

Applications

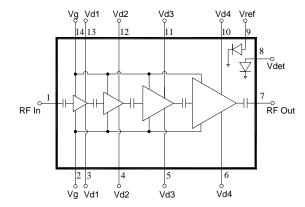
- Point to Point Radio
- Millimeter-wave Communications
- Military & Space

Product Features

Frequency range: 37 - 40 GHz

Output Power: 32.5 dBm Psat, 31.5 dBm P1dB

Gain: 26 dBm Typical


TOI: 38 dBm @ 18 dBm Output/Tone

Integrated Power Detector

• Bias: Vcc = 6V, Icc = 900 mA Typical

Dimension: 2.95 x 2.95 x 0.1 mm

Functional Block Diagram

General Description

The TriQuint TGA4542 is a 37 - 40 GHz Power Amplifier designed using TriQuint's power pHEMT production process.

The TGA4542 typically provides 31.5 dBm of output power at 1dB gain compression with small signal gain of 26 dB. Third Order Intercept is 38 dBm at 18 dBm Output/Tone.

The TGA4542 is ideally suited for Point-to-Point Radio, Ka-band communications, and Millimeter-wave communications.

Lead-free and RoHS compliant.

Evaluation Boards are available upon request.

Bond Pad Configuration

Bond Pad #	Function Label
1	RF In
2, 14	Vg
3, 4, 5, 6, 10, 11, 12, 13	Vd
7	RF Out
8	Vdet
9	Vref

Ordering Information

Part No.	ECCN	Description
TGA4542	3A001.b.2.e	37 - 40 GHz 1W Power Amplifier

Standard order qty = 50 pieces.

Connecting the Digital World to the Global Network®

Specifications

Absolute Maximum Ratings

Parameter	Rating
Drain to Gate Voltage, Vd - Vg	10V
Drain Voltage, Vd	+6.5 V
Gate Voltage, Vg	-4 to 0 V
Drain Current, Id	2086 mA
Gate Current, Ig	-8.2 to 113 mA
Power Dissipation, Pdiss	13.6 W
RF Input Power, CW, 50Ω , T=25°C	26 dBm
Channel Temperature, Tch	200°C
Mounting Temperature (30 Seconds)	320°C
Storage Temperature	-40 to 150°C

Operation of this device outside the parameter ranges given above may cause permanent damage.

Recommended Operating Conditions

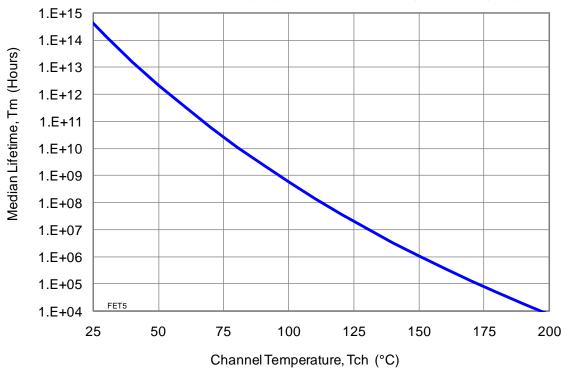
Parameter	Min	Тур	Max	Units
Operating Temp. Range	-40	+25	+85	°C
Vd		6.0		V
ld		900		mA
Id (Under RF Drive)		1500		mA
Vg		-0.7		V

Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

Electrical Specifications

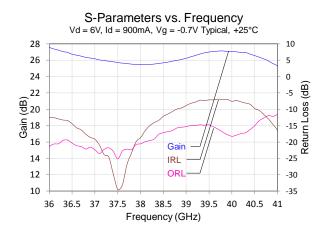
Test conditions unless otherwise noted: 25 °C, Vd = 6 V, Id= 900mA, Vg = -0.7 V Typical.

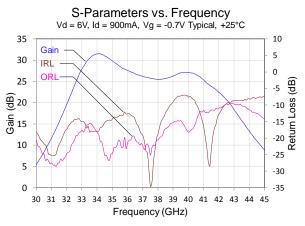
Parameter	Conditions	Min	Тур	Max	Units
Operational Frequency Range		37		40	GHz
Gain			26		dB
Input Return Loss			8		dB
Output Return Loss			15		dB
Output Power	Saturation		32.5		dBm
Output Power	1dB Gain Compression		31.5		dBm
Output TOI	18 dBm Output/Tone		38		dBm
Gain Temperature Coefficient			-0.04		dB/°C
Power Temperature Coefficient	1dB Gain Compression		-0.013		dB/°C

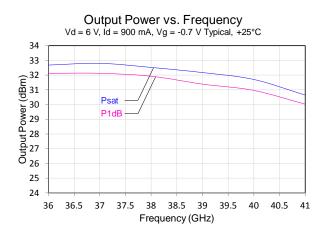

Specifications

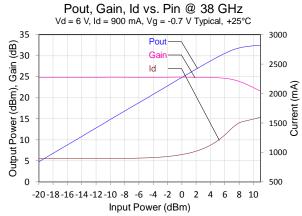
Thermal and Reliability Information

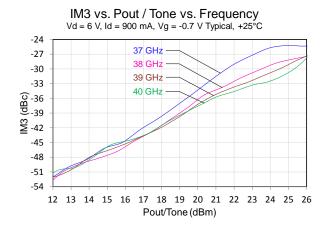
Parameter	Condition	Rating
Thermal Resistance, θ_{JC} , measured to back of thermal spreader	Tbase = 70 °C	
Small-Signal Under RF Drive		$\theta_{JC} = 7.6 ^{\circ}\text{C/W}$ $\theta_{JC} = 10.4 ^{\circ}\text{C/W}$
Channel Temperature (Tch), and Median Lifetime (Tm)	Tbase = 70 °C, Vd = 6 V, Id = 900 mA, Pdiss = 5.4 W	Tch = 111 °C Tm = 2.2E+7 Hours
Channel Temperature (Tch), and Median Lifetime (Tm) Under RF Drive	Tbase = 70 °C, Vd = 6 V, Id = 1500 mA, Pout = 32.5 dBm, Pdiss = 7.2 W	Tch = 145 °C Tm = 1.8E+6 Hours

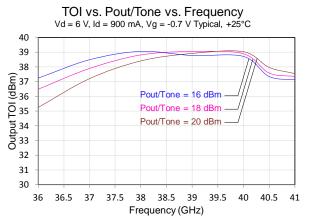

Note: Thermal model includes 38um AuSn bondline and 500um CuMo thermal spreader

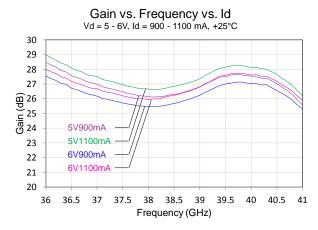

Median Lifetime (Tm) vs. Channel Temperature (Tch)

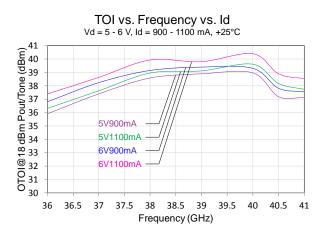


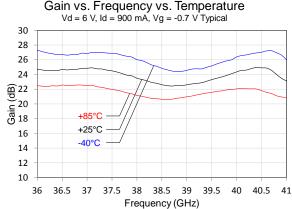


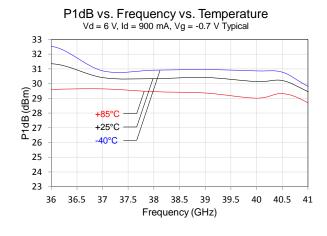

Typical Performance

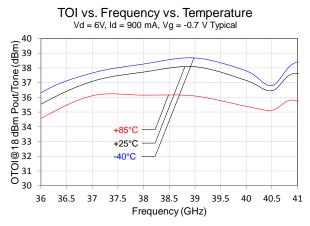






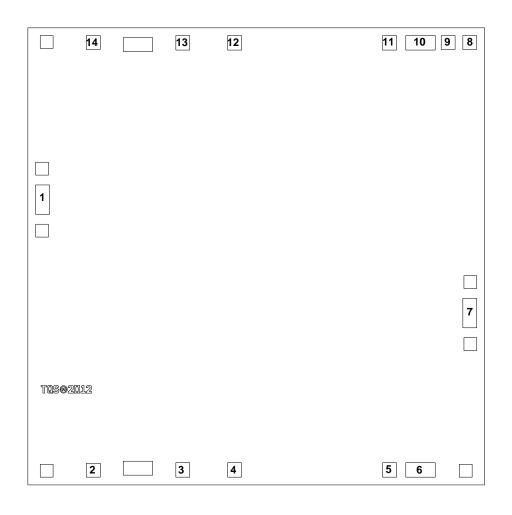



Typical Performance


P1dB vs. Frequency vs. Id Vd = 5 - 6 V, Id = 900 - 1100 mA, +25°C 33 32 31 30 P1dB (dBm) 28 28 26 5V900mA 5V1100mA 6V900mA 26 6V1100mA 25 24 23 36 36.5 37 37.5 38 38.5 39 39.5 40 40.5 Frequency (GHz)

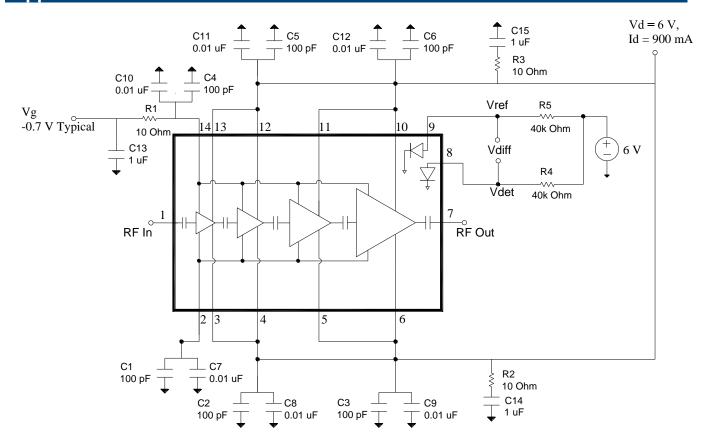
Typical Performance

Power Detector vs. Pout vs. Frequency Vd = +6V, Id = 900 mA, Vg = -0.7 V Typical, 25°C



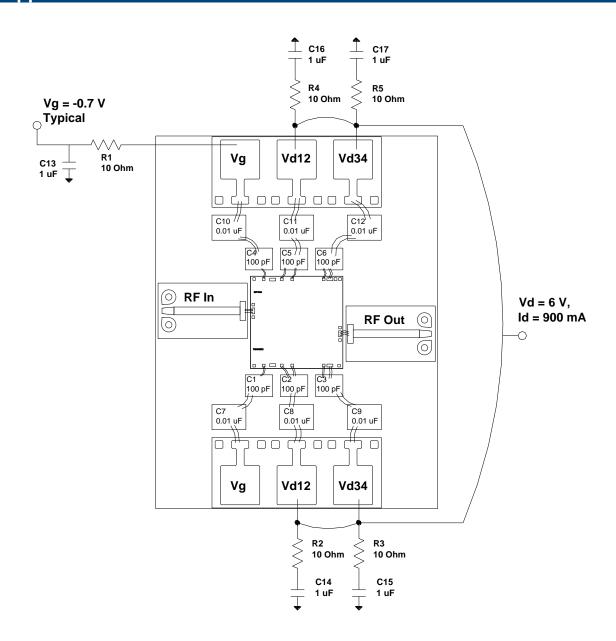
TGA4542

37 - 40 GHz 1W Power Amplifier


Bond Pad Description

Bond Pad	Symbol	Description
1	RF In	Input, matched to 50 ohms
2, 14	Vg	Gate voltage. ESD protection included; Bias network is required; ; see Application Circuit on page 7 as an example.
3, 4, 5, 6, 10, 11, 12, 13	Vd	Drain voltage. Bias network is required; must be biased from both sides; see Application Circuit on page 7 as an example.
7	RF Out	Output, matched to 50 ohms.
8	Vdet	Detector diode output voltage. Varies with RF output power.
9	Vref	Reference diode output voltage.

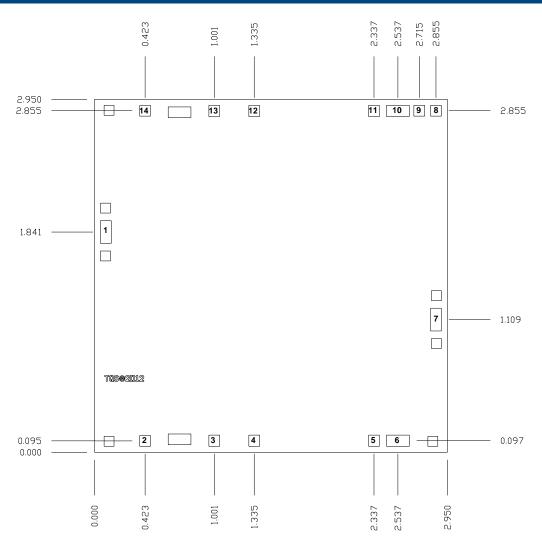
Application Circuit



Vd must be biased from both sides. Vg can be biased from either side.

Bias-up Procedure	Bias-down Procedure
Vg set to -1.5 V	Turn off RF supply
Vd set to +6 V	Reduce Vg to -1.5V. Ensure Id ~ 0 mA
Adjust Vg more positive until quiescent ld is 900 mA. This will be ~ Vg = -0.7 V	Turn Vd to 0 V
Apply RF signal to RF Input	Turn Vg to 0 V

Application Circuit



Bill of Material

Ref Des	Value	Description	Manufacturer	Part Number
C1, C2, C3, C4, C5, C6	100 pF	Cap, 50V, 10%, Single Layer Cap	various	
C7, C8, C9, C10, C11, C12	0.01 µF	Cap, 50V, 10%, SMD	various	

Mechanical Information

Unit: millimeters Thickness: 0.10

Die x, y size tolerance: +/- 0.050

Chip edge to bond pad dimensions are shown to center of pad

Ground is backside of die

Symbol	Pad Size
RF In	0.190 x 0.090
Vg	0.090 x 0.090
Vd	0.093 x 0.090
Vd	0.093 x 0.190
RF Out	0.190 x 0.090
Vdet	0.090 x 0.090
Vref	0.090 x 0.090
	RF In Vg Vd Vd RF Out Vdet

Product Compliance Information

ESD Information

Caution! ESD-Sensitive Device

ESD Rating: Class 0 Value: Passes 100V

Test: Human Body Model (HBM)
Standard: JEDEC Standard JESD22-A114

Solderability

Compatible with both lead-free (260 °C max. reflow temp.) and tin/lead (245 °C max. reflow temp.) soldering processes.

RoHS Compliance

This part is compliant with EU 2002/95/EC RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment).

This product also has the following attributes:

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C₁₅H₁₂Br₄O₂) Free
- PFOS Free
- SVHC Free

Assembly Notes

Component placement and adhesive attachment assembly notes:

- Vacuum pencils and/or vacuum collets are the preferred method of pick up.
- Air bridges must be avoided during placement.
- The force impact is critical during auto placement.
- Organic attachment (i.e. epoxy) can be used in low-power applications.
- Curing should be done in a convection oven; proper exhaust is a safety concern.

Reflow process assembly notes:

- Use AuSn (80/20) solder and limit exposure to temperatures above 300°C to 3-4 minutes, maximum.
- An alloy station or conveyor furnace with reducing atmosphere should be used.
- Do not use any kind of flux.
- Coefficient of thermal expansion matching is critical for long-term reliability.
- Devices must be stored in a dry nitrogen atmosphere.

Interconnect process assembly notes:

- Thermosonic ball bonding is the preferred interconnect technique.
- Force, time, and ultrasonics are critical parameters.
- Aluminum wire should not be used.
- Devices with small pad sizes should be bonded with 0.0007-inch wire.

TGA4542

37 - 40 GHz 1W Power Amplifier

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

Web: <u>www.triquint.com</u> Tel: +1.972.994.8465 Email: <u>info-sales@tqs.com</u> Fax: +1.972.994.8504

For technical questions and application information:

Email: info-networks@tqs.com

Important Notice

The information contained herein is believed to be reliable. TriQuint makes no warranties regarding the information contained herein. TriQuint assumes no responsibility or liability whatsoever for any of the information contained herein. TriQuint assumes no responsibility or liability whatsoever for the use of the information contained herein. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the user. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for TriQuint products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information.

TriQuint products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

TriQuint: