

HV9120/HV9123

High-Voltage, Current-Mode, PWM Controller

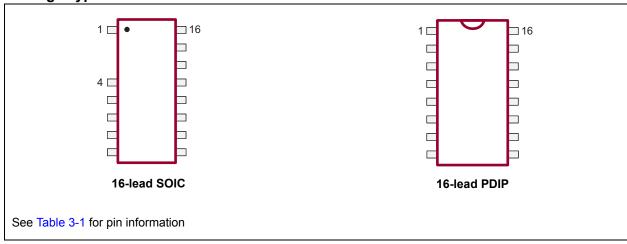
Features

- · 10 to 450V input voltage range
- <1.3 mA supply current
- >1 MHz clock
- · 49% maximum duty version

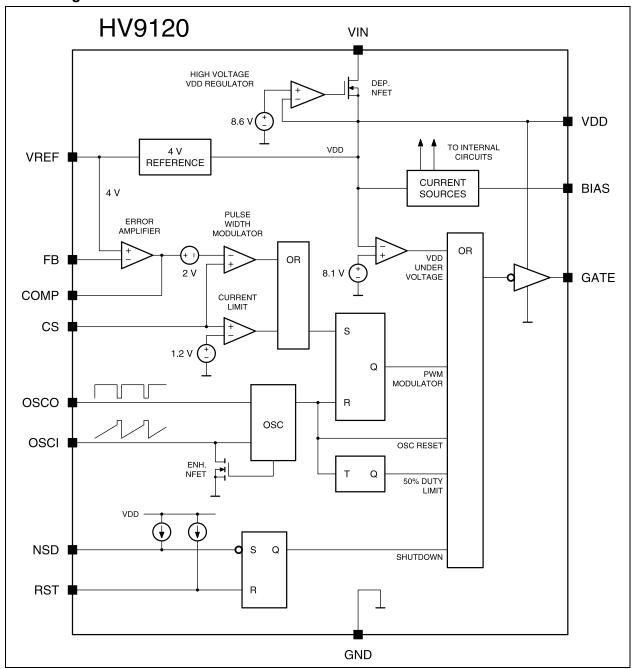
Applications

- · Off-line high frequency power supplies
- · Universal input power supplies
- · High density power supplies
- · Very high efficiency power supplies
- · Extra wide load range power supplies

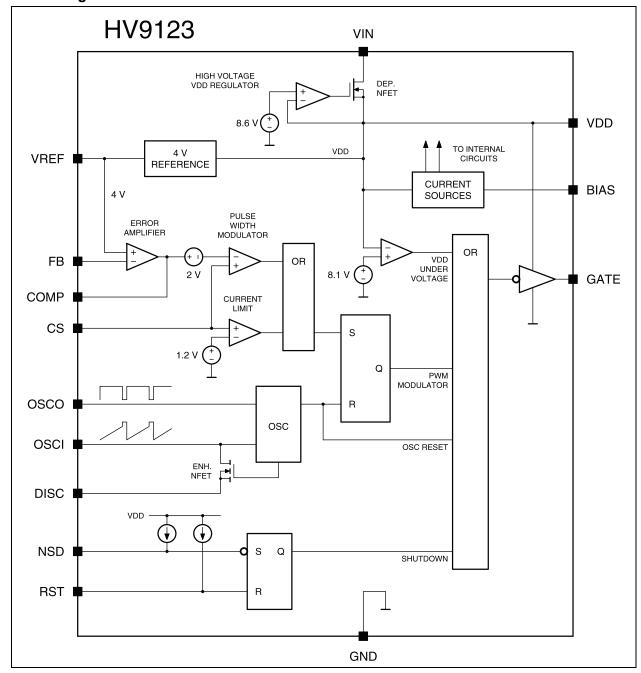
Description


HV9120 and HV9123 are Switch-Mode Power Supply (SMPS) controllers suitable for the control of a variety of converter topologies, including flyback and forward converter.

Using an internal, high-voltage regulator, HV9120 and HV9123 can derive a bias supply for starting-up and powering a converter from a variety of power sources, such as a 12V battery or the rectified AC (230 VAC) line.


HV9120/HV9123 controllers include all essentials for a power-converter design, such as a bandgap reference, an error amplifier, a ramp generator, a high-speed PWM comparator, and a gate driver. A shutdown latch provides on/off control. Device power consumption is less than 6 mW when shutdown.

HV9120 offers 50% maximum duty and HV9123 offers nearly 100% duty.


Package Types

Block Diagram HV9120

Block Diagram HV9123

1.0 ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS[†]

Input voltage, V _{IN}	450V
Device supply voltage, V _{DD}	15.5V
Logic input voltage	0.3V to V _{DD} + 0.3V
Linear input voltage	0.3V to V _{DD} + 0.3V
High-voltage regulator input current (continuous), I _{IN}	2.5 mA
Operating temperature range	40°C to +125°C
Storage temperature range	
Power dissipation: 16-Lead SOIC	
16-Lead PDIP	

† Notice: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

Electrical Specificati erwise noted.	ons: V _{DD}	= 10V, V _{IN} =	48V, V _{DIS}	$_{SC}$ = 0V, R_{E}	_{BIAS} = 390) kΩ, R _{OS}	$_{\rm C}$ = 330 k Ω , T _A = 25°C, unless oth-
Parameter	Symbol	Min	Тур	Max	Units	Conditions	
Reference							
Output voltage		V_{REF}	3.92	4.00	4.08	V	R _L = 10 MΩ
			3.84	4.00	4.16		R_L = 10 M Ω , T_A = -40°C to +125°C
Output impedance		Z _{OUT}	15	30	45	kΩ	(Note 1)
Short circuit current		I _{SHORT}	-	125	250	μΑ	V _{REF} = GND
Change in V _{REF} with te	mperature	ΔV_{REF}	-	0.25	-	mV/°C	T _A = -40°C to +125°C (Note 1)
Oscillator							
Oscillator frequency		f_{MAX}	1.0	3.0	-	MHz	$R_{OSC} = 0\Omega$
Initial accuracy		fosc	80	100	120	kHz	R _{OSC} = 330 kΩ (Note 2)
			160	200	240		R _{OSC} = 150 kΩ (Note 2)
VDD regulation		-	-	-	15	%	9.5V< V _{DD} <13.5V
Temperature coefficier	nt	-	-	170	-	ppm/°C	T _A = -40°C to +125°C (Note 1)
PWM							
Maximum duty cycle	HV9120	D _{MAX}	49.0	49.4	49.6	%	(Note 1)
	HV9123		95	97	99		
Dead time	HV9123	D _{MIN}	-	225	-	ns	HV9123 only (Note 1)
Minimum duty cycle			-	-	0	%	-
Pulse width where pulse drops out			-	80	125	ns	(Note 1)
Current Limit			•	•	•		
Maximum input signal		V_{LIM}	1.0	1.2	1.4	V	V _{FB} = 0V
Delay to output		t _D	-	80	120	ns	V _{CS} = 1.5V, V _{COMP} ≤ 2.0V (Note 1)

ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Specifications: V_{DD} = 10V, V_{IN} = 48V, V_{DISC} = 0V, R_{BIAS} = 390 kΩ, R_{OSC} = 330 kΩ, T_{A} = 25°C, unless otherwise noted.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	erwise noted.				r		,	
Feedback voltage	Parameter		Symbol	Min	Тур	Max	Units	Conditions
Input bias current	Error Amplifier							
Input bias current	Feedback voltage		V_{FB}	3.92	4.00	4.08	V	FB shorted to COMP
Input offset voltage	Input bias current			-	25	500	nA	V _{FB} = 4.0V
Open loop voltage gain A _{VOL} 60 80 - dB Note 1) Unity gain bandwidth GB 1.0 1.3 - MHz (Note 1) Output source current I _{SOURCE} -1.4 -2.0 - mA V _{FB} = 3.4V Output sink current I _{SINK} 0.12 0.15 - mA V _{FB} = 4.5V High-voltage Regulator and Start-up Input voltage V _{IN} 10 - 450 V I _{IN} <10 μA; V _{CC} > 9.4V Input leakage current I _{IN} - - 10 μA V _{DD} > 9.4V Input leakage current I _{IN} - - 10 μA V _{DD} > 9.4V Input leakage current I _{IN} - - 10 μA - - Undervoltage lockout V _{LOCK} 7.0 8.1 8.9 V - Supply current I _{DD} - 0.75 1.3 mA C _L <75 pF	Input offset voltage		Vos	nulle	ed during	trim	-	_
Unity gain bandwidth	Open loop voltage gai	n		60	80	-	dB	(Note 1)
Output sink current I_SINK O.12 O.15 - mA V_{FB} = 4.5V	Unity gain bandwidth			1.0	1.3	-	MHz	(Note 1)
Dutput sink current I_SINK Dutput voltage Regulator and Start-up	Output source current		I _{SOURCE}	-1.4	-2.0	-	mA	V _{FB} = 3.4V
High-voltage Regulator and Start-up Input voltage V _{IN} 10 - 450 V I _{IN} < 10 μA; V _{CC} > 9.4V Input leakage current I _{IN} - - 10 μA V _{DD} > 9.4V Regulator turn-off threshold voltage V _{TH} 8.0 8.7 9.4 V I _{IN} = 10 μA V _{DD} > 9.4V Regulator turn-off threshold voltage V _{LOCK} 7.0 8.1 8.9 V - V _{LOCK} V _{LOC}	Output sink current		_	0.12	0.15	-	mA	V _{FB} = 4.5V
$ \begin{array}{ c c c c c c } \hline \text{Input leakage current} & I_{\text{IN}} & - & - & 10 & \mu A & V_{\text{DD}} > 9.4 V \\ \hline \text{Regulator turn-off threshold} & V_{\text{TH}} & 8.0 & 8.7 & 9.4 & V & I_{\text{IN}} = 10 \ \mu A \\ \hline \text{Voltage} & V_{\text{Lock}} & 7.0 & 8.1 & 8.9 & V & - \\ \hline \hline \text{Supply} & V_{\text{Undervoltage lockout}} & V_{\text{Lock}} & 7.0 & 8.1 & 8.9 & V & - \\ \hline \hline \text{Supply current} & I_{\text{DD}} & - & 0.75 & 1.3 & \text{mA} & C_{\text{L}} < 75 \ \text{pF} \\ \hline \text{Quiescent supply current} & I_{\text{Q}} & - & 0.55 & - & \text{mA} & V_{\text{NSD}} = 0V \\ \hline \text{Nominal bias current} & I_{\text{BIAS}} & - & 20 & - & \mu A & - \\ \hline \text{Operating range} & V_{\text{DD}} & 9.0 & - & 13.5 & V & - \\ \hline \hline \text{Shutdown Logic} \\ \hline \text{Shutdown delay} & \text{t}_{\text{SD}} & - & 50 & 100 & \text{ns} & C_{\text{L}} = 500 \ \text{pF}, V_{\text{CS}} = 0V \ \text{(Note 1)} \\ \hline \text{RST pulse width} & \text{t}_{\text{SW}} & 50 & - & - & \text{ns} & \text{(Note 1)} \\ \hline \text{Latching pulse width} & \text{t}_{\text{LW}} & 25 & - & - & \text{ns} & \text{(Note 1)} \\ \hline \text{Latching pulse width} & \text{t}_{\text{LW}} & 25 & - & - & \text{ns} & \text{(Note 1)} \\ \hline \text{Input low voltage} & V_{\text{IL}} & - & - & 2.0 & V & - \\ \hline \text{Input low runt, input high voltage} & \text{I}_{\text{IH}} & - & 1.0 & 5.0 & \mu A & V_{\text{IN}} = \text{VD} \\ \hline \text{Input current, input high voltage} & \text{I}_{\text{IL}} & - & -2.5 & -35 & \mu A & V_{\text{IN}} = 0V \\ \hline \hline \text{Output} \\ \hline \hline \text{Output low voltage} & V_{\text{OL}} & - & - & 0.2 & V & I_{\text{OUT}} = 10 \ \text{mA}, \\ \hline \text{I}_{\text{Cu}} = -40^{\circ}\text{C to } 125^{\circ}\text{C} \\ \hline \hline \text{Output low voltage} & V_{\text{OL}} & - & - & 0.2 & V & I_{\text{OUT}} = 10 \ \text{mA}, \\ \hline \text{I}_{\text{A}} = -40^{\circ}\text{C to } 125^{\circ}\text{C} \\ \hline \hline \text{Output resistance} & \text{Pull up} \\ \hline \text{Pull down} & \text{Pull down} \\ \hline \text{Pull down} & - & 10 & 3.0 & \Omega & I_{\text{OUT}} = \pm 10 \ \text{mA}, \\ \hline \text{T}_{\text{A}} = -40^{\circ}\text{C to } 125^{\circ}\text{C} \\ \hline \end{array}$	High-voltage Regula	tor and St			I.		•	
$ \begin{array}{ c c c c c } \hline \text{Input leakage current} & I_{IN} & - & - & 10 & \mu A & V_{DD}> 9.4 V \\ \hline \text{Regulator turn-off threshold} & V_{TH} & 8.0 & 8.7 & 9.4 & V & I_{IN}= 10 \ \mu A \\ \hline \text{Voltage} & V_{DOK} & 7.0 & 8.1 & 8.9 & V & - \\ \hline \hline \textbf{Supply} & & & & & & & & & & & & & & & & & & &$	Input voltage		V _{IN}	10	-	450	V	I _{IN} < 10 μA; V _{CC} > 9.4V
Regulator turn-off threshold voltage V _{TH} R.0 R.7 R.1 R.9 V I _{IN} = 10 μA	Input leakage current			-	-	10	μΑ	
Supply Supply current IDD - 0.75 1.3 mA CL < 75 pF		shold		8.0	8.7	9.4		
Supply current IDD - 0.75 1.3 mA C _L < 75 pF			VLOCK	7.0	8.1	8.9	V	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			20010				1	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			I _{DD}	-	0.75	1.3	mA	C _I < 75 pF
Nominal bias current I _{BIAS} - 20 - μA -		ent		-	0.55	-	mA	
Operating range				-	20	-	μΑ	
	Operating range			9.0	-	13.5		_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			55				ı	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-		t _{SD}	-	50	100	ns	C _L = 500 pF, V _{CS} = 0V (Note 1)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	NSD pulse width			50	-	-	ns	(Note 1)
$ \begin{array}{ c c c c c c c } \mbox{Latching pulse width} & t_{LW} & 25 & - & - & ns & V_{NSD}, V_{RST} = 0V (\mbox{Note 1}) \\ \hline \mbox{Input low voltage} & V_{IL} & - & - & 2.0 & V & - \\ \hline \mbox{Input high voltage} & V_{IH} & 7.0 & - & - & V & - \\ \hline \mbox{Input current, input high voltage} & I_{IH} & - & 1.0 & 5.0 & \mu A & V_{IN} = V_{DD} \\ \hline \mbox{Input current, input low voltage} & I_{IL} & - & -25 & -35 & \mu A & V_{IN} = 0V \\ \hline \mbox{Output} \\ \hline \mbox{Output high voltage} & V_{OH} & V_{DD}^{-} & - & - & V & I_{OUT} = 10 mA \\ \hline \mbox{V}_{DD}^{-} & - & - & 0.2 & V & I_{OUT} = -10 mA \\ \hline \mbox{I}_{OUT} = -10 mA & I_{OUT} = -10 mA \\ \hline \mbox{I}_{OUT} = -10 mA & I_{OUT} = -10 mA \\ \hline \mbox{I}_{OUT} = -10 mA & I_{OUT} = -10 mA \\ \hline \mbox{I}_{OUT} = -10 mA & I_{OUT} = -10 mA \\ \hline \mbox{I}_{OUT} = -10 mA & I_{OUT} = -10 mA \\ \hline \mbox{I}_{OUT} = -10 mA & I_{OUT} = -10 mA \\ \hline \mbox{I}_{OUT} = -10 mA & I_{OUT} = -10 mA \\ \hline \mbox{I}_{OUT} = -10 mA & I_{OUT} = -10 mA \\ \hline \mbox{I}_{OUT} = -10 mA & I_{OUT} = -10 mA \\ \hline \mbox{I}_{OUT} = -10 mA & I_{OUT} = -10 mA \\ \hline \mbox{I}_{OUT} = -10 mA & I_{OUT} = -10 mA \\ \hline \mbox{I}_{OUT} = & - & - & - & - & - & - & - & - \\ \hline \mbox{I}_{OUT} = & - & - & - & - & - & - & - & - \\ \hline \mbox{I}_{OUT} = & - & - & - & - & - & - & - & - \\ \hline \mbox{I}_{OUT} = & - & - & - & - & - & - & - & - \\ \hline \mbox{I}_{OUT} = & - & - & - & - & - & - & - \\ \hline \mbox{I}_{OUT} = & - & - & - & - & - & - & - \\ \hline \mbox{I}_{OUT} = & - & - & - & - & - & - \\ \hline \mbox{I}_{OUT} = & - & - & - & - & - & - \\ \hline \mbox{I}_{OUT} = & - & - & - & - & - \\ \hline \mbox{I}_{OUT} = & - & - & - & - \\ \hline \mbox{I}_{OUT} = & - & - & - & - \\ \hline \mbox{I}_{OUT} = & - & - & - & - \\ \hline \mbox{I}_{OUT} = & - & - & - & - \\ \hline \mbox{I}_{OUT} = & - & - & - & - \\ \hline \mbox{I}_{OUT} = & - & - & - \\ \hline \mbox{I}_{OUT} = & - & - & - \\ \hline \mbox{I}_{OUT} = & - & - & - \\ \hline \mbox{I}_{OUT} = & - & - & - \\ \hline \mbox{I}_{OUT} = & - & - & - \\ \hline \mbox{I}_{OUT} = & - & - & - \\ \hline \mbox{I}_{OUT} = & - & - & - \\ \hline \mbox{I}_{OUT} = & -$	RST pulse width			50	-	-	ns	(Note 1)
$ \begin{array}{ c c c c c c } \hline \text{Input low voltage} & V_{IL} & - & - & 2.0 & V & - \\ \hline \text{Input high voltage} & V_{IH} & 7.0 & - & - & V & - \\ \hline \text{Input current, input high voltage} & I_{IH} & - & 1.0 & 5.0 & \mu\text{A} & V_{IN} = V_{DD} \\ \hline \text{Input current, input low voltage} & I_{IL} & - & -25 & -35 & \mu\text{A} & V_{IN} = 0V \\ \hline \hline \textbf{Output} & & & & & & & & & & & & & & & & & \\ \hline \textbf{Output high voltage} & & & & & & & & & & & & & & & & & & \\ \hline \textbf{Output high voltage} & & & & & & & & & & & & & & & & & & &$	Latching pulse width			25	-	-	ns	V _{NSD} , V _{RST} =0V(Note 1)
$ \begin{array}{ c c c c c c c c } \hline \text{Input high voltage} & V_{IH} & 7.0 & - & - & V & - \\ \hline \text{Input current, input high voltage} & I_{IH} & - & 1.0 & 5.0 & \mu\text{A} & V_{IN} = V_{DD} \\ \hline \text{Input current, input low voltage} & I_{IL} & - & -25 & -35 & \mu\text{A} & V_{IN} = 0V \\ \hline \hline \textbf{Output} \\ \hline \hline \textbf{Output high voltage} & V_{OH} & V_{DD} & - & - & V & I_{OUT} = 10 \text{ mA} \\ \hline V_{DD} & - & - & 0.25 & - & - & I_{OUT} = 10 \text{ mA} \\ \hline V_{DD} & - & - & 0.2 & V & I_{OUT} = -10 \text{ mA} \\ \hline \textbf{Output low voltage} & V_{OL} & - & - & 0.2 & V & I_{OUT} = -10 \text{ mA} \\ \hline \textbf{Output resistance} & Pull up & R_{OUT} & - & 15 & 25 & \Omega & I_{OUT} = \pm 10 \text{ mA} \\ \hline Pull down & - & 8.0 & 20 & I_{OUT} = \pm 10 \text{ mA}, \\ \hline Pull up & - & 20 & 30 & \Omega & I_{OUT} = \pm 10 \text{ mA}, \\ \hline Pull down & - & 10 & 30 & 0 & I_{OUT} = \pm 10 \text{ mA}, \\ \hline \textbf{T}_{A} = -40^{\circ}\text{C to } 125^{\circ}\text{C} \\ \hline \hline \end{tabular} $	Input low voltage			-	-	2.0	V	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Input high voltage			7.0	-	-	V	-
$ \begin{array}{ c c c c c c c c } \hline \text{Input current, input low voltage} & I_{IL} & - & -25 & -35 & \mu A & V_{IN}=0V \\ \hline \hline \textbf{Output} \\ \hline \textbf{Output high voltage} & V_{OH} & V_{DD^-} & - & - & V & I_{OUT}=10 \text{ mA} \\ \hline & V_{DD^-} & - & - & - & I_{OUT}=10 \text{ mA}, \\ \hline & V_{A}=-40^{\circ}\text{C to } 125^{\circ}\text{C} \\ \hline \textbf{Output low voltage} & V_{OL} & - & - & 0.2 & V & I_{OUT}=-10 \text{ mA} \\ \hline & - & - & 0.3 & I_{OUT}=-10 \text{ mA}, \\ \hline & I_{A}=-40^{\circ}\text{C to } 125^{\circ}\text{C} \\ \hline \textbf{Output resistance} & Pull up & R_{OUT} & - & 15 & 25 & \Omega & I_{OUT}=\pm10 \text{ mA} \\ \hline & Pull down & - & 8.0 & 20 & I_{OUT}=\pm10 \text{ mA}, \\ \hline & Pull down & - & 20 & 30 & \Omega & I_{OUT}=\pm10 \text{ mA}, \\ \hline & I_{A}=-40^{\circ}\text{C to } 125^{\circ}\text{C} \\ \hline \hline \end{tabular} $	Input current, input hig	h voltage		-	1.0	5.0	μA	$V_{IN} = V_{DD}$
Output Output high voltage V _{OH} V _{DD} - 0.25 - - V I _{OUT} = 10 mA V _{DD} - 0.3 - - - I _{OUT} = 10 mA, T _A = -40°C to 125°C Output low voltage V _{OL} - - 0.2 V I _{OUT} = -10 mA I _{OUT} = -10 mA, T _A = -40°C to 125°C - 0.3 I _{OUT} = ±10 mA, T _A = -40°C to 125°C Output resistance Pull up Pull down - 15 25 Ω I _{OUT} = ±10 mA, T _A = -40°C to 125°C	Input current, input lov	v voltage		-	-25	-35	μA	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Output	_	.=		I.		I	1 ***
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Output high voltage		V _{OH}	V _{DD} - 0.25	-	-	V	I _{OUT} = 10 mA
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				V _{DD} - 0.3	-	-		I _{OUT} = 10 mA, T _A = -40°C to 125°C
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Output low voltage		V _{OL}	-	-	0.2	V	I _{OUT} = -10 mA
Pull down - 8.0 20				-	-	0.3		I _{OUT} = -10 mA,
Pull down - 8.0 20 Pull up - 20 30 Ω I _{OUT} = ±10 mA, T _A = -40°C to 125°C	Output resistance Pull up		R _{OUT}	-	15	25	Ω	
Pull down - 10 30 T _A = -40°C to 125°C			-	-	8.0	20	1	
Pull down - 10 30 T _A = -40°C to 125°C				-	20		Ω	I _{OUT} = ±10 mA,
F: "				-	10	30	1	
Rise time $t_R - 30 - 75 - ns C_L = 500 pF (Note 1)$	Rise time		t _R	-	30	75	ns	C _L = 500 pF (Note 1)
Fall time t_F - 20 75 ns C_L = 500 pF(Note 1)	Fall time			-	20	75	ns	C _L = 500 pF(Note 1)

Note 1: Design guidance only; Not 100% tested in production.

^{2:} Stray capacitance on OSC in pin must be ≤ 5 pF.

HV9120/HV9123

TEMPERATURE SPECIFICATIONS

Parameter	Symbol	Min	Тур	Max	Units	Conditions
Temperature Ranges						
Operating Temperature		-40		125	°C	
Storage Temperature		-65	_	150	°C	
Package Thermal Resistances						
Thermal Resistance, SOIC	θ_{ja}	-	83	-	°C/W	
Thermal Resistance, PDIP	θ _{ja}	_	51	_	°C/W	

1.1 Truth Table

TRUTH TABLE

SHUTDOWN	RESET	OUTPUT
Н	Н	Normal operation
Н	$H \rightarrow L$	Normal operation, no change
L	Н	Off, not latched
L	L	Off, latched
$L \rightarrow H$	L	Off, latched, no change

2.0 TYPICAL PERFORMANCE CURVES

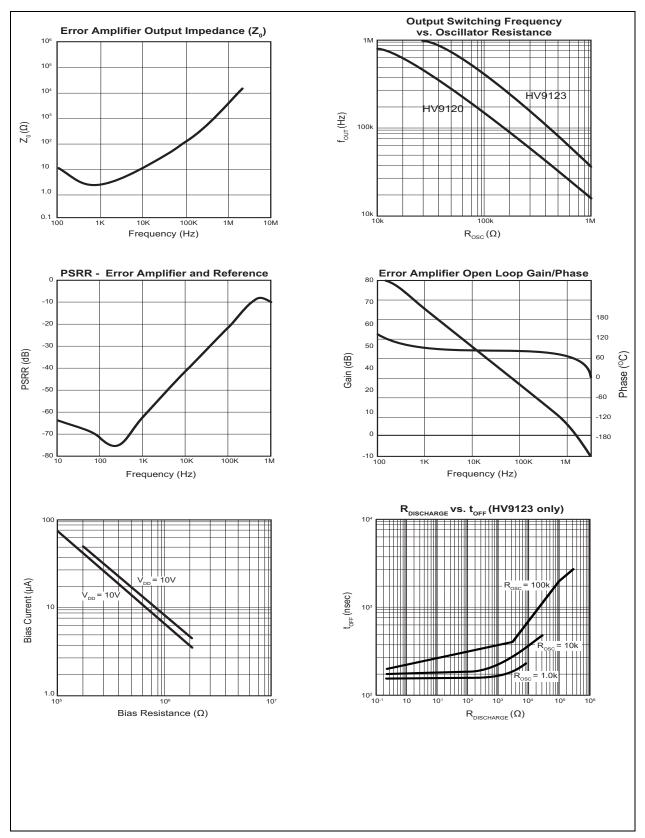


FIGURE 2-1: Typical Performance Curves

HV9120/HV9123

3.0 PIN DESCRIPTION

The locations of the pins are listed in Features.

TABLE 3-1: PIN DESCRIPTION

Pin #	Symbol HV9120	Symbol HV9123	Description
1	V _{IN}	V _{IN}	High-voltage, V _{DD} regulator input
2	NC	NC	No connect
3	NC	NC	No connect
4	CS	CS	Current-sense input
5	GATE	GATE	Gate-drive output
6	GND	GND	Ground
7	VDD	VDD	High-voltage, V _{DD} regulator output
8	OSCO	OSCO	Oscillator output
9	OSCI	OSCI	Oscillator Input
10	NC	DISC	Oscillator discharge, current set
11	VREF	VREF	4V Reference output Reference voltage level can be over- ridden by an externally-applied volt- age source.
12	NSD	NSD	Active low input to set shutdown latch
13	RST	RST	Active high input to reset shutdown latch
14	COMP	COMP	Error-amplified output
15	FB	FB	Feedback-voltage input
16	BIAS	BIAS	Internal bias, current set

4.0 TEST CIRCUITS

The test circuits for characterizing error-amplifier output impedance, Z_{OUT} , and error-amplifier, power-supply rejection ration, PSRR, are shown in Figure 4-1.

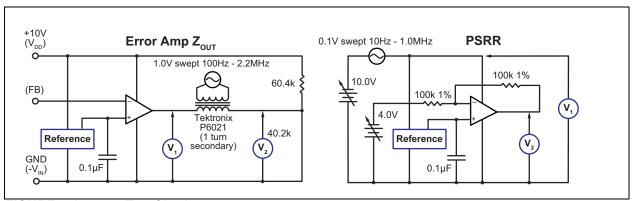


FIGURE 4-1: Test Circuits

5.0 DETAILED DESCRIPTION

5.1 High-Voltage Regulator

The high-voltage regulator included in HV9120 and HV9123 consists of a high-voltage, n-channel, depletion-mode DMOS transistor, driven by an error amplifier, providing a current path between the V_{IN} terminal and the V_{DD} terminal. The maximum current, about 20 mA, occurs when V_{DD} = 0, with current reducing as V_{DD} rises. This path shuts off when V_{DD} rises to somewhere between 7.8 and 9.4V. So, if V_{DD} is held at 10 or 12V by an external source, no current other than leakage is drawn through the high voltage transistor. This minimizes dissipation.

Use an external capacitor between V_{DD} and GND to store energy used by the chip in the time between shutoff of the high voltage path and the V_{DD} supply's output rising enough to take over powering the chip. This capacitor should have a value of 100X or more the effective gate capacitance of the MOSFET being driven, as well as very good high-frequency characteristics. See the equation below. Ceramic caps work well. Electrolytic capacitors are generally not suitable.

 $C_{VDD} \ge 100 \times (gate charge of FET at 10V)$

The device uses a resistor divider string to monitor V_{DD} for both the under voltage lockout circuit and the shutoff circuit of the high voltage FET. Setting the under voltage sense point about 0.6V lower on the string than the FET shutoff point guarantees that the under voltage lockout releases before the FET shuts off.

5.2 Bias Circuit

HV9120 and HV9123 require an external bias resistor, connected between the BIAS pin and GND, to set currents in a series of current mirrors used by the analog sections of the chip. The nominal external bias current requirement is 15 to 20 μA, which can be set by a 390 kΩ to 510 kΩ resistor if V_{DD} = 10V, or a 510 kΩ to 680 kΩ resistor if V_{DD} = 12V. A precision resistor is not required, ±5% meets the device requirements.

5.3 Clock Oscillator

The clock oscillator of the HV9120 and HV9123 consists of a ring of CMOS inverters, timing capacitors, and a capacitor-discharge FET. A single external resistor between the OSCI and OSCO sets the oscillator frequency (see Figure 2-1, Output Switching Frequency vs Oscillator Resistance).

HV9120 includes a frequency-dividing flip-flop that allows the part to operate with a 50% duty limit. Accordingly, the effective switching frequency of the power

converter is half the oscillator frequency (see Figure 2-1, Output Switching Frequency vs Oscillator Resistance).

An internal, discharge FET resets the oscillator ramp at the end of the oscillator cycle. The FET is internally connected to GND in HV9120 (50% max duty version). Whereas, the FET is externally connected to GND, by way of a resistor, in the HV9123 (100% duty version). The resistor programs the oscillator dead time at the end of the oscillator period in HV9123 applications.

The oscillator turns off during shutdown to reduce supply current by about 150 μ A.

5.4 Reference

The reference of the HV9120 and HV9123 consists of a band-gap reference, followed by a buffer amplifier, which scales the voltage up to 4.0V. The scaling resistors of the buffer amplifier are trimmed during manufacture so that the output of the error amplifier, when connected in a gain of -1 configuration, is as close to 4.0V as possible. This nulls out the input offset of the error amplifier. As a consequence, even though the observed reference voltage of a specific part may not be exactly 4.0V, the feedback voltage required for proper regulation will be 4.0V.

An approximately 50 k Ω resistor is located internally between the output of the reference buffer amplifier and the circuitry it feeds—reference output pin and non-inverting input to the error amplifier. This allows overriding the internal reference with a low impedance voltage source \leq 6.0V. Using an external reference reinstates the input offset voltage of the error amplifier. Overriding the reference should seldom be necessary.

The reference of the HV9120 and HV9123 is a high impedance node, and usually there will be significant electrical noise nearby. Therefore, a bypass capacitor between the reference pin and GND is strongly recommended. The reference buffer amplifier is compensated to be stable with a capacitive load of 0.01 to 0.1 $\mu F.$

5.5 Error Amplifier

The error amplifier in HV9120 and HV9123 is a low-power, differential-input, operational amplifier. A PMOS input stage is used, so the common mode range includes ground and the input impedance is high.

5.6 Current Sense Comparators

HV9120 and HV9123 use a dual-comparator system with independent comparators for modulation and current limiting. This allows the designer greater latitude in compensation design, as there are no clamps, except ESD protection, on the compensation pin.

5.7 Remote Shutdown

The NSD and RST pins control the shutdown latch. These pins have internal, current-source pull-ups so they can be driven from open drain logic. When not used they should be left open, or connected to V_{DD} .

5.8 Output Buffer

The output buffer of HV9120 and HV9123 is of standard CMOS construction—P-channel pull-up and N-channel pull-down. Thus, the body-drain diodes of the output stage can be used for spike clipping. External Schottky diode clamping of the output is not required.

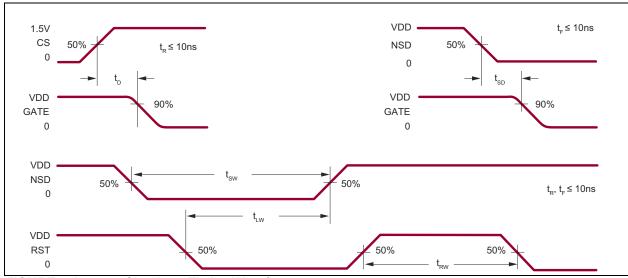
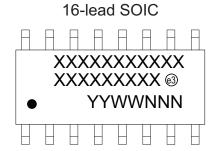
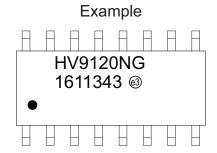
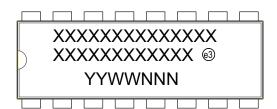




FIGURE 5-1: Shutdown Timing Waveforms


6.0 PACKAGING INFORMATION

6.1 Package Marking Information

16-lead PDIP

HV9120P [®] 1611343

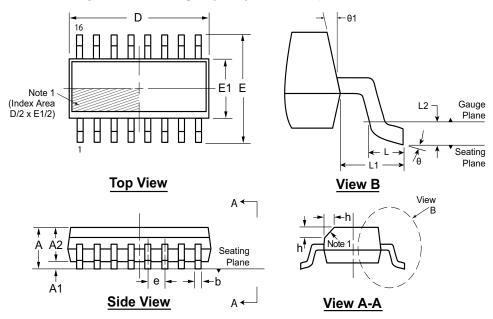
Example

Legend: XX...X Product Code or Customer-specific information

Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')

NNN Alphanumeric traceability code

e3 Pb-free JEDEC® designator for Matte Tin (Sn)


This package is Pb-free. The Pb-free JEDEC designator (e3)

can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for product code or customer-specific information. Package may or not include the corporate logo.

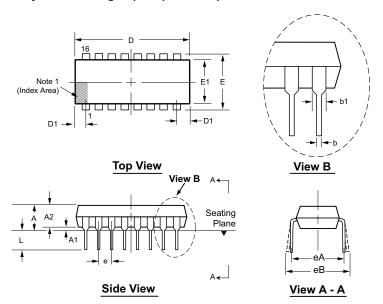
16-Lead SOIC (Narrow Body) Package Outline (NG)

9.90x3.90mm body, 1.75mm height (max), 1.27mm pitch

Note: For the most current package drawings, see the Microchip Packaging Specification at www.microchip.com/packaging.

Note:

This chamfer feature is optional. If it is not present, then a Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.


Symbo	ol	Α	A1	A2	b	D	E	E1	е	h	L	L1	L2	θ	θ1
	MIN	1.35*	0.10	1.25	0.31	9.80*	5.80*	3.80*		0.25	0.40			0 o	5°
Dimension (mm)	NOM	-	-	-	-	9.90	6.00	3.90	1.27 BSC	-	-	1.04 REF	0.25 BSC	-	-
()	MAX	1.75	0.25	1.65*	0.51	10.00*	6.20*	4.00*		0.50	1.27		_ 30	8 º	15°

JEDEC Registration MS-012, Variation AC, Issue E, Sept. 2005. * This dimension is not specified in the JEDEC drawing.

Drawings are not to scale.

16-Lead PDIP (.300in Row Spacing) Package Outline (P)

.790x.250in body, .210in height (max), .100in pitch

Note: For the most current package drawings, see the Microchip Packaging Specification at www.microchip.com/packaging.

A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.

Symbo	ol	Α	A1	A2	b	b1	D	D1	E	E1	е	еA	еВ	L
	MIN	.130*	.015	.115	.014	.045	.745 [†]	.005	.290†	.240			.300*	.115
Dimension (inches)	NOM	-	-	.130	.018	.060	.790	-	.310	.250	.100 BSC	.300 BSC	-	.130
()	MAX	.210	.035*	.195	.023 [†]	.070	.810 [†]	.050*	.325	.280	200	200	.430	.150

JEDEC Registration MS-001, Variation AB, Issue D, June, 1993.

^{*} This dimension is not specified in the JEDEC drawing.
† This dimension differs from the JEDEC drawing. **Drawings not to scale.**

APPENDIX A: REVISION HISTORY

Revision A (May 2016)

- Updated file to Microchip format.
- Merged Supertex Doc #s DSFP-HV9120 and DSFP-HV9123 to Microchip DS20005519A.
- Revised Electrical Characteristics to accommodate the merged products.
- Updated Pin names to reflect new naming convention.
- Significant text changes to **Detailed Description**
- · Minor text changes throughout.

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	<u>xx</u> -	<u> </u>	Ex	amples:	
 Device	Package Envi Options	 ronmental Media Type	a) b)	HV9120NG-G HV9123NG-G	14-Lead SOIC package, 53/Tube 14-Lead SOIC package, 53/Tube
Device:	HV9120 HV9123	= High Voltage Current-Mode PWM Controller, 10 to 450V input voltage range, 49% duty cycle = High Voltage Current-Mode PWM Controller, 9 to 80V input voltage range, 99% duty cycle	c)	HV9123NG-G-M901	14-Lead SOIC package, 2600/Reel
Package:	NG P	= 16-lead SOIC = 16-lead PDIP			
Environmental	G	= Lead (Pb)-free/ROHS-compliant package			
Media Type:	(blank) M901 M934	= 45/Tube for NG package 24/Tube for P package = 2600/Reel for NG package = 2600/Reel for NG package			

Note: For media types M901 and M934, the base quantity for tap and reel was standardized at 2600/reel. Both options will result in delivery of the same number of parts/reel.

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
 knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data
 Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KEELoQ, KEELoQ logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC³² logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-0537-5

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200

Fax: 480-792-7277 Technical Support:

http://www.microchip.com/support

Web Address: www.microchip.com

Atlanta

Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Cleveland

Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX

Tel: 281-894-5983 Indianapolis

Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor

Tower 6, The Gateway Harbour City, Kowloon

Hong Kong

Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733

Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000

Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470
China - Qingdao

Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829

Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300

Fax: 86-27-5980-5118 China - Xian

Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138

Fax: 86-592-2388138

China - Zhuhai

Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631

Fax: 91-11-4160-8632 India - Pune

Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or

82-2-558-5934 **Malaysia - Kuala Lumpur** Tel: 60-3-6201-9857

Fax: 60-3-6201-9859 **Malaysia - Penang** Tel: 60-4-227-8870

Fax: 60-4-227-4068

Philippines - Manila

Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore

Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung

Tel: 886-7-213-7828 **Taiwan - Taipei**

Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828

Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice
Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399

Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

07/14/15