-level clock pulse width	t_{CKL}	200	—	ns
High-level clock pulse width	t_{CKH}	200	—	ns
Clock rise time	t_{Cr}	—	50	ns
Clock fall time	t_{Cf}	—	50	ns
Data setup time	t_{DCH}	30	—	ns
Data hold time	t_{CHD}	60	—	ns
Load setup time	t_{CHL}	200	—	ns
Load hold time	t_{LDC}	100	—	ns
High-level load pulse width	t_{LDH}	100	—	ns
Latch output settling time	t_{LDD}	—	100	μs
CK (clock pulse) frequency	f_{CLK}	—	2.5	MHz
LD (load pulse) frequency	f_{LD}	—	1.5	MHz




Specifications and Operation of Each Circuit Block:

- Bridge output block:


PWM control feature

While PWM control is applied, normal operation t1, t5, and short brake t3 are repeated.


(Dead time t2 and t4 are inserted to prevent pass-through current.)

Operation of OSC oscillator: Charging and discharging external capacitor COSC cause OSC oscillation.

OSC block

V_{osc} waveform

In the above circuit configuration, the voltage inclination, V_{OSC}, for charging (or discharging) external capacitor COSC is represented as follows:

$$V_{OSC} = \frac{1}{C_{OSC}} \int i dt$$

The following equations show relationships among t₁ (time when V_{OSC} = 0.8 V), t₂ (time when V_{OSC} = 1.2 V), and ΔV_{OSC} (variation in the V_{OSC} inclination):

$$\Delta V_{OSC} = I \times (t_1 - t_2) / C_{OSC}$$

$$\frac{1}{t_1 - t_2} = \frac{I}{\Delta V_{OSC} \cdot C_{OSC}}$$

The triangular oscillation frequency, f_{OSC}, represents a single period consisting of a pair of rising V_{OSC} inclination and falling inclination, so that the period is double the time between t₁ and t₂.

∴ Therefore, the relationship between COSC and f_{OSC} is shown by the following formula:

$$f_{OSC} = \frac{1}{2(t_1 - t_2)} = \frac{I}{2 \cdot \Delta V_{OSC} \cdot C_{OSC}}$$

With the above OSC block and V_{OSC} waveform, V_{OSC} = |1.2 V - 0.8 V| = 0.4 V, so that the value of f_{OSC} is determined from the following formula:

$$f_{OSC} = \frac{1}{2 \times 0.4 / 115 \mu A \times C_{OSC}} = \frac{1}{6.957 \times 10^3 \times C_{OSC}}$$

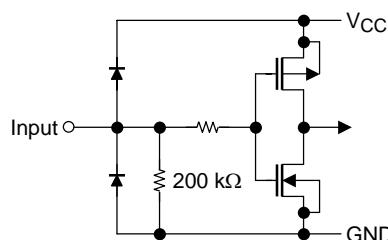
Example: The calculation shows f_{OSC} = 532 kHz when COSC = 270 pF and f_{OSC} = 256 kHz when COSC = 560 pF.

In an actual application, however, the required capacitance may slightly differ from the theoretical value due to board pin capacitance and other factors. It is, therefore, recommended to determine the value of COSC experimentally.

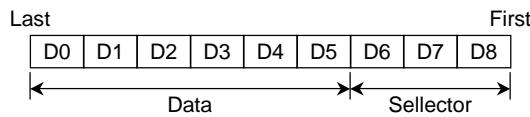
- Constant-current bridge block (H-SW E, F): Description of PWM constant-current chopping

Turning on the power (Chop on) causes current to flow into the load inductor. Once the voltage (VRF) generated with the external current detection resistor reaches the comparator reference voltage, Vlimit (current limit), the comparator starts operating (Chop off). After the output Hi-side transistor is turned off, counting for the chop-off time starts at the next rising edge of the internal clock, producing a chop-off time of 9 clock cycles for nine bits (reset at the rising edge for the 10th bit).

This chop-off time control creates a PWM signal to turn the output transistor on and off.


Conceptual diagram for PWM chopping operation

(The inductor current (I_O peak) is limited by the value obtained from the expression $I_O = V_{limt}/R_{NF}$.)


- Others

Each input pin (CK, DA, LD, PWM-A, B, C, D, E, F, and STBY) has a built-in pull-down resistor (approx. 200 kΩ).

Serial Data Specifications:

9-bit serial data

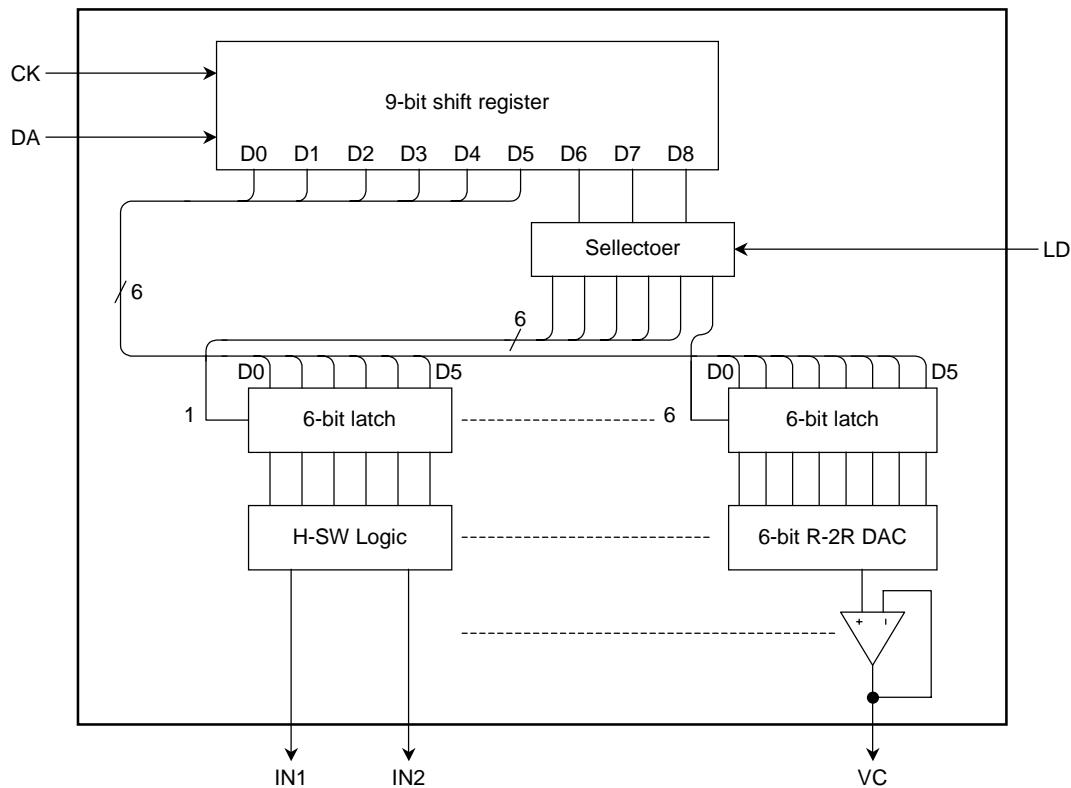
Register modes

D8	D7	D6	D5	D4	D3	D2	D1	D0	Register	Remarks
0	0	0	mod2	mod1	p2a	p2b	p1a	p1b	0	ChA, ChB setting
0	0	1	mod4	mod3	p4a	p4b	p3a	p3b	1	ChC, ChD setting
0	1	0	mod6	mod5	p6a	p6b	p5a	p5b	2	ChE, ChF setting
0	1	1	pwm6	pwm5	pwm4	pwm3	pwm2	pwm1	3	PWM mode setting
1	0	0	DA5	DA4	DA3	DA2	DA1	DA0	4	DAC1 setting
1	0	1	DA5	DA4	DA3	DA2	DA1	DA0	5	DAC2 setting
1	1	1	0	0	0	0	0	0	—	Reset

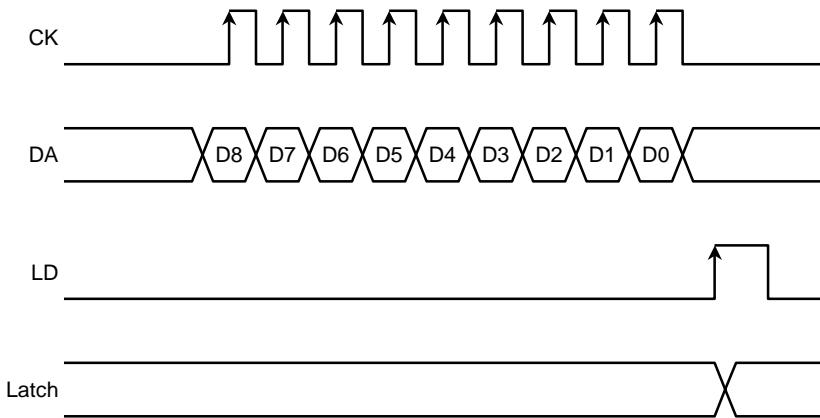
Driver function table

modX = 0 pwmX = 0

pxa	pxb	PWMx	OUTxA	OUTxB	Operating Mode
L	L	X	Z	Z	STOP
L	H	L	L	L	Short brake
L	H	H	L	H	CCW
H	L	L	L	L	Short brake
H	L	H	H	L	CW
H	H	X	L	L	Short brake


modX = 0 pwmX = 1

pxa	pxb	PWMx	OUTxA	OUTxB	Operating Mode
L	L	X	Z	Z	STOP
L	H	L	L	H	CCW
L	H	H	L	L	Short brake
H	L	L	H	L	CW
H	L	H	L	L	Short brake
H	H	X	L	L	Short brake


modX = 1 pwmX = X

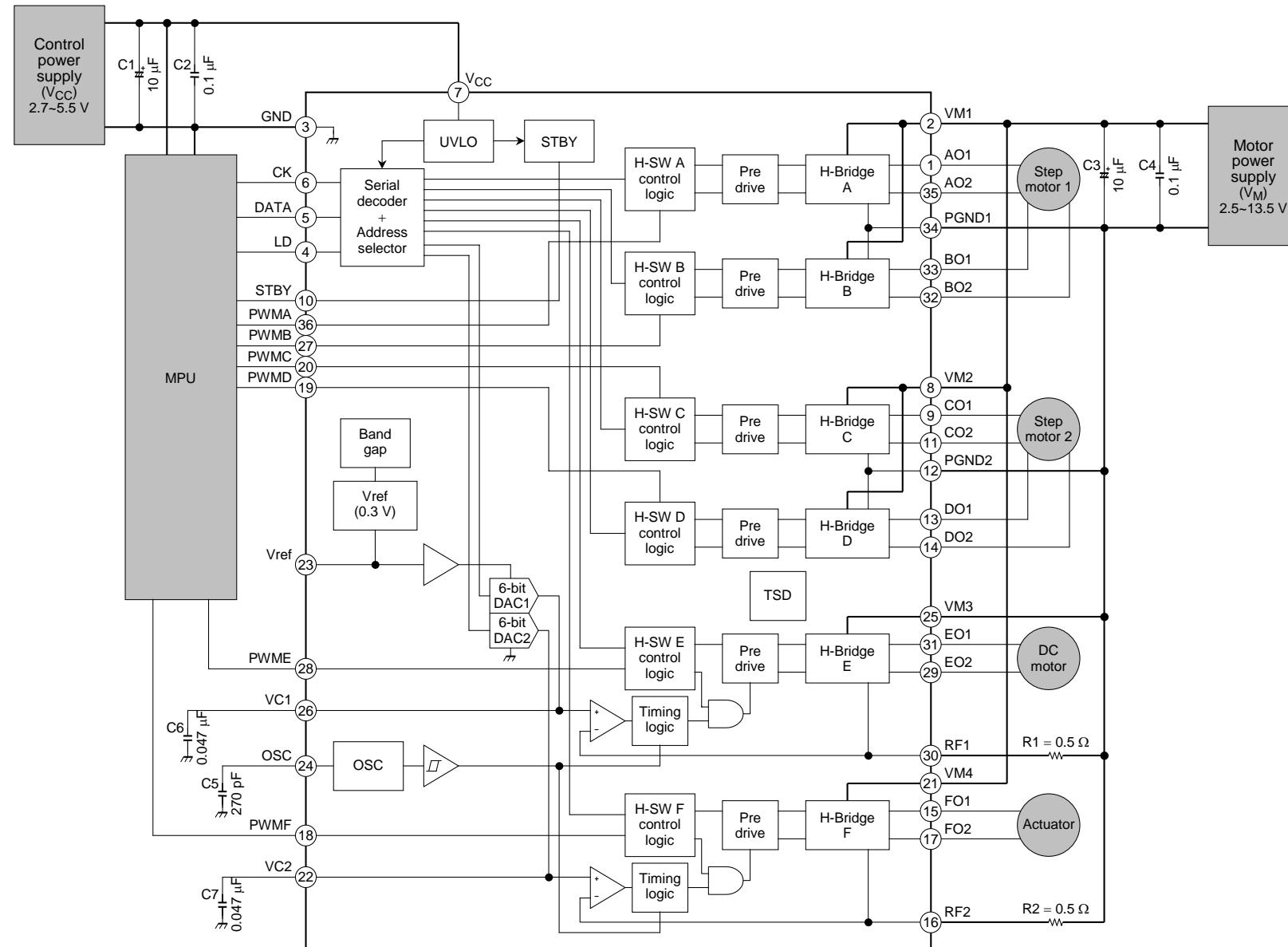
pxa	pxb	PWMx	OUTxA	OUTxB	Operating Mode
L	X	X	Z	Z	STOP
H	L	L	H	L	CW
H	L	H	L	H	CCW
H	H	X	L	L	Short brake

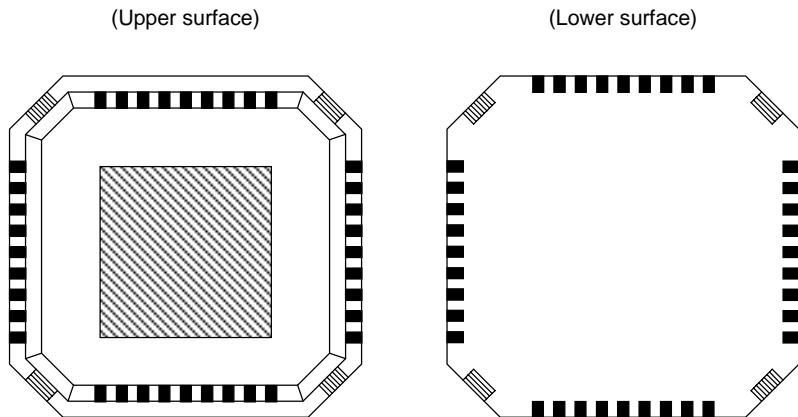
Serial Decoder Block Diagram

Example Timing Chart

The 9-bit serial data, input to the DA pin, is detected on the rising edge of CK, and then serially stored into the 9-bit register.

- (1) The three bits in D8 to D6 select the register.
- (2) The six bits in D5 to D0 specify the H-SW control mode or DAC output value.
- (3) Data is output from the latch on the rising edge of the signal input to the LD pin.


Note: Driving the standby pin (pin 10) low resets the internal register.


The internal register is also reset in the default status upon power-on.

Electrical Characteristics ($V_{CC} = 3$ V, $V_M = 5$ V, and $T_a = 25^\circ\text{C}$ unless otherwise specified)

Characteristics		Symbol	Test Condition	Min	Typ.	Max	Unit	
Supply current	I_{CC}	All 6 channels in CW mode	—	3	5	—	mA	
	I_{CC} (STB)		—	—	10	—	μA	
	I_M (STB)		—	—	1	—		
Serial/standby input	Input voltage	V_{INH}		$V_{CC} \times 1/2$	—	$V_{CC} + 0.2$	V	
		V_{INL}		-0.2	—	0.4		
	Input current	I_{INH}	$V_{IH} = 3$ V	10	15	20	μA	
		I_{INL}	$V_{IL} = 0$ V	—	—	1		
PWM input	Input voltage	V_{INSH}		2	—	$V_{CC} + 0.2$	V	
		V_{IN} (HYS)		—	0.2	—		
		V_{INSL}		-0.2	—	0.8		
	Input current	I_{INSH}	$V_{IH} = 3$ V	10	15	20	μA	
		I_{INSL}	$V_{IL} = 0$ V	—	—	1		
Output saturation voltage		$V_{sat}(U + L)$	$I_O = 0.2$ A	—	0.3	—	V	
			$I_O = 0.6$ A	—	0.9	—		
Output leakage current		I_L (U)	$V_M = 15$ V	—	—	1	μA	
				—	—	1		
Output diode forward voltage		V_F (U)	$I_F = 0.6$ A (Design value)	—	1	—	V	
				—	1	—		
Internal reference voltage		V_{ref}		0.28	0.3	0.32	V	
Offset voltage for constant-current detection comparator		Comp ofs		RRF = 1 Ω , $V_C = 0.1$ V (Design value)	-5	—	5 mV	
Reference oscillation frequency		f_{osc}		Cosc = 220 pF	430	530	630 kHz	
DAC	Nonlinearity error	LB		—	-3	—	LSB	
	Differential linearity error	DLB		—	-2	—		
	Output voltage range	DR		—	0	—		
Thermal shutdown circuit operating temperature		TSD	(Design value)	—	170	—	°C	
Hysteresis temperature width for recovery from thermal shutdown		ΔTSD		—	20	—		

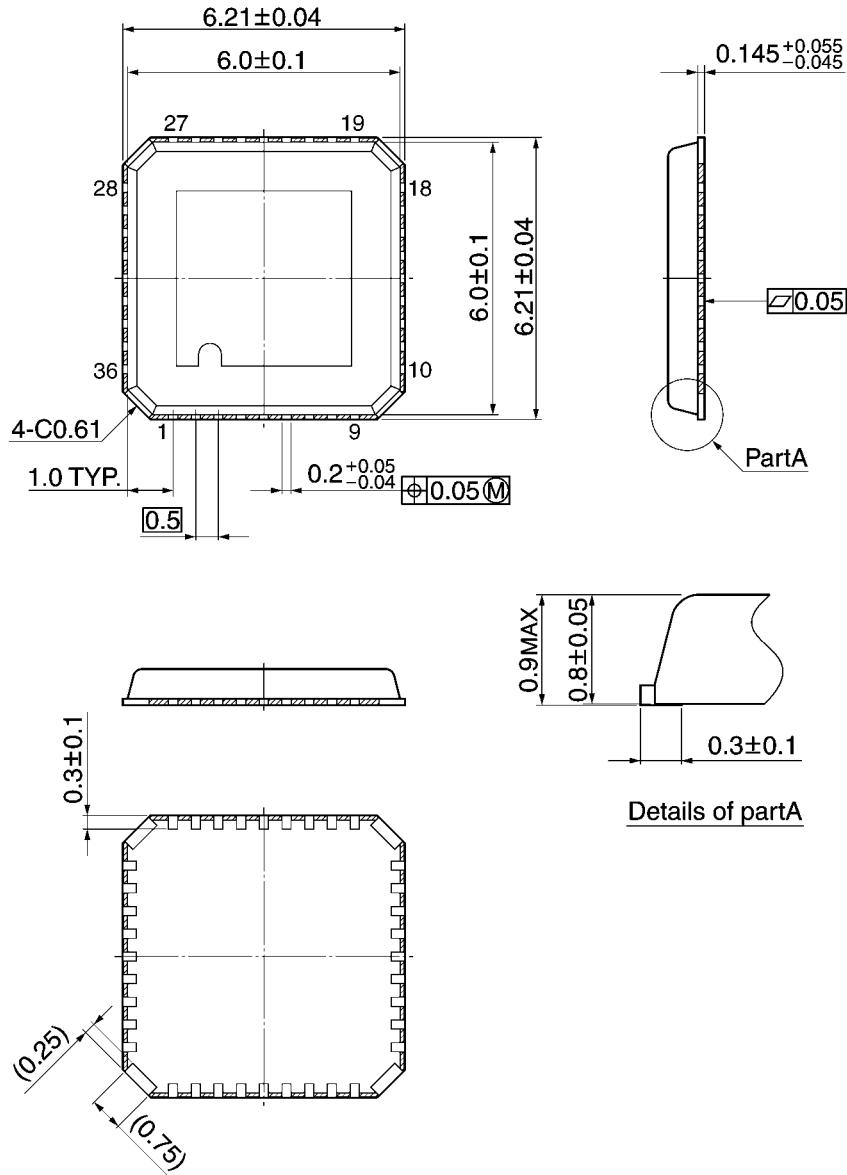
Example Application Circuit

Requests Concerning Use of QON**Outline Drawing of Package**

When using QON, please take into account the following items.

Caution

- (1) Do not carry out soldering on the island section in the four corners of the package (the section shown on the lower surface drawing with diagonal lines) with the aim of increasing mechanical strength.
- (2) The island section exposed on the package surface (the section shown on the upper surface drawing with diagonal lines) must be used as (Note) below while electrically insulated from outside.


Note: Ensure that the island section (the section shown on the lower surface drawing with diagonal lines) does not come into contact with solder from through-holes on the board layout.

- When mounting or soldering, take care to ensure that neither static electricity nor electrical overstress is applied to the IC (measures to prevent anti-static, leaks, etc.).
- When incorporating into a set, adopt a set design that does not apply voltage directly to the island section.

Package Dimensions

QON36-P-0606-0.50

Unit: mm

Note 1) The solder plating portion in four corners of the package shall not be treated as an external terminal.

Note 2) Don't carry out soldering to four corners of the package.

Note 3) area : Resin surface

Weight: 0.08 g (typ.)

RESTRICTIONS ON PRODUCT USE

030619EBA

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.