RECTIFIER, up to 1kV, 2A, 2µs

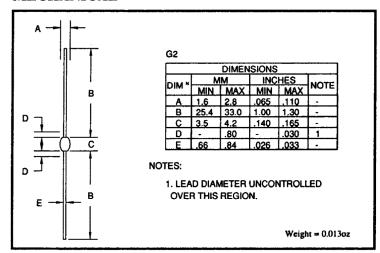
1N5614 S₂M 1N5616 **S4M** 1N5618 S₆M 1N5620 S8M 1N5622 S₀M

January 7, 1998

TEL:805-498-2111 FAX:805-498-3804 WEB:http://www.semtech.com

QUICK REFERENCE AXIAL LEADED HERMETICALLY SEALED DATA STANDARD RECOVERY RECTIFIER DIODE

- = 2.0A
- $t_{rr} = 2\mu S$
- $V_F = 1.1V$
- $V_R = 200 1000V$ Low reverse leakage current
 - Hermetically sealed in Metoxilite fused metal oxide
 - Good thermal shock resistance
 - Low forward voltage drop
 - Avalanche capability.


ABSOLUTE MAXIMUM RATINGS (@ 25°C unless otherwise specified)

	Symbol	1N5614 1N5616 1N5618 1N5620 1N5622 Unit S2M S4M S6M S8M S0M
Working reverse voltage	V _{RWM}	200 400 600 800 1000 V
Repetitive reverse voltage	V _{RRM}	200 400 600 800 1000 V
Average forward current (@ 55°C, lead length 0.375")	I _{F(AV)}	2.0 — A
Repetitive surge current (@ 55°C in free air, lead length 0.375")	I _{FRM}	→ 10 → A
Non-repetitive surge current $(t_p = 8.3 \text{mS}, @ V_R \& T_{jmax})$	I _{FSM}	→ 30 → A
Storage temperature range	TSTG	← -65 to +175 → °C
Operating temperature range	TOP	← -65 to +175 — °C

These products are qualified to MIL-PRF-19500/427 and are preferred parts as listed in MIL-STD-701. They can be supplied fully released as JAN, JANTX, JANTXV and JANS versions.

These products are available in Europe to DEF STAN 59-61 (PART 80)/029 to F and FX levels.

MECHANICAL

1N5614 S2M 1N5616 S4M 1N5618 S6M 1N5620 S8M 1N5622 S0M

January 7, 1998

CHARACTERISTICS (@ 25°C unless otherwise specified)

	Symbol	1N5614 1N5616 1N5618 1N5620 1N5622 S2M S4M S6M S8M S0M	Unit
Average forward current (sine wave) - max. pcb mounted; T _A = 55°C - max. L = 3/8"; T _L = 55°C	I _{F(AV)} I _{F(AV)}	1.0	A A
I^2 t for fusing (t = 8.3mS) max.	I ² t	5.0	A ² S
Forward voltage drop max. @ $I_F = 1.0A$, $T_j = 25^{\circ}$ C	V_{F}	1.1	v
Reverse current max. @ V_{RWM} , $T_j = 25^{\circ}C$ @ V_{RWM} , $T_j = 100^{\circ}C$	I _R I _R	0.5	μΑ μΑ
Reverse recovery time max. 0.5A I _F to 1.0A I _R . Recovers to 0.25A I _{RR} .	t _{rr}	← 2.0 ←	μS
Junction capacitance typ. $@V_R = 5V$, $f = 1MHz$	Cj	23	ρF
Thermal resistance - junction to lead Lead length = 0.375" Lead length = 0"	R _{0JL} R _{0JL}		°C/W °C/W
Thermal resistance - junction to amb. on 0.06" thick pcb. 1 oz. copper.	R _{0JA}	← 95 −	°C/W

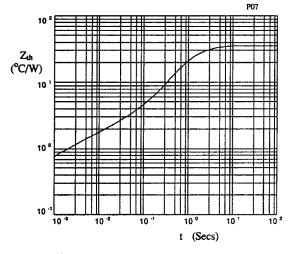


Fig 1. Transient thermal impedance characteristic.

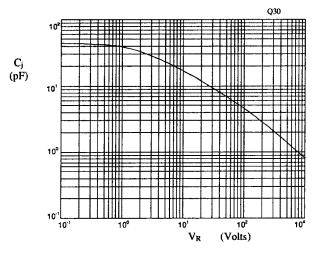


Fig 2. Typical junction capacitance as a function of reverse voltage.

1N5614 S2M 1N5616 S4M 1N5618 S6M 1N5620 S8M 1N5622 S0M

January 7, 1998

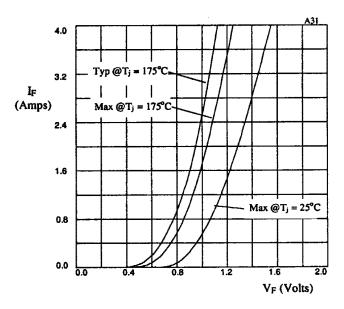


Fig 3. Forward voltage drop as a function of forward current.



Fig 4. Maximum power versus lead temperature.

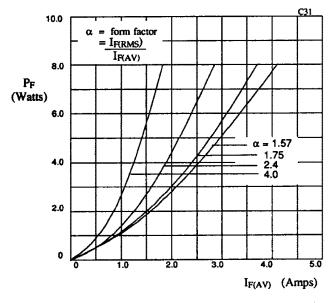


Fig 5. Forward power dissipation as a function of forward current, for sinusoidal operation.

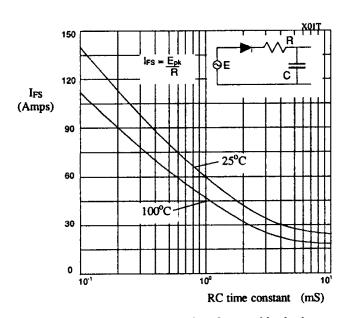


Fig 6. Maximum ratings for capacitive loads.