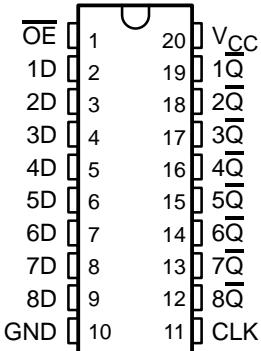


SN54AC564, SN74AC564 OCTAL D-TYPE EDGE-TRIGGERED FLIP-FLOPS WITH 3-STATE OUTPUTS

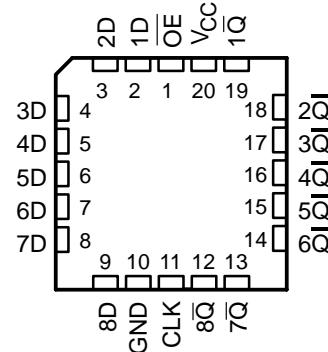
SCAS551C–NOVEMBER 1995 – REVISED NOVEMBER 2002

- 2-V to 6-V V_{CC} Operation
- Inputs Accept Voltages to 6 V
- Max t_{pd} of 9 ns at 5 V
- 3-State Inverting Outputs Drive Bus Lines Directly
- Full Parallel Access for Loading
- Flow-Through Architecture to Optimize PCB Layout

description/ordering information


The 'AC564 devices are octal D-type edge-triggered flip-flops that feature inverting 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

On the positive transition of the clock (CLK) input, the \bar{Q} outputs are set to the inverse logic levels set up at the data (D) inputs.


A buffered output-enable (\bar{OE}) input places the eight outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without interface or pullup components.

\bar{OE} does not affect internal operations of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

SN54AC564 . . . J OR W PACKAGE
SN74AC564 . . . DB, DW, N, NS, OR PW PACKAGE
(TOP VIEW)

SN54AC564 . . . FK PACKAGE
(TOP VIEW)

ORDERING INFORMATION

TA	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING
–40°C to 85°C	PDIP – N	Tube	SN74AC564N	SN74AC564N
	SOIC – DW	Tube	SN74AC564DW	AC564
		Tape and reel	SN74AC564DWR	
	SOP – NS	Tape and reel	SN74AC564NSR	
	SSOP – DB	Tape and reel	SN74AC564DBR	AC564
–55°C to 125°C	TSSOP – PW	Tape and reel	SN74AC564PWR	AC564
	CDIP – J	Tube	SNJ54AC564J	SNJ54AC564J
	CFP – W	Tube	SNJ54AC564W	SNJ54AC564W
–55°C to 125°C	LCCC – FK	Tube	SNJ54AC564FK	SNJ54AC564FK

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

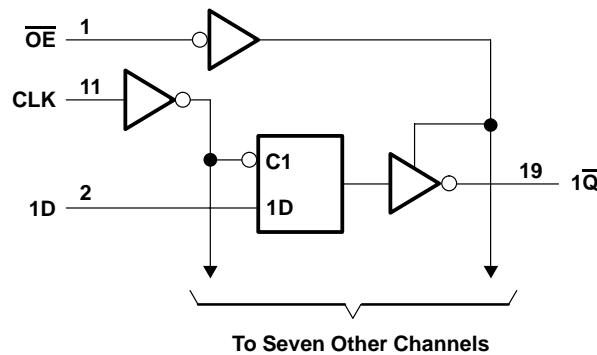
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2002, Texas Instruments Incorporated

**SN54AC564, SN74AC564
OCTAL D-TYPE EDGE-TRIGGERED FLIP-FLOPS
WITH 3-STATE OUTPUTS**

SCAS551C—NOVEMBER 1995—REVISED NOVEMBER 2002


description/ordering information (continued)

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

**FUNCTION TABLE
(each flip-flop)**

INPUTS			OUTPUT
OE	CLK	D	\overline{Q}
L	↑	H	L
L	↑	L	H
L	H or L	X	\overline{Q}_0
H	X	X	Z

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V_{CC}	-0.5 V to 7 V
Input voltage range, V_I (see Note 1)	-0.5 V to V_{CC} + 0.5 V
Output voltage range, V_O (see Note 1)	-0.5 V to V_{CC} + 0.5 V
Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{CC}$)	±20 mA
Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{CC}$)	±20 mA
Continuous output current, I_O ($V_O = 0$ to V_{CC})	±50 mA
Continuous current through V_{CC} or GND	±200 mA
Package thermal impedance, θ_{JA} (see Note 2):	
DB package	70°C/W
DW package	58°C/W
N package	69°C/W
NS package	60°C/W
PW package	83°C/W
Storage temperature range, T_{STG}	-65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
2. The package thermal impedance is calculated in accordance with JEDEC 51-7.

SN54AC564, SN74AC564
OCTAL D-TYPE EDGE-TRIGGERED FLIP-FLOPS
WITH 3-STATE OUTPUTS

SCAS551C—NOVEMBER 1995—REVISED NOVEMBER 2002

recommended operating conditions (see Note 3)

		SN54AC564		SN74AC564		UNIT
		MIN	MAX	MIN	MAX	
V _{CC}	Supply voltage	2	6	2	6	V
V _{IH}	High-level input voltage	V _{CC} = 3 V	2.1	2.1	2.1	V
		V _{CC} = 4.5 V	3.15	3.15	3.15	
		V _{CC} = 5.5 V	3.85	3.85	3.85	
V _{IL}	Low-level input voltage	V _{CC} = 3 V	0.9	0.9	0.9	V
		V _{CC} = 4.5 V	1.35	1.35	1.35	
		V _{CC} = 5.5 V	1.65	1.65	1.65	
V _I	Input voltage	0	V _{CC}	0	V _{CC}	V
V _O	Output voltage	0	V _{CC}	0	V _{CC}	V
I _{OH}	High-level output current	V _{CC} = 3 V	-12	-12	-12	mA
		V _{CC} = 4.5 V	-24	-24	-24	
		V _{CC} = 5.5 V	-24	-24	-24	
I _{OL}	Low-level output current	V _{CC} = 3 V	12	12	12	mA
		V _{CC} = 4.5 V	24	24	24	
		V _{CC} = 5.5 V	24	24	24	
Δt/Δv	Input transition rise or fall rate		8	8	8	ns/V
T _A	Operating free-air temperature	-55	125	-40	85	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V _{CC}	T _A = 25°C			SN54AC564	SN74AC564	UNIT
			MIN	TYP	MAX			
V _{OH}	I _{OH} = -50 μA	3 V	2.9		2.9	2.9	2.9	V
		4.5 V	4.4		4.4	4.4	4.4	
		5.5 V	5.4		5.4	5.4	5.4	
	I _{OH} = -12 mA	3 V	2.56		2.4	2.46	2.46	
		4.5 V	3.86		3.7	3.76	3.76	
		5.5 V	4.86		4.7	4.76	4.76	
V _{OL}	I _{OL} = 50 μA	3 V	0.1		0.1	0.1	0.1	V
		4.5 V	0.1		0.1	0.1	0.1	
		5.5 V	0.1		0.1	0.1	0.1	
	I _{OL} = 12 mA	3 V	0.36		0.5	0.44	0.44	
		4.5 V	0.36		0.5	0.44	0.44	
		5.5 V	0.36		0.5	0.44	0.44	
I _I	V _I = V _{CC} or GND	5.5 V		±0.1		±1	±1	μA
I _{OZ}	V _O = V _{CC} or GND	5.5 V		±0.5		±5	±5	μA
I _{CC}	V _I = V _{CC} or GND, I _O = 0	5.5 V		4		80	40	μA
C _i	V _I = V _{CC} or GND	5 V		4.5				pF

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

**SN54AC564, SN74AC564
OCTAL D-TYPE EDGE-TRIGGERED FLIP-FLOPS
WITH 3-STATE OUTPUTS**

SCAS551C—NOVEMBER 1995—REVISED NOVEMBER 2002

timing requirements over recommended operating free-air temperature range, $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ (unless otherwise noted) (see Figure 1)

		$T_A = 25^\circ\text{C}$			SN54AC564		SN74AC564		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	
f_{clock}	Clock frequency		75		55		60		MHz
t_w	Pulse duration, CLK high or low		6		7.5		7		ns
t_{su}	Setup time, data before CLK↑		2.5		4.5		3		ns
t_h	Hold time, data after CLK↑		2		2.5		2		ns

timing requirements over recommended operating free-air temperature range, $V_{CC} = 5 \text{ V} \pm 0.5 \text{ V}$ (unless otherwise noted) (see Figure 1)

		$T_A = 25^\circ\text{C}$			SN54AC564		SN74AC564		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	
f_{clock}	Clock frequency		95		85		85		MHz
t_w	Pulse duration, CLK high or low		4		5		5		ns
t_{su}	Setup time, data before CLK↑		2		3.5		2.5		ns
t_h	Hold time, data after CLK↑		2		2.5		2		ns

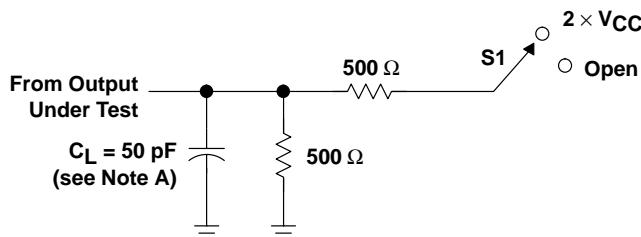
switching characteristics over recommended operating free-air temperature range, $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$T_A = 25^\circ\text{C}$			SN54AC564		SN74AC564		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
f_{max}			75		55		60			MHz
t_{PLH}	CLK	\bar{Q}	3.5	8.1	14	1	16.5	3.5	15.5	ns
t_{PHL}			3.5	8.2	12.5	1	15	3.5	14	
t_{PZH}	\overline{OE}	\bar{Q}	2.5	7.2	11.5	1	13	2.5	12.5	ns
t_{PZL}			3	7.7	11	1	12.5	3.5	12	
t_{PHZ}	\overline{OE}	\bar{Q}	4	8.6	12.5	1	14	4.5	13.5	ns
t_{PLZ}			2	7.3	9.5	1	10.5	2.5	10.5	

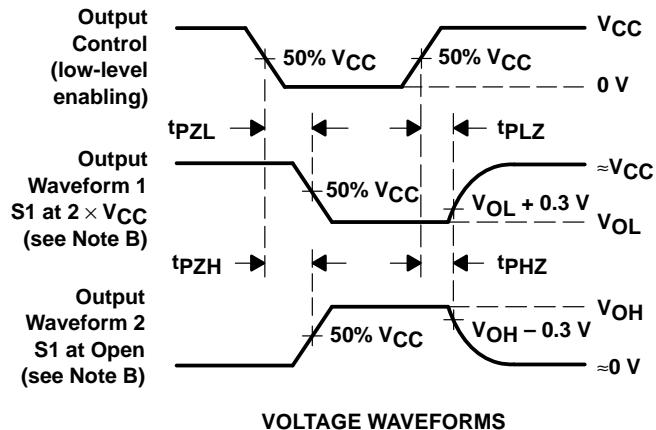
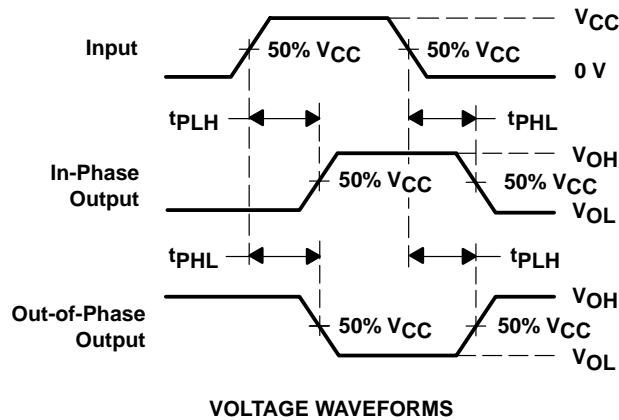
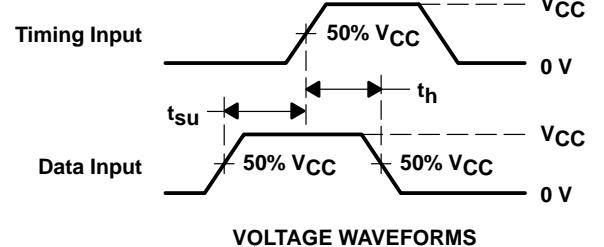
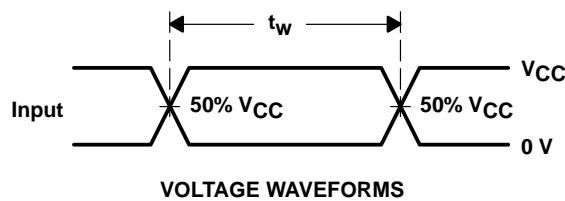
switching characteristics over recommended operating free-air temperature range, $V_{CC} = 5 \text{ V} \pm 0.5 \text{ V}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$T_A = 25^\circ\text{C}$			SN54AC564		SN74AC564		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
f_{max}			95		85		85			MHz
t_{PLH}	CLK	\bar{Q}	2	4.9	10.5	1.5	11.5	2	11.5	ns
t_{PHL}			2	5	9.5	1.5	10.5	2	10.5	
t_{PZH}	\overline{OE}	\bar{Q}	2	5.1	9	1.5	9.5	2	9.5	ns
t_{PZL}			1.5	5.2	8.5	1.5	9.5	2	9.5	
t_{PHZ}	\overline{OE}	\bar{Q}	2	5.7	10.5	1.5	11.5	2	11.5	ns
t_{PLZ}			1.5	4.8	8	1.5	9	1.5	9	

operating characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^\circ\text{C}$


PARAMETER	TEST CONDITIONS	TYP	UNIT
C_{pd} Power dissipation capacitance	$C_L = 50 \text{ pF}$, $f = 1 \text{ MHz}$	50	pF

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.





POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PARAMETER MEASUREMENT INFORMATION

TEST	S1
t_{PLH}/t_{PHL}	Open
t_{PLZ}/t_{PZL}	$2 \times V_{CC}$
t_{PHZ}/t_{PZH}	Open

LOAD CIRCUIT

NOTES: A. C_L includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

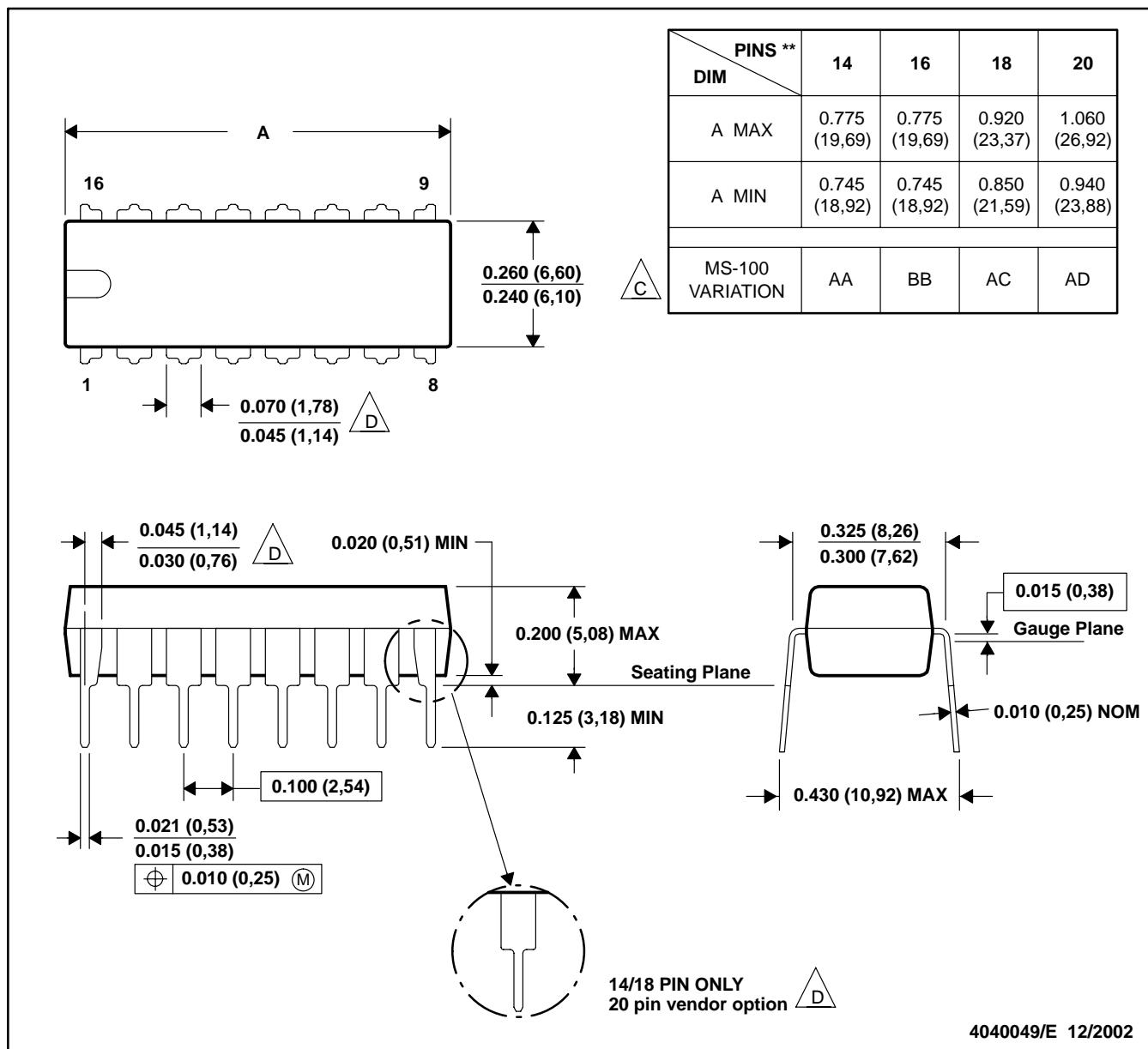

C. All input pulses are supplied by generators having the following characteristics: $PRR \leq 1 \text{ MHz}$, $Z_O = 50 \Omega$, $t_f \leq 2.5 \text{ ns}$, $t_f \leq 2.5 \text{ ns}$. D. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

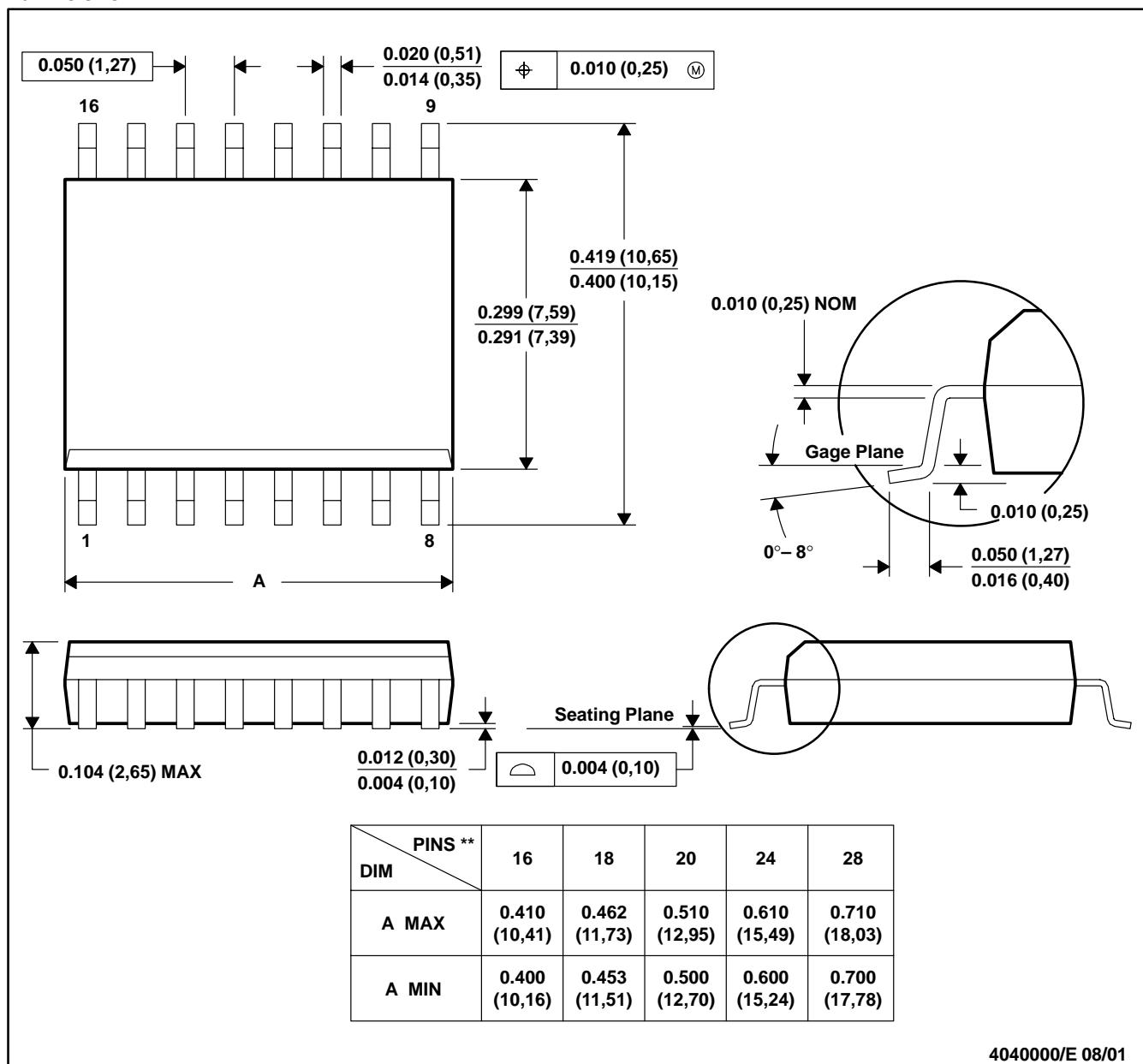
N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

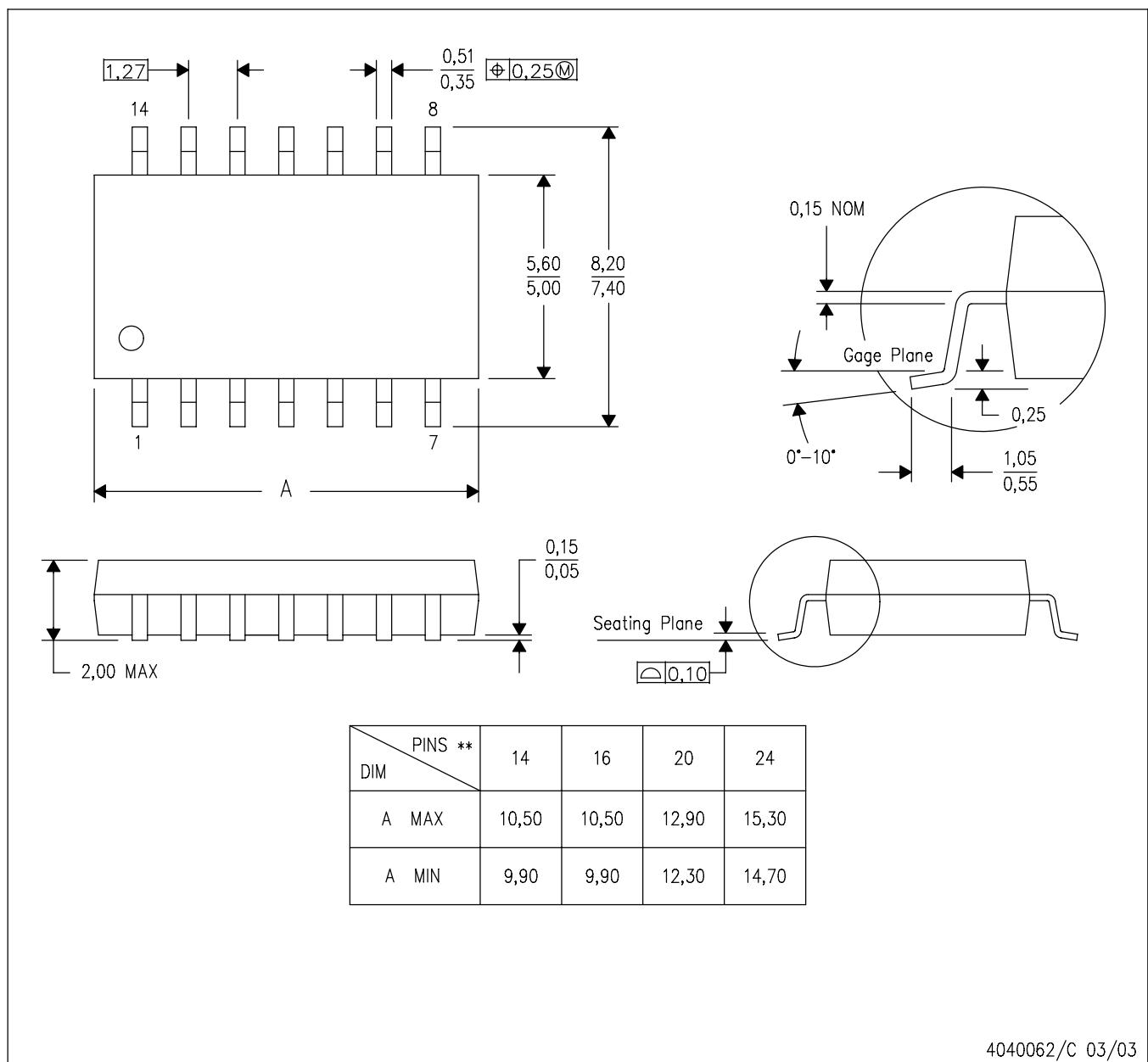

C. Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).

D. The 20 pin end lead shoulder width is a vendor option, either half or full width.

DW (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

16 PINS SHOWN

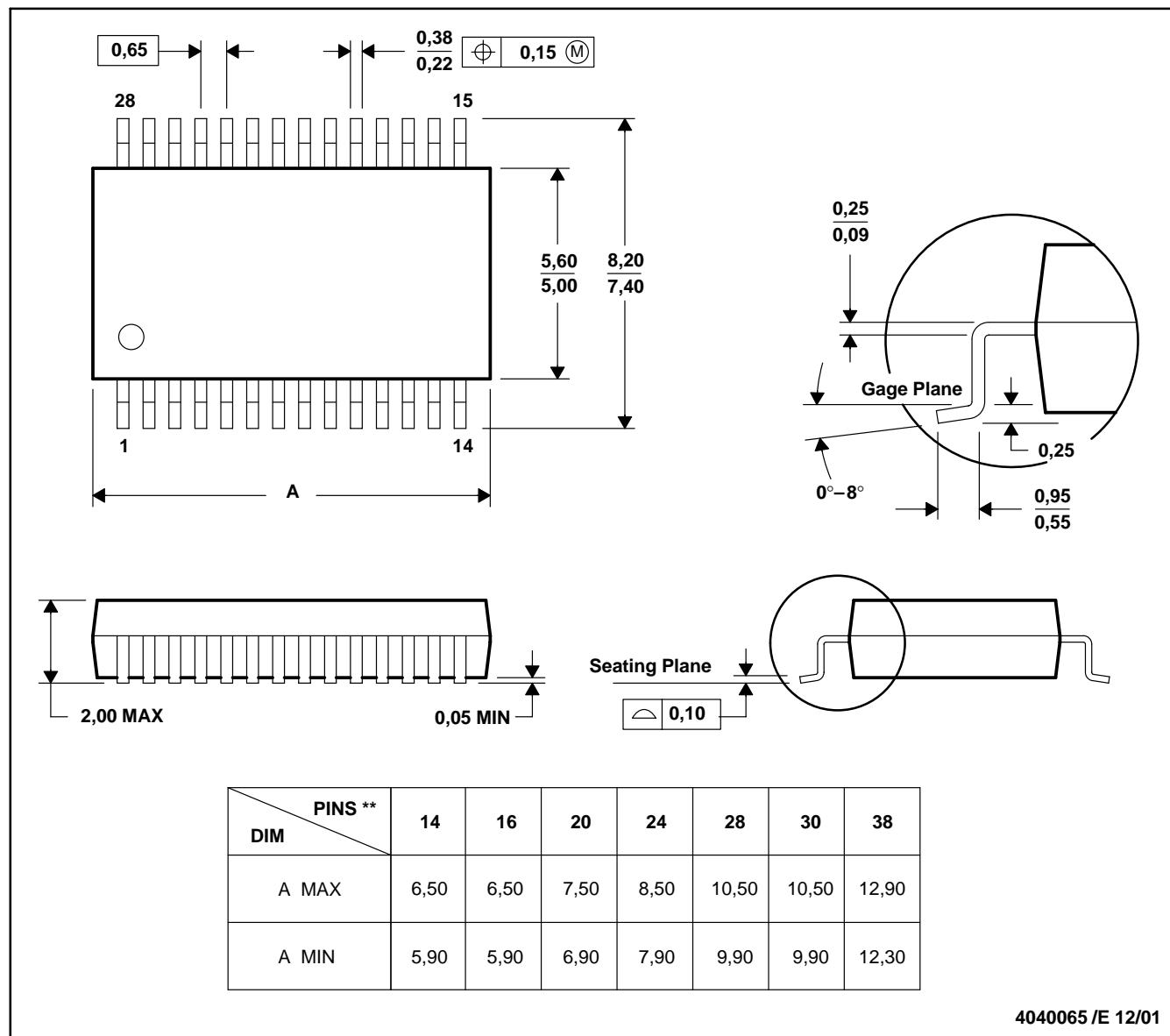


NOTES: A. All linear dimensions are in inches (millimeters).
 B. This drawing is subject to change without notice.
 C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0.15).
 D. Falls within JEDEC MS-013

NS (R-PDSO-G**)

14-PIN SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

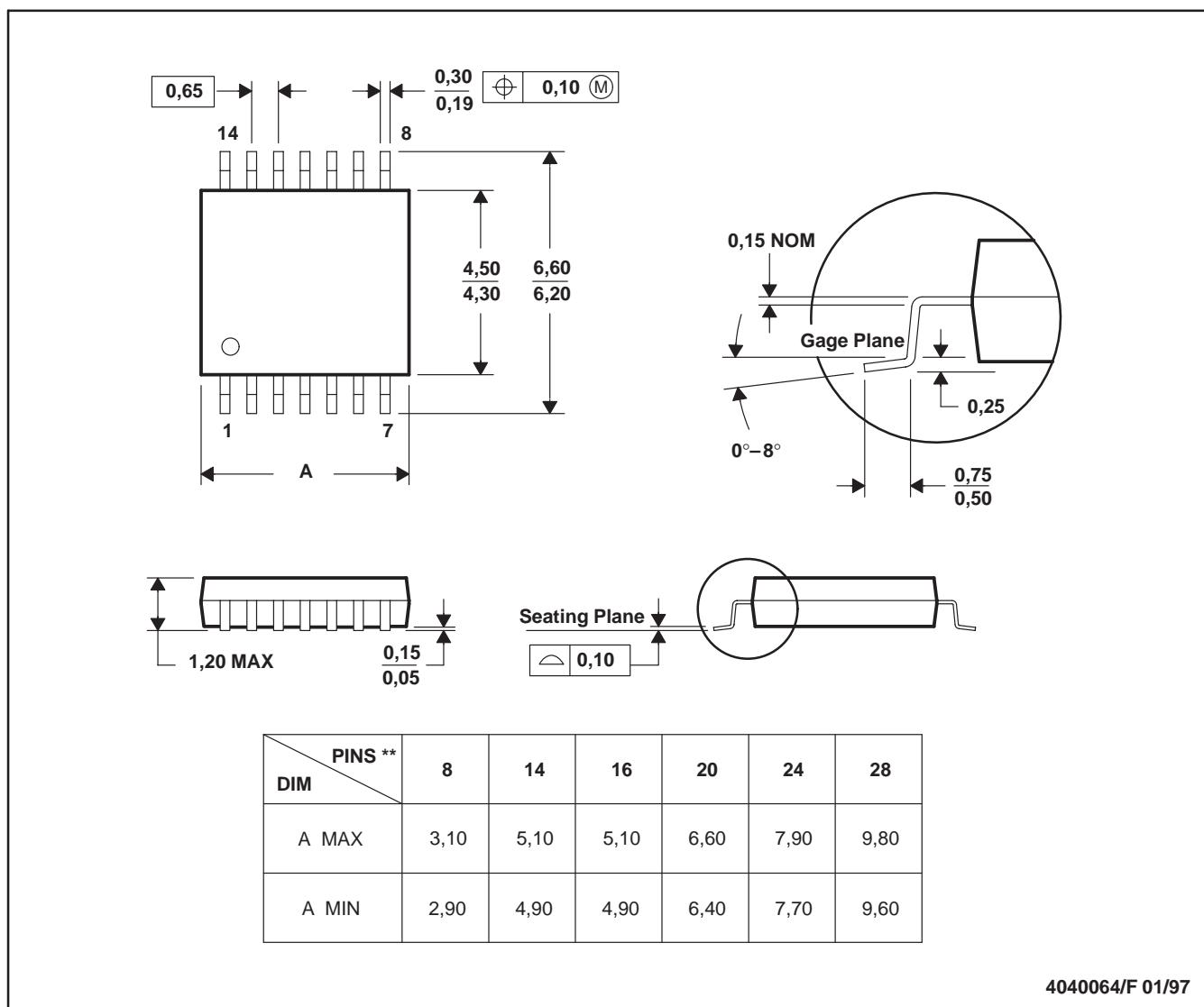

NOTES: A. All linear dimensions are in millimeters.
 B. This drawing is subject to change without notice.
 C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

4040062/C 03/03

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN



NOTES: A. All linear dimensions are in millimeters.
 B. This drawing is subject to change without notice.
 C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
 D. Falls within JEDEC MO-150

PW (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

14 PINS SHOWN

NOTES:

- All linear dimensions are in millimeters.
- This drawing is subject to change without notice.
- Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265