

STRUCTURE Silicon Monolithic Integrated Circuit

PRODUCT SERIES Serial output digital Ambient Light Sensor IC

TYPE

FUNCTION

1. Correspond to I²C bus interface (f/s Mode Support, Slave Address : "0100011")
2. Spectral responsibility is approximately human eyes response (Peak Wave Length : typ. 560nm)
3. Illuminance to digital converter
4. Correspond to wide range of light intensity (1 - 65528 lx range)
5. Low Current by power down function
6. Rejecting 50Hz/60Hz light noise enables a more stable sensing
7. Correspond to 1.8V logic interface
8. No need any external parts
9. Small measurement variation (+/- 15%)
10. Compact surface mount package 1.6 x 1.6mm

Absolute Maximum Ratings (Ta = 25)

Parameter	Symbol	Limits	Units
Supply Voltage	Vmax	4.5	V
Operating Temperature	Topr	-40 ~ 85	
Storage Temperature	Tstg	-40 ~ 100	
SDA Sink Current	I _{max}	7	mA
Power Dissipation	P _d	165	mW

70mm x 70mm x 1.6mm glass epoxy board. Derating is done at 2.2mW/ for operating above Ta=25 .

Operating Conditions

Parameter	Symbol	Min.	Typ.	Max.	Units
VCC Voltage	V _{cc}	2.4	3.0	3.6	V
I ² C Reference Voltage	V _{DVI}	1.65	-	VCC	V

NOTE: This product is not designed for protection against radioactive rays.

This product does not include laser transmitter. This product does not include optical load.

This product includes Photo detector, (Photo Diode) inside of it.

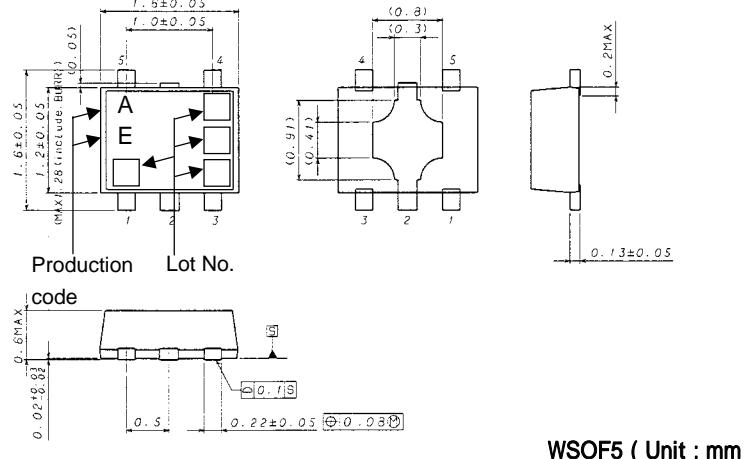
• Status of this document

The Japanese version of this document is the formal specification. A customer may use this translation version only for a reference to help reading the formal version. If there are any differences in translation version of this document, formal version takes priority.

Application example

- ROHM cannot provide adequate confirmation of patents.
- The product described in this specification is designed to be used with ordinary electronic equipment or devices (such as audio-visual equipment, office-automation equipment, communications devices, electrical appliances, and electronic toys). Should you intend to use this product with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.
- ROHM assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representations that the circuits are free from patent infringement.

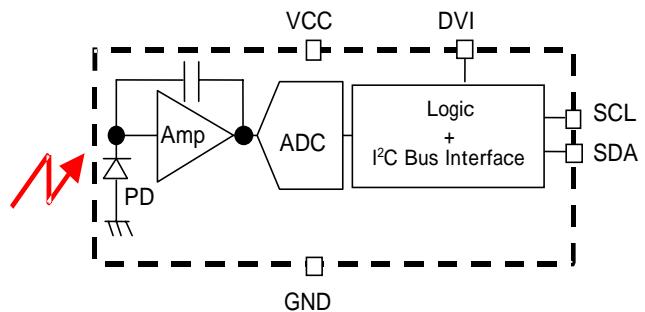
DESIGN	CHECK	APPROVAL	DATE :Feb.27, 2009	SPECIFICATION No. :TSZ02201 - BH1721FVC - 1 -2
			REV. A	ROHM Co.,Ltd.


Electrical Characteristics ($V_{CC} = 3.0V$, $DVI = 3.0V$, $T_a = 25^\circ C$)

Parameter	Symbol	Min.	Typ.	Max.	Units	Conditions
Supply Current	I _{CC1}	-	140	199	uA	$E_v = 100 \text{ lx}$ ₁
Powerdown Current	I _{CC2}	-	0.01	1.0	uA	No Input Light
Measurement Accuracy	S/A	1.02	1.2	1.38	Times	$Sensor \text{ out} / Actual \text{ lx}$ $E_v = 1000 \text{ lx}$ _{1, 2}
Dark (0 lx) Sensor out	S ₀	0	0	2	count	H-Resolution Mode ₃
H-Res Mode Measure Time	t _{HR}	-	120	180	ms	
L-Res Mode Measure Time	t _{LR}	-	16	24	ms	
DVI input 'L' Voltage	V _{DL}	-	-	0.4	V	
SCL SDA input 'H' Voltage 1	V _{IH1}	0.7*DVI	-	-	V	DVI 1.8V
SCL SDA input 'H' Voltage 2	V _{IH2}	1.26	-	-	V	1.65V DVI < 1.8V
SCL SDA input 'L' Voltage 1	V _{IL1}	-	-	0.3*DVI	V	DVI 1.8V
SCL SDA input 'L' Voltage 2	V _{IL2}	-	-	DVI-1.26	V	1.65V DVI < 1.8V
SCL SDA input 'H' Current	I _{IH}	-	-	10	uA	
SCL SDA input 'L' Current	I _{IL}	-	-	10	uA	
I ² C SDA Output 'L' Voltage	V _{OL}	0	-	0.4	V	I _{OL} =3 mA
I ² C SCL Clock Frequency	f _{SCL}	-	-	400	kHz	
I ² C Hold Time (Repeated) START Condition	t _{HDSTA}	0.6	-	-	us	
I ² C 'L' Period of the SCL Clock	t _{LOW}	1.3	-	-	us	
I ² C 'H' Period of the SCL Clock	t _{HIGH}	0.6	-	-	us	
I ² C Set up time for a Repeated START Condition	t _{SUSTA}	0.6	-	-	us	
I ² C Data Hold Time	t _{HDDAT}	0	-	-	us	
I ² C Data Valid Time	t _{VDDAT}	-	-	0.9	us	
I ² C Data Valid Acknowledge Time	t _{VDACK}	-	-	0.9	us	
I ² C Data Setup Time	t _{SUDAT}	100	-	-	ns	
I ² C Set up Time for STOP Condition	t _{SUSTO}	0.6	-	-	us	
I ² C Bus Free Time between a STOP and START Condition	t _{BUF}	1.3	-	-	us	

₁ White LED is used as optical source.

₂ Measurement Accuracy typical value is possible to change '1' by "Measurement result adjustment function".


₃ Use H-Resolution Mode if dark data (less than 20 lx) is need.

Package Outlines

(UNIT : mm)

Block Diagram and Pin Description

Pin No.	Pin Name	Function
1	VCC	Power Supply Voltage Pin
2	GND	GND Pin
3	SDA	I ² C Bus SDA Pin
4	DVI	I ² C Bus Reference Voltage and initial reset Pin ('L' reset)
5	SCL	I ² C Bus SCL Pin

Initial reset is necessary on power supply sequence.
(More than 1us)

I²C Bus Access

Write Format (Instruction of measurement beginning etc.)

ST	Slave Address "0100011"	R/W 0	Ack	Opcode	Ack	SP
----	----------------------------	----------	-----	--------	-----	----

Read Format (Reading of Illuminance Data)

ST	Slave Address "0100011"	R/W 1	Ack	2 ¹⁵ 2 ¹⁴ 2 ¹³ 2 ¹² 2 ¹¹ 2 ¹⁰ 2 ⁹ 2 ⁸	Ack	SP
----	----------------------------	----------	-----	---	-----	----

2 ⁷ 2 ⁶ 2 ⁵ 2 ⁴ 2 ³ 2 ² 2 ¹ 2 ⁰	Low Byte [7:0]	Ack	SP
---	------------------	-----	----

from Master to Slave

from Slave to Master

Ex) When High Byte = 1000_0011
Low Byte = 1001_0000
calculate illuminance by following expression.
(2¹⁵ + 2⁹ + 2⁸ + 2⁷ + 2⁴) / 1.2 28067 [lx]

Please refer formality I²C bus specification of NXP semiconductors.

Instruction Set Architecture (Opcode of Write Format)

Instruction	Opcode
POWER DOWN	0000_0000
POWER ON	0000_0001
Continuously Measurement Auto-Resolution Mode	0001_0000, or 0010_0000,
Continuously Measurement H-Resolution Mode	0001_0010, or 0010_0010,
Continuously Measurement L-Resolution Mode	0001_0011, or 0010_0011, 0001_0110, or 0010_0110,

Cautions on use

1) Absolute Maximum Ratings

An excess in the absolute maximum ratings, such as supply voltage (V_{max}), temperature range of operating conditions ($Topr$), etc., can break down devices, thus making impossible to identify breaking mode such as a short circuit or an open circuit. If any special mode exceeding the absolute maximum ratings is assumed, consideration should be given to take physical safety measures including the use of fuses, etc.

2) GND voltage

Make setting of the potential of the GND terminal so that it will be maintained at the minimum in any operating state. Furthermore, check to be sure no terminals are at a potential lower than the GND voltage including an actual electric transient.

3) Short circuit between terminals and erroneous mounting

In order to mount ICs on a set PCB, pay thorough attention to the direction and offset of the ICs. Erroneous mounting can break down the ICs. Furthermore, if a short circuit occurs due to foreign matters entering between terminals or between the terminal and the power supply or the GND terminal, the ICs can break down.

4) Operation in strong electromagnetic field

Be noted that using ICs in the strong electromagnetic field can malfunction them.

5) Inspection with set PCB

On the inspection with the set PCB, if a capacitor is connected to a low-impedance IC terminal, the IC can suffer stress. Therefore, be sure to discharge from the set PCB by each process. Furthermore, in order to mount or dismount the set PCB to/from the jig for the inspection process, be sure to turn OFF the power supply and then mount the set PCB to the jig. After the completion of the inspection, be sure to turn OFF the power supply and then dismount it from the jig. In addition, for protection against static electricity, establish a ground for the assembly process and pay thorough attention to the transportation and the storage of the set PCB.

6) Input terminals

In terms of the construction of IC, parasitic elements are inevitably formed in relation to potential. The operation of the parasitic element can cause interference with circuit operation, thus resulting in a malfunction and then breakdown of the input terminal. Therefore, pay thorough attention not to handle the input terminals; such as to apply to the input terminals a voltage lower than the GND respectively, so that any parasitic element will operate. Furthermore, do not apply a voltage to the input terminals when no power supply voltage is applied to the IC. In addition, even if the power supply voltage is applied, apply to the input terminals a voltage lower than the power supply voltage or within the guaranteed value of electrical characteristics.

7) Thermal design

Perform thermal design in which there are adequate margins by taking into account the power dissipation (P_d) in actual states of use.

8) Treatment of package

Dusts or scratch on the photo detector may affect the optical characteristics. Please handle it with care.

9) When power is first supplied to the CMOS IC, it is possible that the internal logic may be unstable and rush current may flow instantaneously. Therefore, give special consideration to power coupling capacitance, power wiring, width of GND wiring, and routing of connections.

10) The exposed central pad on the back side of the package

There is an exposed central pad on the back side of the package. Please mount by Footprint dimensions described in the Jisso Information for WSOF5. This pad is GND level, therefore there is a possibility that LSI malfunctions and heavy-current is generated.