

BIPOLAR DIGITAL INTEGRATED CIRCUIT $\mu PB1508GV$

3 GHz INPUT DIVIDE BY 2 PRESCALER IC FOR DBS TUNERS

 μ PB1508GV is a 3.0 GHz input divide by 2 prescaler IC for DBS tuner applications. μ PB1508GV can make VHF/UHF band PLL frequency synthesizer apply to DBS/ECS tuners. μ PB1508GV is a shrink package version of μ PB584G so that this small package contributes to reduce the mounting space.

 μ PB1508GV is manufactured using NEC's high ft NESATTM IV silicon bipolar process. This process uses silicon nitride passivation film and gold electrodes. These materials can protect chip surface from external pollution and prevent corrosion/migration. Thus, this IC has excellent performance, uniformity and reliability.

FEATURES

High toggle frequency : fin = 0.5 GHz to 3.0 GHz
High-density surface mounting : 8 pin plastic SSOP (175 mil)

• Low current consumption : 5 V, 12 mA

Fixed division : ÷2

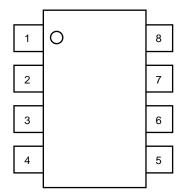
APPLICATION

Prescaler between local oscillator and PLL frequency synthesizer included modulus prescaler

· DBS tuners with kit use of VHF/UHF band PLL frequency synthesizer

ORDERING INFORMATION

PART NUMBER	PACKAGE	MARKING	SUPPLYING FORM
μPB1508GV-E1	8 pin plastic SSOP (175 mil)	1508	Embossed tape 8 mm wide. Pin 1 is in tape pull-out direction. 1 000 p/reel.

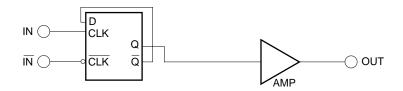

Remarks To order evaluation samples, please contact your local NEC sales office.

(Part number for sample order: μ PB1508GV)

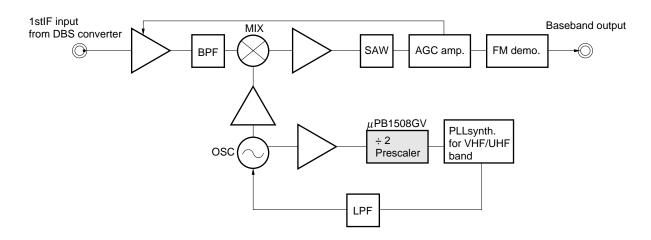
Caution: Electro-static sensitive devices

PIN CONNECTION (Top View)

Pin No.	Pin name
1	Vcc
2	IN
3	ĪN
4	GND
5	GND
6	NC
7	OUT
8	NC


PRODUCT LINE-UP

Product No.	Icc (mA)	fin (GHz)	Vcc (V)	Package	Pin Connection
μPB581A	30	0.5 to 2.8	4.5 to 5.5	8 pins CAN	-
μPB581C	30	0.5 to 2.2	4.5 to 5.5	8 pins DIP (300 mil)	NEC Original
μPB584G	18	0.5 to 2.5	4.5 to 5.5	8 pins SOP (225 mil)	NEC Original
μPB1508GV	12	0.5 to 3.0	4.5 to 5.5	8 pins SSOP (175 mil)	


Remarks This table shows the TYP values of main parameters. Please refer to ELECTRICAL CHARACTERISTICS.

 μ PB581A, μ PB581C and μ PB584G are discontinued.

INTERNAL BLOCK DIAGRAM

SYSTEM APPLICATION EXAMPLE RF unit block of DBS tuners

PIN EXPLANATION

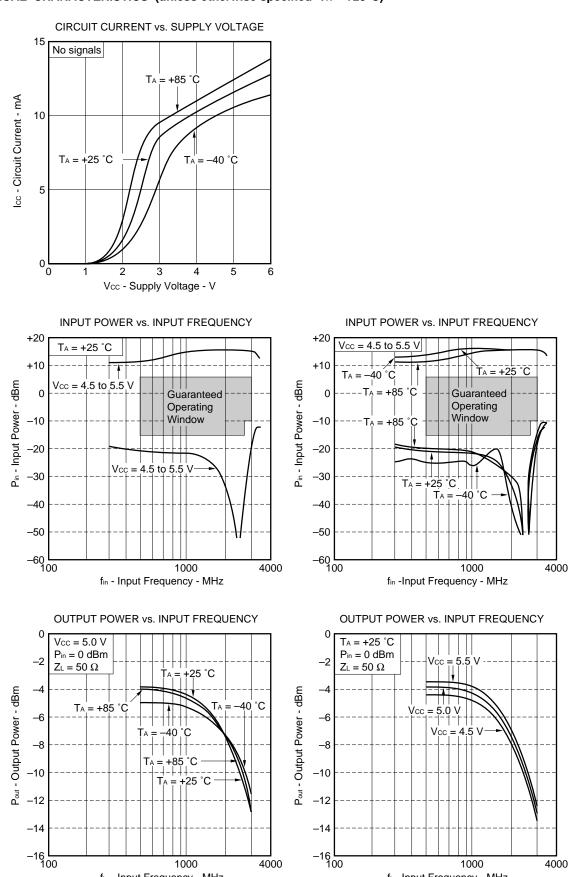
Pin No.	Symbol	Applied voltage	PIN voltage	Functions and explanation
1	Vcc	4.5 to 5.5	_	Power supply pin. This pin must be equipped with bypass capacitor (eg 1 000 pF) to minimize ground impedance.
2	IN	_	1.7 to 4.95	Signal input pin. This pin should be coupled to signal source with capacitor (eg 1 000 pF) for DC cut.
3	ĪN	_	1.7 to 4.95	Signal input bypass pin. This pin must be equipped with bypass capacitor (eg 1 000 pF) to minimize ground impedance.
4, 5	GND	0	_	Ground pin. Ground pattern on the board should be formed as wide as possible to minimize ground impedance.
6, 8	NC	_	_	Non connection pins. These pins should be opened.
7	OUT		1.0 to 4.7	Divided frequency output pin. This pin is designed as emitter follower output. This pin can be connected to input of prescaler within PLL synthesizer through DC cut capacitor.

ABSOLUTE MAXIMUM RATINGS

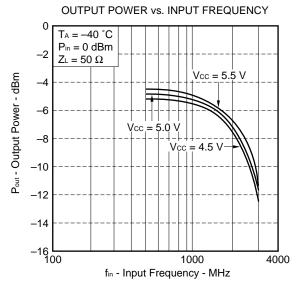
PARAMETER	SYMBOL	CONDITION	RATINGS	UNIT
Supply voltage	Vcc	T _A = +25 °C	6.0	V
Input voltage	Vin	T _A = +25 °C	6.0	V
Total power dissipation	Po	Mounted on double sided copper clad $50 \times 50 \times 1.6$ mm epoxy glass PWB (T _A = +85 °C)	250	mW
Operating ambient temperature	TA		-40 to +85	°C
Storage temperature	T _{stg}		-55 to +150	°C

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	REMARKS
Supply voltage	Vcc	4.5	5.0	5.5	V	
Operating ambient temperature	TA	-40	+25	+85	°C	

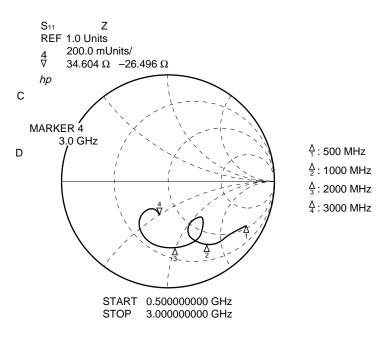

ELECTRICAL CHARACTERISTICS (TA = -40 to +85 °C, Vcc = 4.5 to 5.5 V, Zs = ZL = 50 Ω)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Circuit current	Icc	No signals	7.6	12	14.5	mA
Upper limit operating frequency 1	fin(U)1	$P_{in} = -10 \text{ to } +6 \text{ dBm}$	3.0	_		GHz
Upper limit operating frequency 2	fin(U)2	$P_{in} = -15 \text{ to } +6 \text{ dBm}$	2.7	_		GHz
Lower limit operating frequency	f _{in(L)}	$P_{in} = -15 \text{ to } +6 \text{ dBm}$	_	_	0.5	GHz
Input power 1	P _{in1}	fin = 2.7 to 3.0 GHz	-10	_	+6	dBm
Input power 2	P _{in2}	fin = 0.5 to 2.7 GHz	-15	_	+6	dBm
Output power	Pout	Pin = 0 dBm, fin = 2 GHz	-12	-7	_	dBm


TYPICAL CHARACTERISTICS (unless otherwise specified TA = +25°C)

fin - Input Frequency - MHz

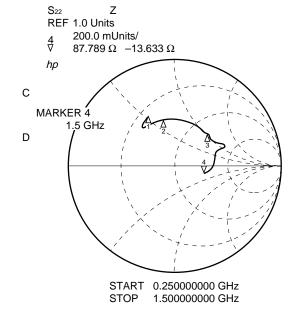
fin -Input Frequency - MHz



OUTPUT POWER vs. INPUT FREQUENCY T_A = +85 °C $P_{in} = 0 dBm$ $Z_L = 50 \Omega$ Vcc = 5.5 V Pout - Output Power - dBm -6 -8 Vcc = 4.5 V -10 -12 -14 -16 **└** 100 1000 4000 fin - Input Frequency - MHz

S₁₁ vs. INPUT FREQUENCY

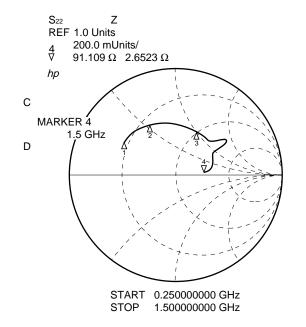
Vcc = 5.0 V



FREQUENCY	5	S ₁₁
MHz	MAG	ANG
500.0000	.850	-30.2
600.0000	.796	-37.8
700.0000	.790	-39.2
800.0000	.754	-45.2
900.0000	.766	-53.7
1000.0000	.701	-57.6
1100.0000	.660	-62.3
1200.0000	.606	-67.2
1300.0000	.571	-70.3
1400.0000	.521	-70.6
1500.0000	.495	-68.3
1600.0000	.441	-60.6
1700.0000	.479	-45.1
1800.0000	.602	-62.3
1900.0000	.595	-74.2
2000.0000	.608	-82.9
2100.0000	.603	-89.8
2200.0000	.599	-97.3
2300.0000	.588	-107.7
2400.0000	.532	-122.0
2500.0000	.396	-132.0
2600.0000	.325	-127.1
2700.0000	.270	-123.6
2800.0000	.232	-122.7
2900.0000	.258	-105.8
3000.0000	.351	-103.7

S₂₂ vs. OUTPUT FREQUENCY

Vcc = 5.0 V, fin = 498 MHz


FREQUENCY	s	22
MHz	MAG	ANG
250.0000	.526	118.9
300.0000	.463	131.2
350.0000	.466	124.7
400.0000	.460	117.1
450.0000	.441	110.2
500.0000	.456	103.0
550.0000	.353	94.8
600.0000	.438	91.1
650.0000	.444	83.9
700.0000	.436	78.3
750.0000	.435	71.8
800.0000	.431	65.9
850.0000	.431	60.3
900.0000	.431	53.7
950.0000	.408	49.2
1000.0000	.445	44.9
1050.0000	.428	41.0
1100.0000	.429	33.7
1150.0000	.355	42.7
1200.0000	.418	20.0
1250.0000	.403	17.1
1300.0000	.392	9.6
1350.0000	.368	3.3
1400.0000	.343	-3.4
1450.0000	.319	-9.2
1500.0000	.289	-14.1

∆₁: 250 MHz

 $\frac{\Delta}{2}$: 500 MHz $\frac{\Delta}{3}$: 1000 MHz $\frac{\Delta}{4}$: 1500 MHz

S₂₂ vs. OUTPUT FREQUENCY

Vcc = 5.0 V, fin = 3002 MHz

	250.0000	.555	146.6
	300.0000	.545	139.9
	350.0000	.571	136.1
	400.0000	.529	127.9
	450.0000	.521	122.4
	500.0000	.515	116.9
	550.0000	.510	104.5
∆ : 250 MHz	600.0000	.492	106.6
	650.0000	.487	100.9
[∆] ₂ : 500 MHz	700.0000	.482	95.3
$\frac{\Delta}{3}$: 1000 MHz	750.0000	.473	89.9
∆ 4 : 1500 MHz	800.0000	.461	83.8
4. 1300 MITZ	850.0000	.454	78.4
	900.0000	.449	72.3
	950.0000	.430	69.6
	1000.0000	.443	64.3
	1050.0000	.444	58.8
	1100.0000	.440	52.3
	1150.0000	.438	46.0
	1200.0000	.501	37.5
	1250.0000	.408	32.9
	1300.0000	.388	25.1
	1350.0000	.359	16.3
	1400.0000	.335	9.7

1450.0000

1500.0000

.304

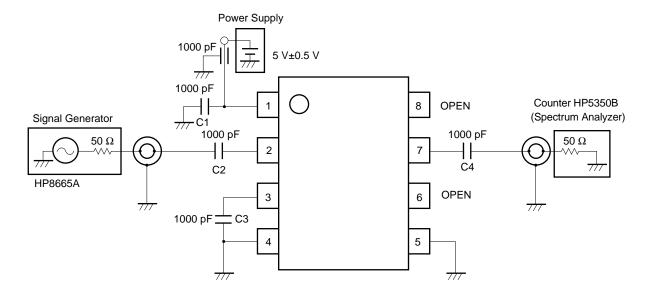
.285

FREQUENCY

MHz

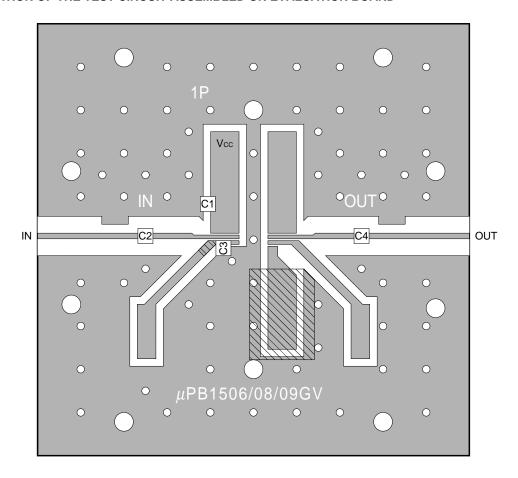
S22

ANG


MAG

3.1

4.6



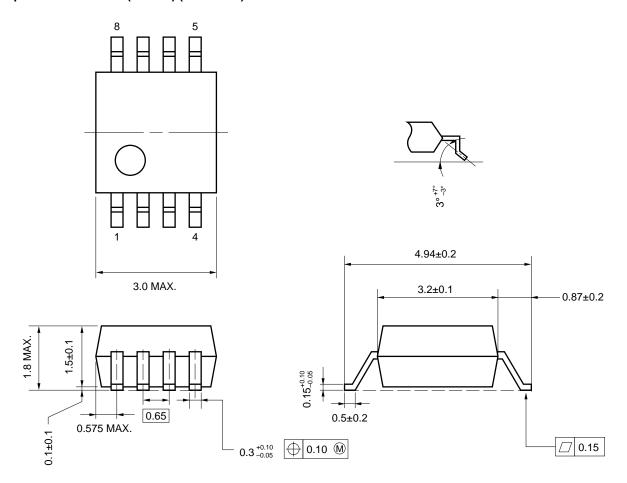
TEST CIRCUIT

ILLUSTRATION OF THE TEST CIRCUIT ASSEMBLED ON EVALUATION BOARD

COMPONENT LIST

SYMBOL	VALUE
C1 to C4	1000 pF

EVALUATION BOARD CHARACTERS


- (1) 35 μm thick double-sided copper clad 50 \times 50 \times 0.4 mm polyimide board
- (2) Back side: GND pattern
- (3) Solder plated patterns
- (4) ∘ ○: Through holes
- (5) of pin 3: partern should be removed.
- (6) of pin 5: short chip must be attached to be grounded.

The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.

PACKAGE DIMENSIONS

8 pin PLASTIC SSOP (175 mil) (unit: mm)

NOTE CORRECT USE

- (1) Observe precautions for handling because of electro-static sensitive devices.
- (2) Form a ground pattern as wide as possible to minimize ground impedance (to prevent undesired operation).
- (3) Keep the wiring length of the ground pins as short as possible.
- (4) Connect a bypass capacitor (e.g. 1 000 pF) to the Vcc pin.

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered in the following recommended conditions. Other soldering methods and conditions than the recommended conditions are to be consulted with our sales representatives.

μPB1508GV

Soldering method	Soldering conditions	Recommended condition symbol
Infrared ray reflow	Package peak temperature: 235 °C, Hour: within 30 s. (more than 210 °C), Time: 3 times, Limited days: no.*	IR35-00-3
VPS	Package peak temperature: 215 °C, Hour: within 40 s. (more than 200 °C), Time: 3 times, Limited days: no.*	VP15-00-3
Wave soldering	Soldering tub temperature: less than 260 °C, Hour: within 10 s., Time: 1 time, Limited days: no.	WS60-00-1
Pin part heating	Pin area temperature: less than 300 °C, Hour: within 3 s./pin, Limited days: no.*	

^{*} It is the storage days after opening a dry pack, the storage conditions are 25 °C, less than 65 % RH.

Caution The combined use of soldering method is to be avoided (However, except the pin area heating method).

For details of recommended soldering conditions for surface mounting, refer to information document SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL (C10535E).

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.

M4 96.5