

NTE3095 Optoisolator

Description:

The NTE3095 is a dual photocoupler optoisolator in an 8-Lead DIP type package consisting of a pair of Gallium Aluminum Arsenide light emitting diodes and integrated photodetectors. Separate connections for the photodiode bias and output transistor collectors improve the speed up to a hundred times that of a conventional phototransistor coupler by reducing the base-collector capacitance.

Features:

- TTL Compatible
- High Switching Speed

Absolute Maximum Ratings:

LED

Forward Current (Each Channel), I_F	25mA
Derate above +70°C	0.8mA/°C
Pulse Forward Current (Each Channel, Note 1), I_{FP}	50mA
Derate above +70°C	1.6mA/°C
Total Pulse Forward Current (Each Channel, Note 2), I_{FPT}	1A
Reverse Voltage (Each Channel), V_R	5V
Diode Power Dissipation (Each Channel), P_D	45mW
Derate above +70°C	0.9mW/°C

DETECTOR

Output Current (Each Channel), I_O	8mA
Peak Output Current (Each Channel), I_{OP}	16mA
Supply Voltage, V_{CC}	-0.5 to +15V
Output Voltage (Each Channel), V_O	-0.5 to +15V
Output Power Dissipation (Each Channel), P_O	35mW
Derate above +70°C	1mW/°C

COUPLED

Operating Temperature Range, T_{opr}	-55° to +100°C
Storage Temperature Range, T_{stg}	-55° to +125°C
Lead Temperature (During Soldering, 1.6mm below seating plane, 10s), T_L	+260°C
Isolation Voltage (AC, 1min., R.H. ≤ 60%, Note 3), V_{ISO}	2500V _{rms}

Note 1. Pulse Width = 1ms, Duty Cycle = 50%

Note 2. Pulse Width = 1μs, 300pps.

Note 3. Device considered a two terminal device. Pins 1, 2, 3, and 4 shorted together and Pins 5, 6, 7, and 8 shorted together.

Recommended Operation Conditions:

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
Supply Voltage	V _{CC}		0	—	12	V
Forward Current, Each Channel	I _F		—	16	25	mA
Operating Temperature	T _{opr}		-25	—	+85	°C

Electrical Characteristics: (T_A = 0° to +70°C, Note 4 unless otherwise specified)

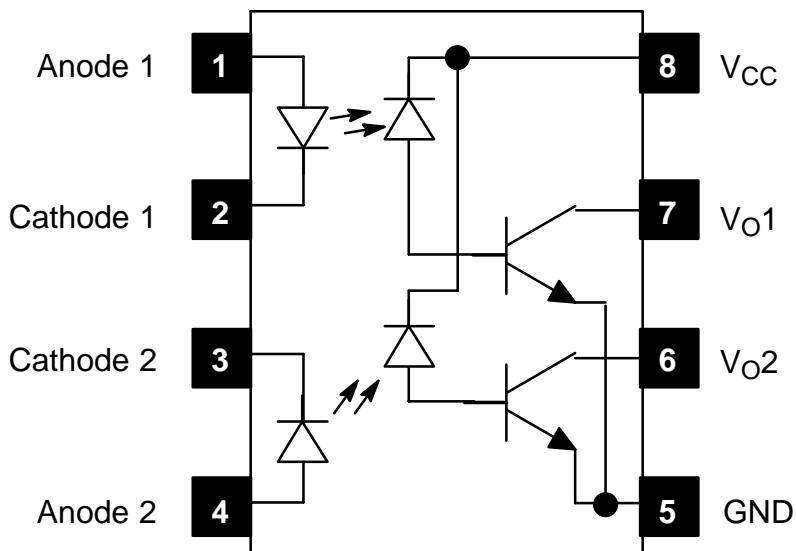
Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
Current Transfer Ratio (Each Channel)	CTR	I _F = 16mA, V _O = 0.4V, V _{CC} = 4.5V, T _A = +25°C, Note 5	19	30	—	%
		I _F = 16mA, V _O = 0.5V, V _{CC} = 4.5V, Note 5	15	—	—	%
Logic Low Output Voltage (Each Channel)	V _{OL}	I _F = 16mA, I _O = 2.4mA, V _{CC} = 4.5V	—	0.1	0.4	V
Logic High Output Current (Each Channel)	I _{OH}	I _F = 0mA, V _O = V _{CC} = 5.5V, T _A = +25°C	—	3	500	nA
		I _F = 0mA, V _O = V _{CC} = 15V	—	—	50	μA
Logic Low Supply Current	I _{CCL}	I _{F1} = I _{F2} = 16mA, V _{O1} = V _{O2} = Open, V _{CC} = 15V	—	160	—	μA
Logic High Supply Current	I _{CCH}	I _{F1} = I _{F2} = 0mA, V _{O1} = V _{O2} = Open, V _{CC} = 15V	—	0.05	4.0	μA
Input Forward Voltage (Each Channel)	V _F	I _F = 16mA, T _A = +25°C	—	1.66	1.7	V
Temperature Coefficient of Forward Voltage (Each Channel)	ΔV _F /ΔT _A	I _F = 16mA	—	-2	—	mV/°C
Input Reverse Breakdown Voltage (Each Channel)	BV _R	I _R = 10μA, T _A = +25°C	5	—	—	V
Input Capacitance (Each Channel)	C _{IN}	f = 1MHz, V _F = 0	—	60	—	pF
Input–Output Insulation Leakage Current	I _{I–O}	Relative Humidity = 45%, t = 5s, V _{I–O} = 3000V, T _A = +25°C, Note 3	—	—	1.0	μA
Resistance (Input–Output)	R _{I–O}	V _{I–O} = 500V, Note 3	—	10 ¹²	—	W
Capacitance (Input–Output)	C _{I–O}	f = 1MHz, Note 3	—	0.6	—	pF
Input–Input Leakage Current	I _{I–I}	Relative Humidity = 45%, t = 5s, V _{I–I} = 500V, Note 6	—	0.005	—	μA
Resistance (Input–Input)	R _{I–I}	V _{I–I} = 500V, Note 6	—	10 ¹¹	—	W
Capacitance (Input–Input)	C _{I–I}	f = 1MHz, Note 6	—	0.25	—	pF

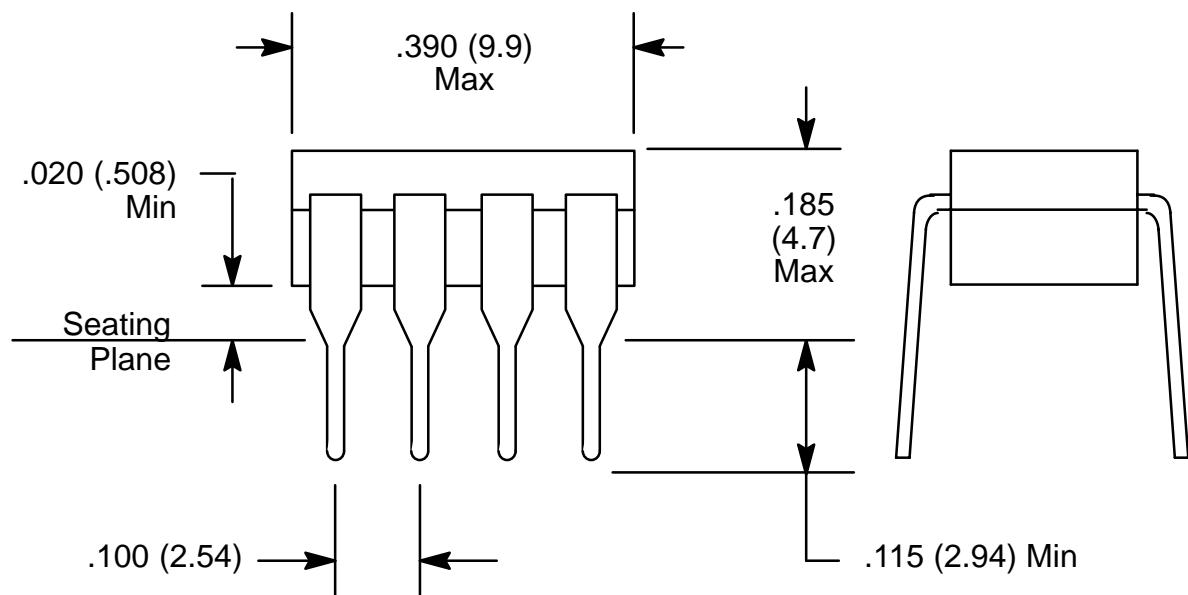
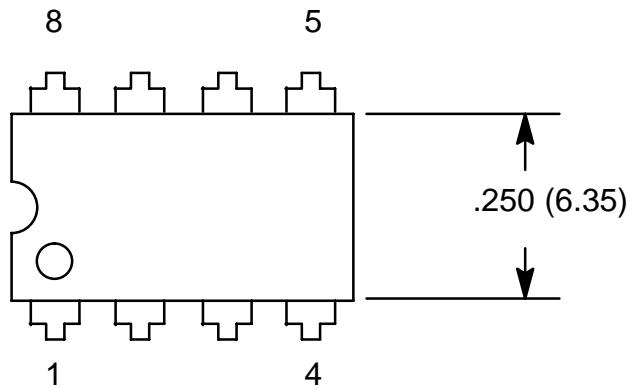
Note 3. Device considered a two terminal device. Pins 1, 2, 3, and 4 shorted together and Pins 5, 6, 7, and 8 shorted together.

Note 4. All typicals at T_A = +25°C.

Note 5. DC Current Transfer Ratio is defined as the ratio of output collector current, I_O, to the forward LED input current, I_F, times 100%.

Note 6. Measured between Pins 1 and 2 shorted together, and Pins 3 and 4 shorted together.


Switching Characteristics: ($T_A = +25^\circ\text{C}$, $V_{CC} = 5\text{V}$, $I_F = 16\text{mA}$ unless otherwise specified)



Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
Propagation Delay Time to Logic Low at Output (Each Channel)	t_{pHL}	$R_L = 1.9\text{k}\Omega$	—	0.2	0.8	μs
Propagation Delay Time to Logic High at Output (Each Channel)	t_{pLH}	$R_L = 1.9\text{k}\Omega$	—	0.3	0.8	μs
Common Mode Transient Immunity at Logic High Level Output (Each Channel)	CM_H	$I_F = 0\text{mA}$, $V_{CM} = 400\text{V}_{\text{P-P}}$, $R_L = 1.9\text{k}\Omega$, Note 7	—	1000	—	$\text{V}/\mu\text{s}$
Common Mode Transient Immunity at Logic Low Level Output (Each Channel)	CM_L	$I_F = 16\text{mA}$, $V_{CM} = 400\text{V}_{\text{P-P}}$, $R_L = 1.9\text{k}\Omega$, Note 7	—	-1000	—	$\text{V}/\mu\text{s}$
Bandwidth (Each Channel)	BW	$R_L = 100\Omega$, Note 8	—	2	—	MHz

Note 7. Common mode transient immunity in Logic High level is the maximum tolerable (positive) dV_{cm}/dt on the leading edge of the common mode pulse, V_{cm} , to assure that the output will remain in a Logic High state (i.e., $V_O > 2\text{V}$). Common mode transient immunity in Logic Low level is the maximum tolerable (negative) dV_{cm}/dt on the trailing edge of the common mode pulse signal, V_{cm} , to assure that the output will remain in a Logic Low state (i.e., $V_O > 0.8\text{V}$).

Note 8. The frequency at which the AC output voltage is 3dB below the low frequency asymptote.

Pin Connection Diagram

