

- Member of the Texas Instruments *Widebus™* Family
- *EPIC™* (Enhanced-Performance Implanted CMOS) Submicron Process
- Output Ports Have Equivalent $26\text{-}\Omega$ Series Resistors, So No External Resistors Are Required
- Typical V_{OLP} (Output Ground Bounce) $< 0.8\text{ V}$ at $V_{CC} = 3.3\text{ V}$, $T_A = 25^\circ\text{C}$
- Typical V_{OHV} (Output V_{OH} Undershoot) $> 2\text{ V}$ at $V_{CC} = 3.3\text{ V}$, $T_A = 25^\circ\text{C}$
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model ($C = 200\text{ pF}$, $R = 0$)
- Latch-Up Performance Exceeds 250 mA Per JEDEC Standard JESD-17
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Package Options Include Plastic 300-mil Shrink Small-Outline (DL) and Thin Shrink Small-Outline (DGG) Packages

description

This 16-bit buffer/driver is designed for 2.7-V to 3.6-V V_{CC} operation.

The SN74LVC162244 is designed specifically to improve both the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. The device can be used as four 4-bit buffers, two 8-bit buffers, or one 16-bit buffer. It provides true outputs and symmetrical active-low output-enable (\overline{OE}) inputs. The outputs, which are designed to sink up to 12 mA, include $26\text{-}\Omega$ resistors to reduce overshoot and undershoot.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN74LVC162244 is characterized for operation from -40°C to 85°C .

FUNCTION TABLE
(each 4-bit buffer)

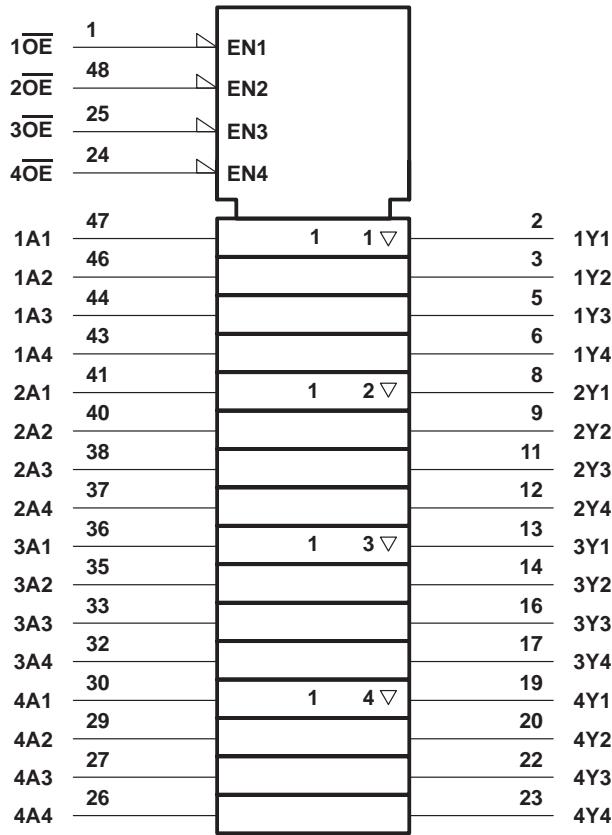
INPUTS		OUTPUT
\overline{OE}	A	Y
L	H	H
L	L	L
H	X	Z

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

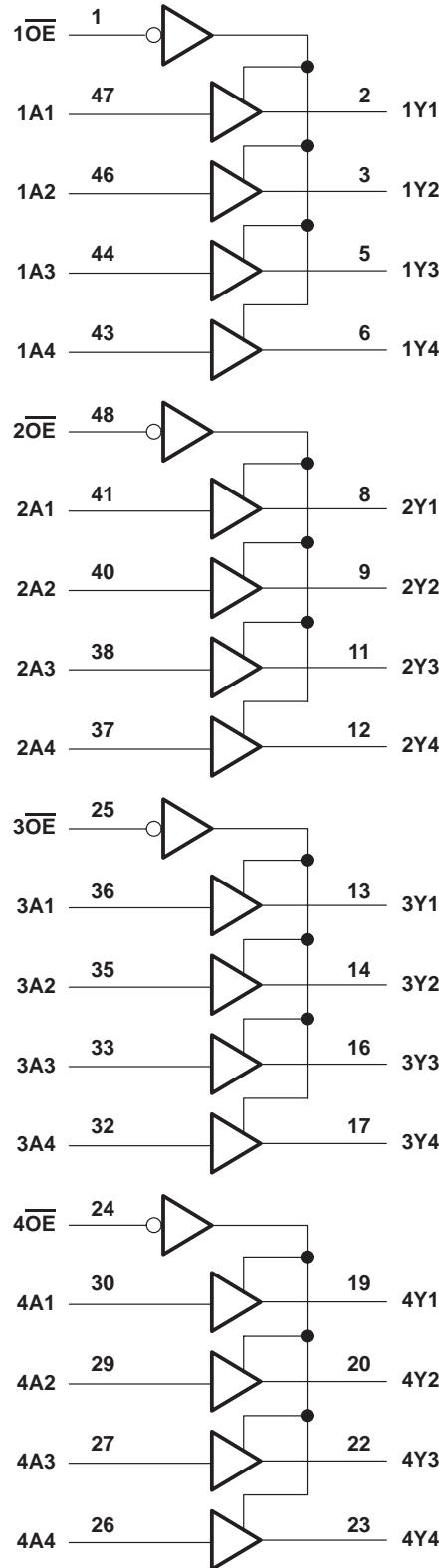
EPIC and Widebus are trademarks of Texas Instruments Incorporated.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1995, Texas Instruments Incorporated



POST OFFICE BOX 655303 • DALLAS, TEXAS 75265


SN74LVC162244
16-BIT BUFFER/DRIVER
WITH 3-STATE OUTPUTS

SCAS545 – OCTOBER 1995

logic symbol†

logic diagram (positive logic)

† This symbol is in accordance with ANSI/IEEE Std 91-1984
 and IEC Publication 617-12.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V_{CC}	-0.5 V to 4.6 V
Input voltage range, V_I (see Note 1)	-0.5 V to 4.6 V
Output voltage range, V_O (see Notes 1 and 2)	-0.5 V to V_{CC} + 0.5 V
Input clamp current, I_{IK} ($V_I < 0$)	-50 mA
Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{CC}$)	±50 mA
Continuous output current, I_O ($V_O = 0$ to V_{CC})	±50 mA
Continuous current through V_{CC} or GND	±100 mA
Maximum power dissipation at $T_A = 55^\circ\text{C}$ (in still air) (see Note 3): DGG package	1 W
DL package	1.4 W
Storage temperature range, T_{stg}	-65°C to 150°C

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
 2. This value is limited to 4.6 V maximum.
 3. The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils.
 For more information, refer to the *Package Thermal Considerations* application note in the 1994 ABT Advanced BiCMOS Technology Data Book, literature number SCBD002B.

recommended operating conditions (see Note 4)

		MIN	MAX	UNIT
V_{CC}	Supply voltage	2.7	3.6	V
V_{IH}	High-level input voltage	$V_{CC} = 2.7$ V to 3.6 V	2	V
V_{IL}	Low-level input voltage	$V_{CC} = 2.7$ V to 3.6 V	0.8	V
V_I	Input voltage	0	V_{CC}	V
V_O	Output voltage	0	V_{CC}	V
I_{OH}	High-level output current	$V_{CC} = 2.7$ V	-8	mA
		$V_{CC} = 3$ V	-12	
I_{OL}	Low-level output current	$V_{CC} = 2.7$ V	8	mA
		$V_{CC} = 3$ V	12	
$\Delta t/\Delta V$	Input transition rise or fall rate	0	10	ns/V
T_A	Operating free-air temperature	-40	85	°C

NOTE 4: Unused control inputs must be held high or low to prevent them from floating.

SN74LVC162244
16-BIT BUFFER/DRIVER
WITH 3-STATE OUTPUTS

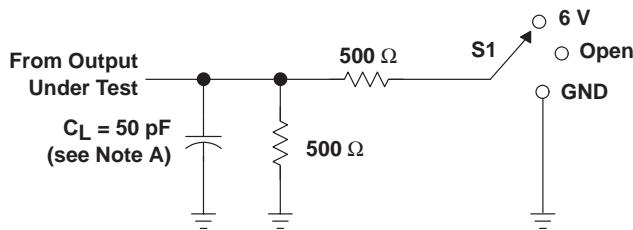
SCAS545 – OCTOBER 1995

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

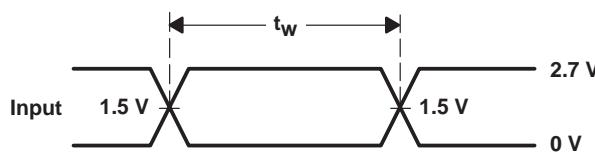
PARAMETER	TEST CONDITIONS	V_{CC}^{\dagger}	MIN	TYP [‡]	MAX	UNIT
V_{OH}	$I_{OH} = -100 \mu A$	MIN to MAX	$V_{CC} - 0.2$			V
	$I_{OH} = -6 \text{ mA}, V_{IH} = 2 \text{ V}$	3	2.4			
	$I_{OH} = -8 \text{ mA}, V_{IH} = 2 \text{ V}$	2.7	2			
	$I_{OH} = -12 \text{ mA}, V_{IH} = 2 \text{ V}$	3	2			
V_{OL}	$I_{OL} = 100 \mu A$	MIN to MAX		0.2		V
	$I_{OL} = 6 \text{ mA}, V_{IL} = 0.8 \text{ V}$	3		0.55		
	$I_{OL} = 8 \text{ mA}, V_{IL} = 0.8 \text{ V}$	2.7		0.6		
	$I_{OL} = 12 \text{ mA}, V_{IL} = 0.8 \text{ V}$	3		0.8		
I_I	$V_I = V_{CC}$ or GND	3.6		± 5	μA	
$I_I(\text{hold})$	$V_I = 0.8 \text{ V}$	3	75			μA
	$V_I = 2 \text{ V}$	3	-75			
	$V_I = 0$ to 3.6 V	3.6		± 500		
I_{OZ}	$V_O = V_{CC}$ or GND	3.6		± 10	μA	
I_{CC}	$V_I = V_{CC}$ or GND, $I_O = 0$	3.6		20	μA	
ΔI_{CC}	One input at $V_{CC} - 0.6 \text{ V}$, Other inputs at V_{CC} or GND	2.7 V to 3.6 V		500	μA	
C_i	Control inputs $V_I = V_{CC}$ or GND	3.3		2.5	pF	
C_o	A or B ports $V_O = V_{CC}$ or GND	3.3		3.5	pF	

[†] For conditions shown as MIN or MAX, use the appropriate values under recommended operating conditions.

[‡] All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^\circ\text{C}$.

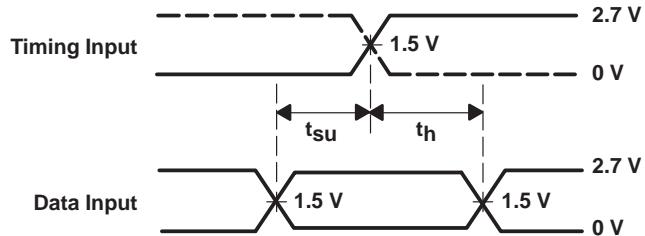

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		$V_{CC} = 2.7 \text{ V}$		UNIT
			MIN	MAX	MIN	MAX	
t_{pd}	A	Y	1.5	7	1.5	8	ns
t_{en}	\overline{OE}	Y	1.5	9	1.5	10	ns
t_{dis}	\overline{OE}	Y	1.5	7	1.5	8	ns

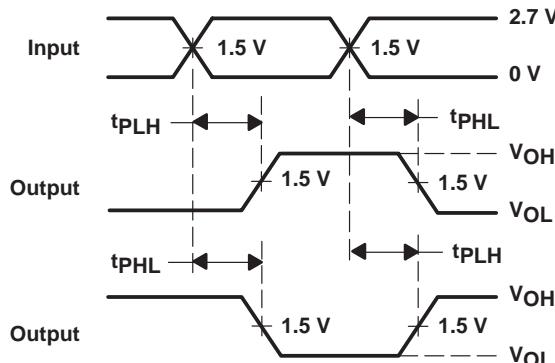

operating characteristics, $V_{CC} = 3.3 \text{ V}$, $T_A = 25^\circ\text{C}$

PARAMETER	TEST CONDITIONS		TYP	UNIT
	Cpd	Power dissipation capacitance per buffer/driver	Outputs enabled	
			Outputs disabled	
			$C_L = 50 \text{ pF}, f = 10 \text{ MHz}$	20 2 pF

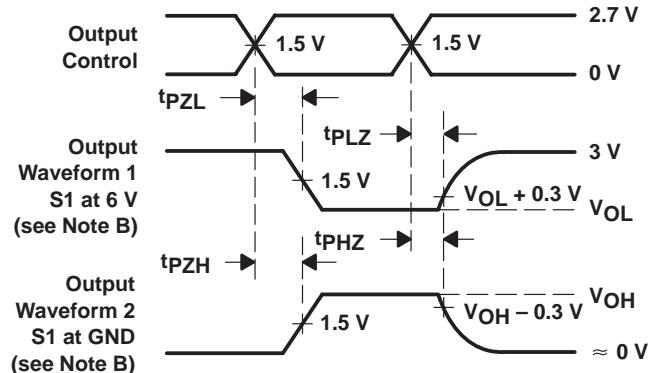
PARAMETER MEASUREMENT INFORMATION



LOAD CIRCUIT FOR OUTPUTS



VOLTAGE WAVEFORMS
PULSE DURATION


TEST	S1
t_{pd}	Open
t_{PLZ}/t_{PZL}	6 V
t_{PHZ}/t_{PZH}	GND

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING

NOTES:

- C_L includes probe and jig capacitance.
- Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq 2.5$ ns, $t_f \leq 2.5$ ns.
- The outputs are measured one at a time with one transition per measurement.
- t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- t_{PZL} and t_{PZH} are the same as t_{en} .
- t_{PLH} and t_{PHL} are the same as t_{pd} .

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated