

Is Now Part of

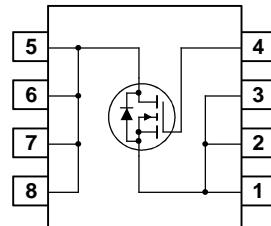
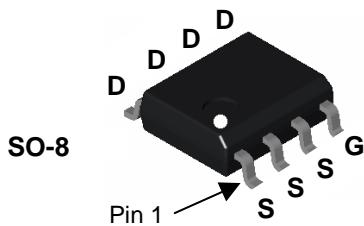
ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at
www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

FDS6680A

Single N-Channel, Logic Level, PowerTrench® MOSFET



General Description

This N-Channel Logic Level MOSFET is produced using Fairchild Semiconductor's advanced Power Trench process that has been especially tailored to minimize the on-state resistance and yet maintain superior switching performance.

These devices are well suited for low voltage and battery powered applications where low in-line power loss and fast switching are required.

Features

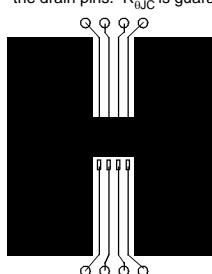
- 12.5 A, 30 V $R_{DS(ON)} = 9.5 \text{ m}\Omega$ @ $V_{GS} = 10 \text{ V}$
 $R_{DS(ON)} = 13 \text{ m}\Omega$ @ $V_{GS} = 4.5 \text{ V}$
- Ultra-low gate charge
- High performance trench technology for extremely low $R_{DS(ON)}$
- High power and current handling capability

Absolute Maximum Ratings

$T_A=25^\circ\text{C}$ unless otherwise noted

Symbol	Parameter	Ratings	Units
V_{DSS}	Drain-Source Voltage	30	V
V_{GSS}	Gate-Source Voltage	± 20	
I_D	Drain Current – Continuous	12.5	A
	– Pulsed	50	
P_D	Power Dissipation for Single Operation	2.5	W
	(Note 1a)	1.2	
	(Note 1b)	1.0	
T_J, T_{STG}	(Note 1c)		
	Operating and Storage Junction Temperature Range	-55 to +150	°C

Thermal Characteristics


R_{JJA}	Thermal Resistance, Junction-to-Case	(Note 1a)	50	$^\circ\text{C}/\text{W}$
R_{JJC}	Thermal Resistance, Junction-to-Case	(Note 1)	25	

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
FDS6680A	FDS6680A	13"	12mm	2500 units

Electrical Characteristics

$T_A = 25^\circ\text{C}$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units	
Off Characteristics							
BV_{DSS}	Drain-Source Breakdown Voltage	$V_{\text{GS}} = 0 \text{ V}$, $I_D = 250 \mu\text{A}$	30			V	
$\Delta \text{BV}_{\text{DSS}} / \Delta T_J$	Breakdown Voltage Temperature Coefficient	$I_D = 250 \mu\text{A}$, Referenced to 25°C		25		$\text{mV}/^\circ\text{C}$	
I_{DSS}	Zero Gate Voltage Drain Current	$V_{\text{DS}} = 24 \text{ V}$, $V_{\text{GS}} = 0 \text{ V}$			1	μA	
		$V_{\text{DS}} = 24 \text{ V}$, $V_{\text{GS}} = 0 \text{ V}$, $T_J = 55^\circ\text{C}$			10	μA	
I_{GSS}	Gate-Body Leakage	$V_{\text{GS}} = \pm 20 \text{ V}$, $V_{\text{DS}} = 0 \text{ V}$			± 100	nA	
On Characteristics (Note 2)							
$V_{\text{GS(th)}}$	Gate Threshold Voltage	$V_{\text{DS}} = V_{\text{GS}}$, $I_D = 250 \mu\text{A}$	1	2	3	V	
$\Delta V_{\text{GS(th)}} / \Delta T_J$	Gate Threshold Voltage Temperature Coefficient	$I_D = 250 \mu\text{A}$, Referenced to 25°C		-4.9		$\text{mV}/^\circ\text{C}$	
$R_{\text{DS(on)}}$	Static Drain-Source On-Resistance	$V_{\text{GS}} = 10 \text{ V}$, $I_D = 12.5 \text{ A}$		7.8	9.5	$\text{m}\Omega$	
		$V_{\text{GS}} = 4.5 \text{ V}$, $I_D = 10.5 \text{ A}$		9.9	13		
		$V_{\text{GS}} = 10 \text{ V}$, $I_D = 12.5 \text{ A}$, $T_J = 125^\circ\text{C}$		11.0	15		
$I_{\text{D(on)}}$	On-State Drain Current	$V_{\text{GS}} = 10 \text{ V}$, $V_{\text{DS}} = 5 \text{ V}$	25			A	
g_{FS}	Forward Transconductance	$V_{\text{DS}} = 15 \text{ V}$, $I_D = 12.5 \text{ A}$		64		S	
Dynamic Characteristics							
C_{iss}	Input Capacitance	$V_{\text{DS}} = 15 \text{ V}$, $V_{\text{GS}} = 0 \text{ V}$, $f = 1.0 \text{ MHz}$		1620		pF	
C_{oss}	Output Capacitance			380		pF	
C_{rss}	Reverse Transfer Capacitance			160		pF	
R_G	Gate Resistance	$V_{\text{GS}} = 15 \text{ mV}$, $f = 1.0 \text{ MHz}$		1.3		Ω	
Switching Characteristics (Note 2)							
$t_{\text{d(on)}}$	Turn-On Delay Time	$V_{\text{DD}} = 15 \text{ V}$, $I_D = 1 \text{ A}$, $V_{\text{GS}} = 10 \text{ V}$, $R_{\text{GEN}} = 6 \Omega$		10	19	ns	
t_r	Turn-On Rise Time			5	10	ns	
$t_{\text{d(off)}}$	Turn-Off Delay Time			27	43	ns	
t_f	Turn-Off Fall Time			15	27	ns	
Q_g	Total Gate Charge	$V_{\text{DS}} = 15 \text{ V}$, $I_D = 12.5 \text{ A}$, $V_{\text{GS}} = 5 \text{ V}$		16	23	nC	
Q_{gs}	Gate-Source Charge			5		nC	
Q_{gd}	Gate-Drain Charge			5.8		nC	
Drain-Source Diode Characteristics and Maximum Ratings							
I_S	Maximum Continuous Drain-Source Diode Forward Current			2.1		A	
V_{SD}	Drain-Source Diode Forward Voltage	$V_{\text{GS}} = 0 \text{ V}$, $I_S = 2.1 \text{ A}$ (Note 2)		0.73	1.2	V	
t_{rr}	Diode Reverse Recovery Time	$I_F = 12.5 \text{ A}$, $d_I/d_t = 100 \text{ A}/\mu\text{s}$		28		ns	
Q_{rr}	Diode Reverse Recovery Charge			18		nC	
Notes:							
1. $R_{\text{IJ,A}}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\text{IJ,C}}$ is guaranteed by design while $R_{\text{JC,A}}$ is determined by the user's board design.							
<p>a) 50°C/W when mounted on a 1 in² pad of 2 oz copper</p> <p>b) 105°C/W when mounted on a .04 in² pad of 2 oz copper</p> <p>c) 125°C/W when mounted on a minimum pad.</p>							
Scale 1 : 1 on letter size paper							
2. Pulse Test: Pulse Width < 300μs, Duty Cycle < 2.0%							

Typical Characteristics

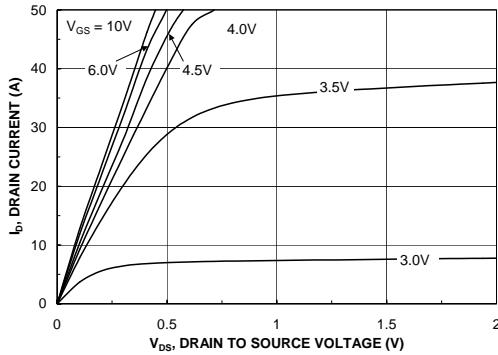


Figure 1. On-Region Characteristics.

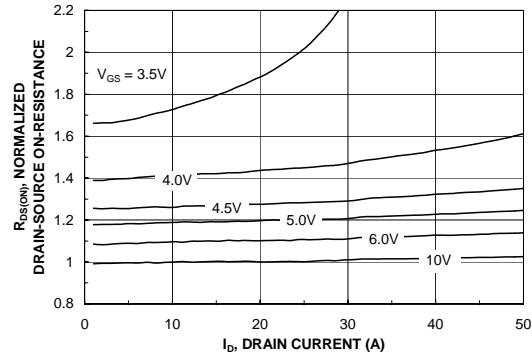


Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

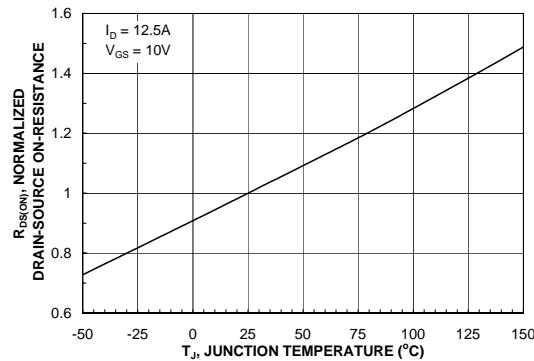


Figure 3. On-Resistance Variation with Temperature.

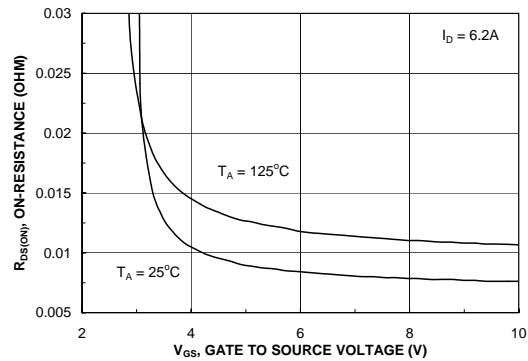


Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

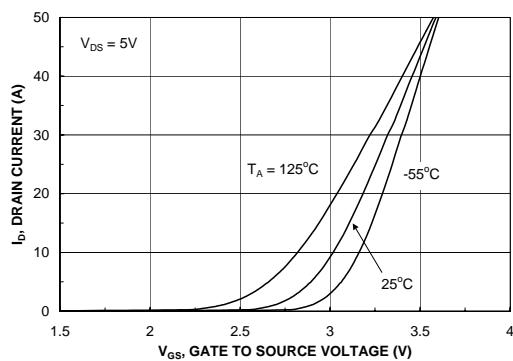


Figure 5. Transfer Characteristics.

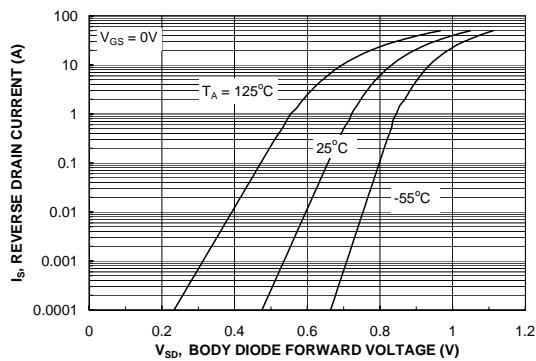


Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Characteristics

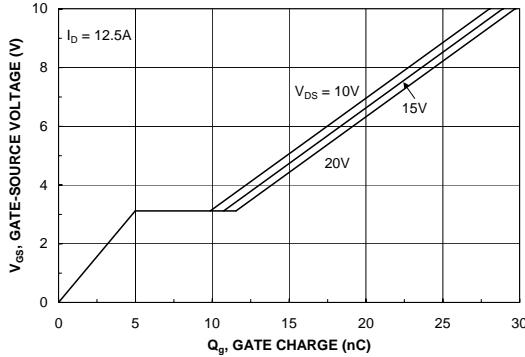


Figure 7. Gate Charge Characteristics.

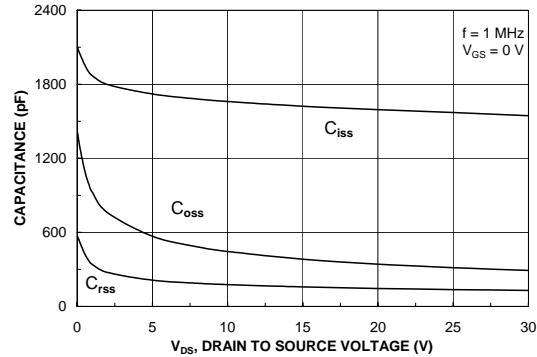


Figure 8. Capacitance Characteristics.

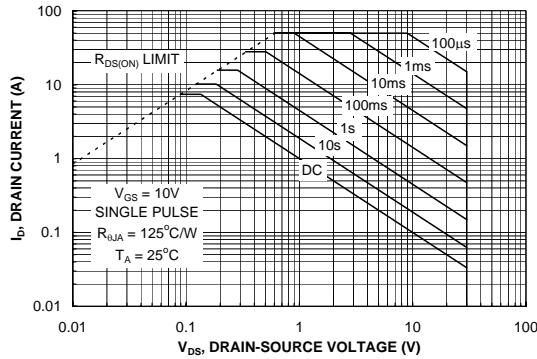


Figure 9. Maximum Safe Operating Area.

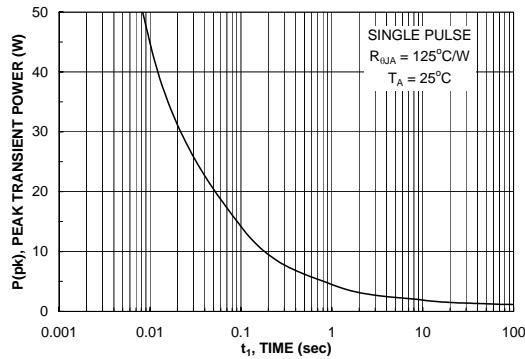


Figure 10. Single Pulse Maximum Power Dissipation.

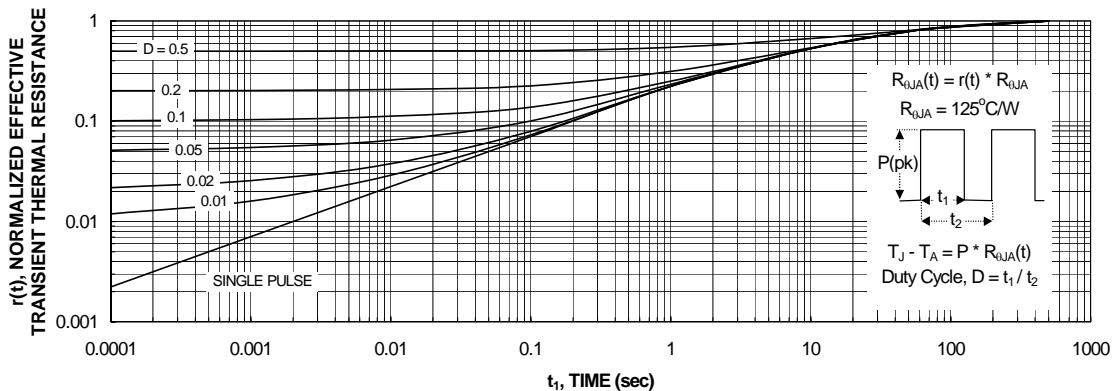


Figure 11. Transient Thermal Response Curve.

Thermal characterization performed using the conditions described in Note 1c.
Transient thermal response will change depending on the circuit board design.

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™	F-PFS™	PowerTrench®	The Power Franchise®
AccuPower™	FRFET®	PowerXSTM	the p ower franchise™
AX-CAP™*	Global Power ResourceSM	Programmable Active Droop™	TinyBoost™
BitSiC®	Green Bridge™	QFET®	TinyBuck™
Build it Now™	Green FPS™	QS™	TinyCalc™
CorePLUS™	Green FPS™ e-Series™	Quiet Series™	TinyLogic®
CorePOWER™	Gmax™	RapidConfigure™	TINYOPTO™
CROSSVOLT™	GTO™	TM	TinyPower™
CTL™	IntelliMAX™	Saving our world, 1mW/W/kW at a time™	TinyPVM™
Current Transfer Logic™	ISOPLANAR™	SignalWise™	TinyWire™
DEUXPEED®	Marking Small Speakers Sound Louder and Better™	SmartMax™	TranSiC®
Dual Cool™	MegaBuck™	SMART START™	TriFault Detect™
EcoSPARK®	MICROCOUPLER™	Solutions for Your Success™	TRUECURRENT®*
EfficientMax™	MicroFET™	SPM®	μSerDes™
ESBC™	MicroPak™	STEALTH™	UHC®
Fairchild®	MicroPak2™	SuperFET®	Ultra FRFET™
Fairchild Semiconductor®	MillerDrive™	SuperSOTT™-3	UniFET™
FACT Quiet Series™	MotionMax™	SuperSOTT™-6	VCX™
FACT®	Motion-SPM™	SuperSOTT™-8	VisualMax™
FAST®	mWSaver™	SupreMOS®	VoltagePlus™
FastvCore™	OptoHiT™	SyncFET™	XS™
FETBench™	OPTOLOGIC®	Sync-Lock™	
FlashWriter® *	OPTOPLANAR®	SYSTEM GENERAL®	
FPS™			

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.