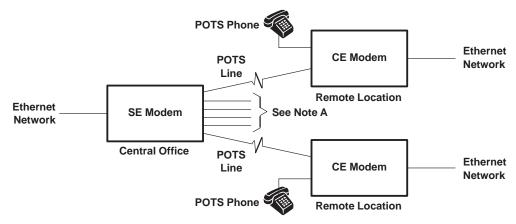

- Single-Chip EtherLoop Modem
- Optimized for Client and Server Modem Applications
- Glueless Interface to EtherLoop Processor Interface, Analog-to-Digital Converter (ADC), and Digital-to-Analog Converter (DAC)
- Implements 6-Mbit/s Modem Algorithms

- Supports Wide Range of Symbol Rates, Allowing Adaptation to Line Conditions
- Operates in Presence of Bridge Taps
- Industrial Operating Free-Air Temperature to Support Central Office and Distributed Server Applications
- Packaged in 208-Pin Plastic Quad Flatpack

PPB PACKAGE[†] (TOP VIEW)

†Thermally enhanced molded plastic package with a heat slug (HSL)


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EtherLoop is a trademark of Elastic Networks.

description

The TNETEL1200 is an EtherLoop modem. EtherLoop technology enables simultaneous voice and Ethernet communication over local-loop plain old telephone service (POTS) wiring. The TNETEL1200 supports data rates of up to 6 Mbit/s and POTS wire lengths of up to 21,000 feet. Figure 1 shows a typical system with an EtherLoop modem located at each end of the POTS line. Each EtherLoop modem has a 10Base-T Ethernet interface and is responsible for buffering Ethernet data before sending it over the POTS wire. The server-end (SE) EtherLoop modem is located in a central switching office and can communicate with several client-end (CE) EtherLoop modems, based on a round-robin arbitration scheme. The CE EtherLoop modem typically is located at a remote site.

NOTE A: Flexible multiplexing scheme allows one SE modem to interface with many CE modems.

Figure 1. Typical EtherLoop System

Figure 2 shows a block diagram of a typical CE EtherLoop modem. Ethernet data destined for the POTS wire is received via 10Base-T interface and presented to the EtherLoop processor. The EtherLoop processor performs Ethernet frame processing and buffer management. The EtherLoop processor sends buffered Ethernet frames to the TNETEL1200 EtherLoop modem (via an HDLC interface). The TNETEL1200 performs data modulation before passing the modulated digital data to a digital-to-analog converter (DAC). The resulting analog signal passes to the EtherLoop transceiver, which acts as the line interface. The modem uses a half-duplex communication protocol over the POTS wire, and data received from the POTS wire follows the reverse path back to the Ethernet framer.

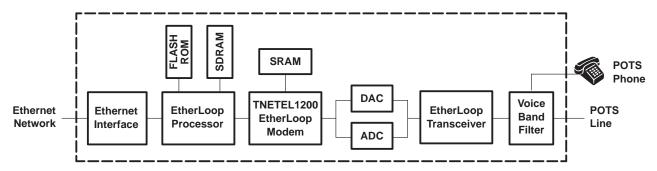


Figure 2. Typical CE EtherLoop Modem

description (continued)

Figure 3 shows a block diagram of a typical SE EtherLoop modem. Data flow follows the same path as in the CE EtherLoop modem. In the SE application, the EtherLoop processor also performs round-robin arbitration between each of the attached EtherLoop transceiver devices.

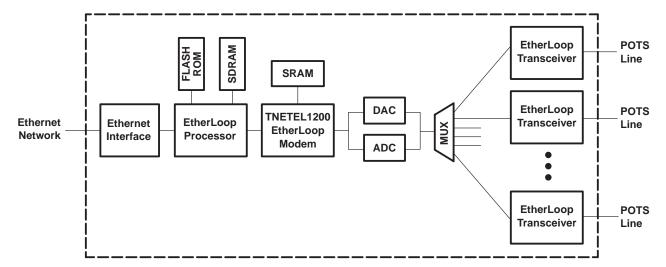


Figure 3. Typical SE EtherLoop Modem

summary of TNETEL1200 EtherLoop modem

- Modulates serial HDLC data stream and presents results to DAC
- Demodulates data from analog-to-digital converter (ADC) and presents results as an HDLC data stream
- Supports wide range of data symbol rates to accommodate a range of line conditions

transmitter and receiver

The TNETEL1200 performs modulation of the digital data stream transmitted from the EtherLoop modem and demodulation of the digital data stream received by the EtherLoop modem. The TNETEL1200 supports a variety of modulation schemes and symbol rates. This flexibility allows the modem to adapt to changing conditions on the POTS line. The modem is designed to compensate for the presence of bridge taps on the POTS line, allowing for easy service deployment.

Figure 4 shows the EtherLoop modem block diagram.

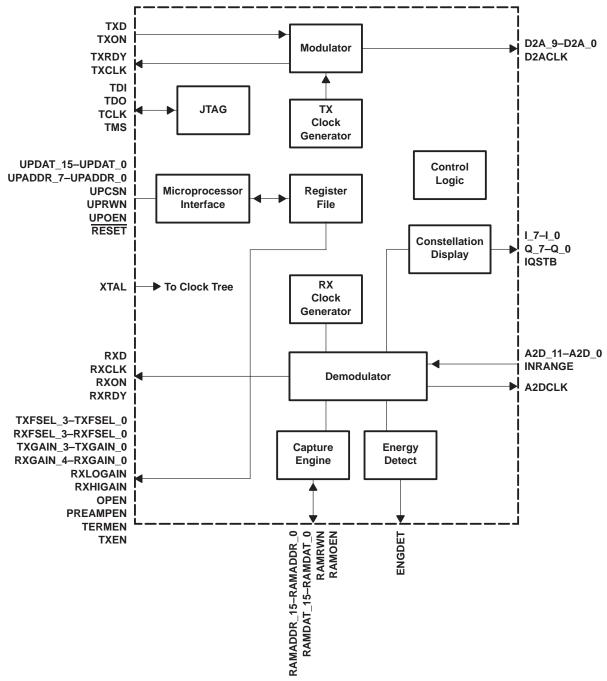


Figure 4. EtherLoop Modem Block Diagram

Terminal Functions

microprocessor

TERMINAL		+	DESCRIPTION		
NAME	NO.	1/0†	DESCRIPTION		
UPADDR_7 UPADDR_6 UPADDR_5 UPADDR_4 UPADDR_3 UPADDR_2 UPADDR_1	30 31 32 33 35 36 37	I	Bits 7–0 of the microprocessor address bus; used to address the register file.		
UPADDR_0	38				
UPCSN	27	I	Microprocessor chip-select line (active low). UPCSN is used to initiate an access to the register file.		
UPDAT_15 UPDAT_14 UPDAT_13 UPDAT_12 UPDAT_11 UPDAT_10 UPDAT_9 UPDAT_8 UPDAT_7 UPDAT_6 UPDAT_5 UPDAT_5 UPDAT_4 UPDAT_3 UPDAT_3 UPDAT_2 UPDAT_1 UPDAT_1	2 3 5 6 8 9 11 12 14 15 17 18 20 21 23 24	I/O	Bits 15–0 of the microprocessor data bus; used to communicate with the register file.		
UPOEN	28	I	Microprocessor output-enable line (active low). UPOEN enables the output onto the data bus.		
UPRWN	26	I	Microprocessor read/write line. UPRWN is used to differentiate between reads and writes to the register file.		

 $[\]dagger$ I = input, O = output

system

TERMINAL		+	DESCRIPTION		
NAME	NO.	1/0†	DESCRIPTION		
RESET	45	Ι	System reset. If RESET is set low, it sets all flip-flops to initial state.		
XTAL	42	I	System clock. Frequency is 80 MHz, 50% duty cycle.		

[†] I = input, O = output

serial loop communications

TERMIN	NAL	+	DESCRIPTION	
NAME	NO.	1/0†	DESCRIPTION	
RXCLK	194	0	Receive clock. RXCLK is driven by the TNETEL1200 to clock receive data into the microprocessor.	
RXD	198	0	Receive data. RXD is the data from the TNETEL1200 from the loop being sent to the microprocessor.	
RXON	206	I	Receive on. RXON is driven by the microprocessor to enable the TNETEL1200 loop receiver.	
RXRDY	201	0	Receive ready. RXRDY is driven by the TNETEL1200 to inform the microprocessor that the TNETEL1200 is ready for receiving data from the loop.	
TXCLK	196	0	Transmit clock. TXCLK is driven by the TNETEL1200 to clock transmit data out of the microprocessor.	
TXD	204	I	Transmit data. TXD is the data from the microprocessor to be driven onto the loop by the TNETEL1200.	
TXON	207	I	Transmit on. TXON is driven by the microprocessor to enable the TNETEL1200 loop transmitter.	
TXRDY	202	0	Transmit ready. TXRDY is driven by the TNETEL1200 to inform the microprocessor that the TNETEL1200 is ready for transmitting onto the loop.	

 $[\]dagger$ I = input, O = output

signal data

TERMINAL		+	DESCRIPTION			
NAME	NO.	1/0†	DESCRIPTION			
A2D_11	149					
A2D_10	148					
A2D_9	147					
A2D_8	146					
A2D_7	144					
A2D_6	143		Bits 11–0 of the data signal values sent from the ADC in the analog loop receiver			
A2D_5	142	l '	Bits 11 of the data signal values sent from the 7De in the dinalog loop received			
A2D_4	141					
A2D_3	139					
A2D_2	138					
A2D_1	137					
A2D_0	136					
A2DCLK	134	0	Clock. A2DCLK is used to clock the data out of the ADC.			
D2A_9	166					
D2A_8	165					
D2A_7	164					
D2A_6	162					
D2A_5	161	0	Bits 9–0 of the data signal values sent to the DAC in the analog loop transmitter			
D2A_4	160		bits 5 of the data signal values sent to the BAO in the analog loop transmitted			
D2A_3	159					
D2A_2	155					
D2A_1	154					
D2A_0	153					
D2ACLK	168	0	Clock. D2ACLK is used to clock the data into the DAC.			
INRANGE	151	I	Data overflow signal from the ADC			

 $[\]dagger I = input, O = output$

capture buffer

TERMINAL		+	DESCRIPTION		
NAME	NO.	1/0†	DESCRIPTION		
RAMADDR_15 RAMADDR_14 RAMADDR_13 RAMADDR_12 RAMADDR_11 RAMADDR_10 RAMADDR_9 RAMADDR_8 RAMADDR_7 RAMADDR_6 RAMADDR_6 RAMADDR_5 RAMADDR_4 RAMADDR_4 RAMADDR_3 RAMADDR_1 RAMADDR_1 RAMADDR_1 RAMADDR_1	81 82 84 85 87 88 90 91 93 94 96 97 99 100 102 103	0	Bits 15–0 of the address path from the TNETEL1200 and the capture buffer SRAM		
RAMDAT_15 RAMDAT_14 RAMDAT_13 RAMDAT_12 RAMDAT_11 RAMDAT_10 RAMDAT_9 RAMDAT_9 RAMDAT_7 RAMDAT_6 RAMDAT_6 RAMDAT_5 RAMDAT_4 RAMDAT_3 RAMDAT_4 RAMDAT_3 RAMDAT_1 RAMDAT_1 RAMDAT_1 RAMDAT_1	54 55 57 58 60 61 63 64 66 67 69 70 72 73 75 76	I/O	Bits15–0 of the data path between the TNETEL1200 and the capture buffer SRAM		
RAMOEN	79	0	SRAM output enable (active low). RAMOEN is the output enable from the TNETEL1200 to the capture buffer SRAM.		
RAMRWN	78	0	SRAM read/write. RAMRWN is the read/write signal from the TNETEL1200 to the capture buffer SRAM.		

[†] I = input, O = output

analog loop control

TERMINA	TERMINAL		DESCRIPTION			
NAME	NO.	1/0†	DESCRIPTION			
OPEN	105	0	Open. Control signal to open and close link between line driver and line load.			
PREAMPEN	120	0	Preamplifier enable. PREAMPEN enables the preamplifier.			
RXFSEL_3 RXFSEL_2 RXFSEL_1 RXFSEL_0	113 114 115 116	0	Receiver filter. Bits 3–0 enable the receiver filter sections.			
RXGAIN_4 RXGAIN_3 RXGAIN_2 RXGAIN_1 RXGAIN_0	107 108 109 110 111	0	Receiver gain. Bits 4–0 enable the receiver gain sections (1, 2, 4, 8, 16 dB).			
RXHIGAIN	118	0	Receiver high gain. RXHIGAIN controls a preamplifier in the receiver.			
RXLOGAIN	119	0	Receiver low gain. RXHIGAIN controls a preamplifier in the receiver.			
TERMEN	121	0	Termination enable. TERMEN enables the line termination.			
TXEN	122	0	Transmitter enable. TXEN enables the output transmitter sections.			
TXFSEL_3 TXFSEL_2 TXFSEL_1 TXFSEL_0	129 130 131 132	0	Transmitter filter. Bits 3–0 enable the transmitter filter sections.			
TXGAIN_3 TXGAIN_2 TXGAIN_1 TXGAIN_0	124 125 126 127	0	Transmitter gain. Bits 3–0 enable transmitter gain sections.			

[†] I = input, O = output

debug

	TERMINAL		DESCRIPTION
NAME ENGDET	NO. 200	0	Energy detect
I_7 I_6 I_5 I_4 I_3 I_2 I_1	171 172 173 174 176 177 178 179	0	Bits 7–0 of the I component of the demodulated signal (test only)
IQSTB	181	0	IQSTB is used to clock out the I and Q data (test only).
Q_7 Q_6 Q_5 Q_4 Q_3 Q_2 Q_1 Q_0	183 184 185 186 188 189 190	0	Bits 7–0 of the Q component of the demodulated signal (test only)

 $[\]dagger I = input, O = output$

design for test

TERMII	TERMINAL		DESCRIPTION					
NAME	NO.	1/0†	DESCRIPTION					
TDI	47	I	Test data input					
TDO	52	0	Test data output					
TCLK	41	I	Test clock					
TMS	48	I	Test mode select					
TRIN	49	I	Asynchronous output pad 3-state (active low)					
TRSTN	50	I	Asynchronous TAP reset (active low)					

[†] I = input, O = output

power supply

	TERMINAL	DESCRIPTION	
NAME	NO.		
GND	4, 10, 16, 22, 29, 39, 43, 46, 53, 59, 65, 71, 83, 89, 95, 101, 112, 123, 133, 140, 150, 156, 158, 167, 170, 180, 187, 193, 197, 203, 208	Digital supply return	
VCC	1, 7, 13, 19, 25, 34, 40, 44, 51, 56, 62, 68, 74, 80, 86, 92, 98, 104, 106, 117, 128, 135, 145, 152, 157, 163, 169, 175, 182, 192, 195, 199, 205	3.3-V core and I/O power	

Table 1. Processor Interface Signal List

TERMINAL NAME	1/0†	SIGNAL
UPDAT15-UPDAT0	I/O	Microprocessor data bus
UPADDR7-UPADDR0	I	Microprocessor address bus
UPRWN	I	Microprocessor read/write enable
UPCSN	I	Microprocessor chip select (active low)
UPOEN	i	Microprocessor output enable (active low)

 $[\]dagger$ I = input, O = output

Table 2. Operating Conditions (I/O Terminals)

MICROPROCESSOR

TERMINAL NAME	ı/o†	HYSTERESIS	5-V TOLERANT	3.6-V FAILSAFE
UPDAT15-UPDAT0	I/O	Υ	N	Υ
UPADDR7-UPADDR0	- 1	Υ	N	N
UPRWN	- 1	Υ	N	N
UPCSN	- 1	Υ	N	N

 $[\]dagger I = input, O = output$

SYSTEM

TERMINAL NAME	TYPE‡	HYSTERESIS	5-V TOLERANT	3.6-V FAILSAFE
XTAL	Ι	Υ	N	N
RESET	I	Y	N	N

[‡]I = input

SERIAL LOOP COMMUNICATIONS

TERMINAL NAME	1/0†	HYSTERESIS	5-V TOLERANT	3.6-V FAILSAFE
TXRDY	0		N	
TXCLK	0		N	
TXON	I	Υ	N	N
TXD	Ι	Y	N	N
RXRDY	0		N	
RXCLK	0		N	
RXON	I	Υ	N	N
RXD	0		N	·

[†] I = input, O = output

Table 2. Operating Conditions (I/O Terminals) (Continued)

SIGNAL DATA

TERMINAL NAME	ı/o†	HYSTERESIS	5-V TOLERANT	3.6-V FAILSAFE
D2A9-D2A0	0		Y	
D2ACLK	0		Υ	
A2D11-A2D0	I	Υ	Y	
A2DCLK	0		Y	
INRANGE	1	Y	Υ	

 $[\]dagger I = input, O = output$

CAPTURE BUFFER

TERMINAL NAME	ı/o†	HYSTERESIS	5-V TOLERANT	3.6-V FAILSAFE
RAMDAT15-RAMDAT0	I/O	Υ	N	Y
RAMADDR15-RAMADDR0	0		N	
RAMRDN	0		N	
RAMOEN	0		N	

 $[\]dagger$ I = input, O = output

ANALOG LOOP CONTROL

TERMINAL NAME	TYPE‡	HYSTERESIS	5-V TOLERANT	3.6-V FAILSAFE
RXGAIN4-RXGAIN0	0		Y	
RXFSEL3-RXFSEL0	0		Y	
RXHIGAIN	0		Υ	
RXLOGAIN	0		Y	
PREAMPEM	0		Υ	
TERMEN	0		Y	
TXGAIN3-TXGAIN0	0		Y	
TXFSEL3-TXFSEL0	0		Υ	
RXEN	0		Y	

[‡]O = output

DEBUG

TERMINAL NAME	түре‡	HYSTERESIS	5-V TOLERANT	3.6-V FAILSAFE
I_7-I_0	0		N	
Q_7-Q_0	0		N	
IQSTB	0		N	

[‡]O = output

Table 2. Operating Conditions (I/O Terminals) (Continued)

DESIGN FOR TEST

TERMINAL NAME	ı/o†	HYSTERESIS	5-V TOLERANT	3.6-V FAILSAFE
TDI	I	Υ	N	N
TDO	0		N	
TCLK	Ι	Υ	N	N
TMS	I	Y	N	N

 $[\]dagger$ I = input, O = output

Table 3. Power Consumption (V_{CC} = 3.3 V, T_A = 25°C, R_L = 500 Ω)[‡]

SYMBOL	DESCRIPTION	POWER (W)§
P _{total}	Total power	1.7

 $^{^{\}ddagger}$ All I/Os have a resistive load of 75 Ω , and the source and sink current is set to 0 mA.

[§] DFT circuitry is inactive.

absolute maximum ratings over operating free-air temperature (unless otherwise noted)†

Core supply-voltage range, V _{CC}	0.5 V to 4.0 V
Input-voltage range, V _I : Standard TTL/LVCMOS	\dots -0.5 V to V _{CC} + 0.5 V
3.6-V fail-safe TTL/LVCMOS	0.5 V to 3.6 V
5-V tolerant TTL/LVCMOS	
Output-voltage range, Vo: Standard TTL/LVCMOS	\dots -0.5 V to V _{CC} + 0.5 V
3.6-V fail-safe TTL/LVCMOS	–0.5 V to 3.6 V
5-V tolerant TTL/LVCMOS	
Input clamp current for TTL/LVCMOS ($V_I < 0$ or $V_I > V_{CC}$) (see Note 1)	±20 mA
Output clamp current (V _O < 0 or V _O > V _{CC}) (see Note 2)	±20 mA
Electrostatic discharge (100 pF, 1.5 kΩ)	4.0 kV
Latchup immunity	>250 mA at 25°C
Storage temperature range, T _{stq}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. Applies to external input and bidirectional buffers (for 5-V tolerant, used $V_I >$)

recommended operating conditions

			MIN	MAX	UNIT
Vcc	Supply voltage		3	3.6	V
\/.	Input voltage	TTL/LVCMOS	0	VCC	V
VI	Input voltage	5-V tolerant TTL/LVCMOS			V
\/a	Output voltogo	TTL/LVCMOS	0	VCC	V
VO	Output voltage	5-V tolerant TTL/LVCMOS			V
\/	High-level input voltage	TTL/LVCMOS	2	VCC	V
VIH	riigii-levei iriput voitage	5-V tolerant TTL/LVCMOS			V
\/	Low level input veltore	TTL/LVCMOS	0	0.8	V
VIL	Low-level input voltage	5-V tolerant TTL/LVCMOS		0.8	V
t _r	Input transition (t _r and t _f) time (10% to 90%)		T	6	ns
T _A ‡	Ambient temperature		-40	85	°C
TJ	Junction temperature (commercial specification)		-40	125	°C

 $^{^{\}ddagger}$ T_A is measured at the surface of the package. No airflow or heatsink is assumed. The maximum ambient temperature is calculated considering P_{MAX} , $R_{\theta JA}$, and T_{J} .

electrical characteristics over recommended operating conditions

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Vон	High-level output voltage	IOH = rated	V _{CC} -0.6			V
VOL	High-level output voltage	I _{OL} = rated			0.5	V
V _{hys}	Hysteresis ($V_{T+} - V_{T-}$)			0.4		V
l	Low-level input current (V _{in} = V _{II} min)	3.6-V failsafe			±1	μΑ
' _	Low-level input current (VIN = VIL min)	5-V tolerant			±20	μΑ
I	High level input current (\(\lambda = \lambda \tau \max \rangle)	3.6-V failsafe			±1	
L IH	High-level input current (V _{in} = V _{IH} max)	5-V tolerant			±20	μΑ
I _{IZ} §	3-state output high-impedance current				±20	μΑ

^{§ 3-}state or open-drain output must be in high-impedance state.

^{2.} Applies to external output and bidirectional buffers (for 5-V tolerant, used V_{O} >)

timing requirements over recommended ranges of supply voltage and operating free-air temperature

A2D interface (see Figure 5)

NO.		MIN N	VIAX	UNIT
1	t _W Pulse duration, A2DCLK high	70		ns
2	t _W Pulse duration, A2DCLK low	70		ns
3	t _C Cycle time, A2DCLK	150		ns
4	t _{SU} Setup time, A2D data before A2DCLK↓	10		ns
5	t _h Hold time, A2D data after A2DCLK↓	15		ns

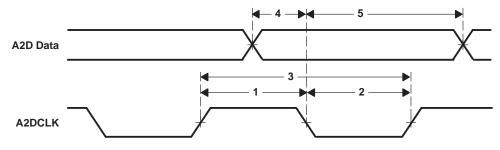


Figure 5. A2D Interface

D2A interface (see Figure 6)

NO.		MIN	MAX	UNIT
1	t _W Pulse duration, D2ACLK high	75		ns
2	t _W Pulse duration, D2ACLK low	25		ns
3	t _C Cycle time, D2ACLK	100		ns
4	t _{pd} Propagation delay time from D2ACLK↓		5	ns

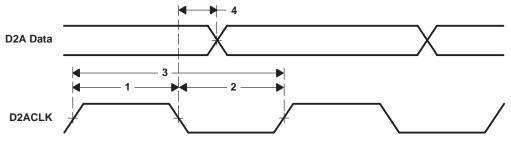


Figure 6. D2A Interface

microprocessor interface (see Figure 7)

NO.		MIN	MAX	UNIT
1	t _{SU} Setup time, UPADDR before UPCSN low – address is latched by UPCSN falling edge	2		ns
2	t _d Delay time, read data valid after last of UPCSN and UPOEN low		20	ns
3	t _{SU} Setup time, address before UPCSN low	2		ns
4	t _{SU} Setup time, write data valid before UPWRN high	15		ns
5	th Hold time, write data valid after UPWRN high	5		ns
6	t _d Delay time, data high Z after UPOEN high		20	ns

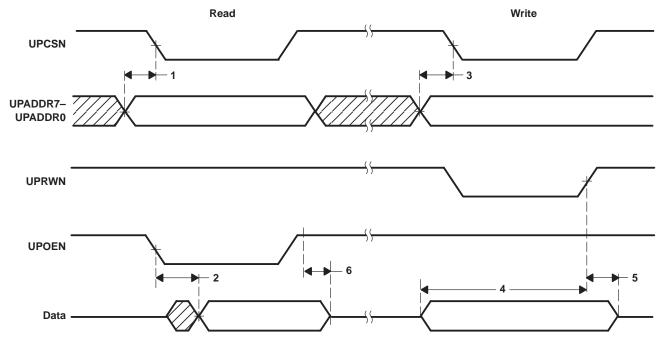
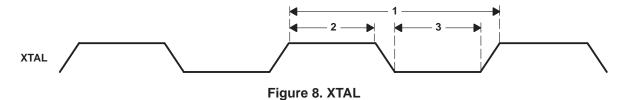



Figure 7. Microprocessor Interface

XTAL (see Figure 8)

NO.		MIN	MAX	UNIT
1	t _{C(XTAL)} Cycle time, XTAL	12.5		ns
2	t _{w(XTALH)} Pulse duration, XTAL high	5		ns
3	t _{w(XTALL)} Pulse duration, XTAL low	5		ns

HDLC INTERFACE

switching characteristics over recommended ranges of supply voltage and operating free-air temperature

transmit and receive (see Figure 9)

NO.	PARAMETER	MIN	MAX	UNIT
1	t _h Hold time, TXDATA after TXCLK↓	0		ns
2	t _{SU} Setup time, TXDATA before TXCLK↓	15		ns
3	t _d Delay time, RXDATA after RXCLK		0	ns
4	t _W Pulse duration, TXCLK high	75		ns
5	t _W Pulse duration, TXCLK low	75		ns
6	t _W Pulse duration, RXCLK high	100		ns
7	t _W Pulse duration, RXCLK low	50		ns

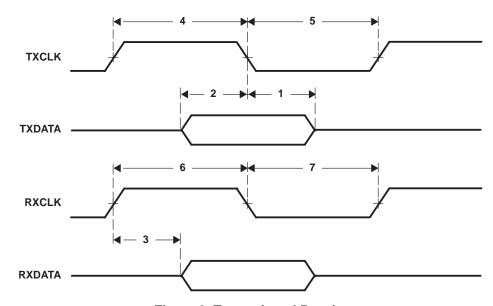


Figure 9. Transmit and Receive

CAPTURE RAM INTERFACE

switching characteristics over recommended ranges of supply voltage and operating free-air temperature

read cycle (see Figure 10)

NO.	PARAMETER	MIN	MAX	UNIT
1	t _a Read access time	45		ns
2	t _d Data delay time from RAMOEN		30	ns
3	t _h Data hold time after RAMOEN	0		ns

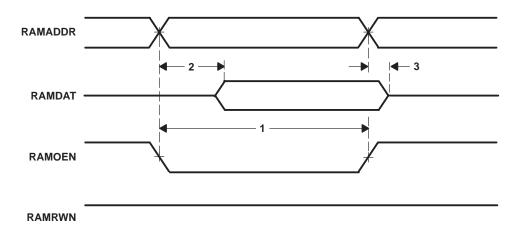
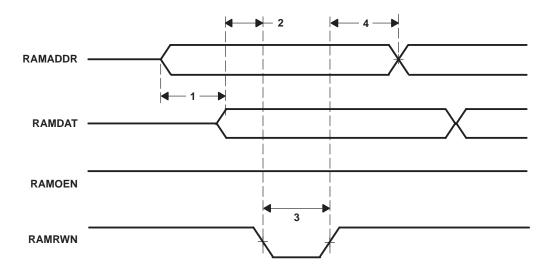
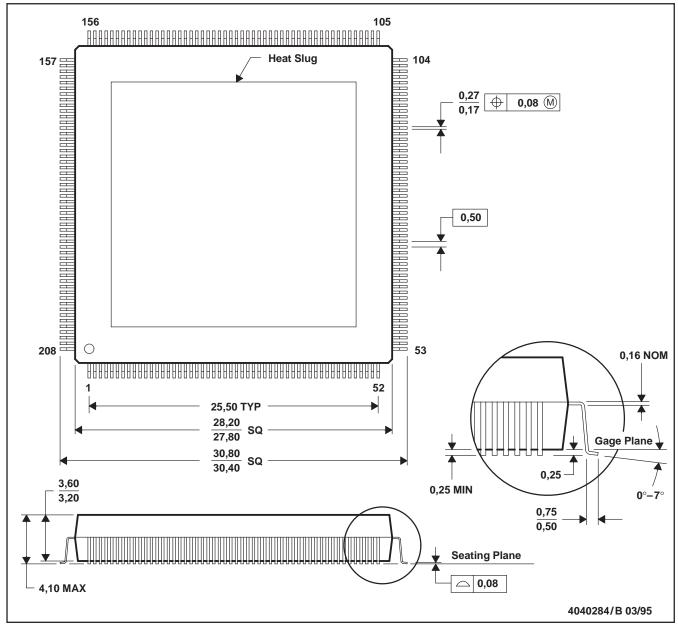


Figure 10. Read Cycle

write cycle (see Figure 11)

NO.		PARAMETER				
1	t _{su(ADDR)}	Address setup time	70		ns	
2	t _{su(DATA)}	Data setup time to RAMRWN	12		ns	
3	t _W	Pulse width, RAMRWN low	22		ns	
4	th	Data and address hold time after RAMRWN	30		ns	




Figure 11. Write Cycle

MECHANICAL DATA

PPB (S-PQFP-G208)

PLASTIC QUAD FLATPACK (DIE-DOWN)

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Thermally enhanced molded plastic package with a heat slug (HSL)
- D. Falls within JEDEC MO-143

ti.com 24-Jun-2005

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
TNETEL1200PPB	OBSOLETE	HQFP	PPB	208	TBD	Call TI	Call TI

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated