

NPN Silicon AF Transistors

- For AF driver and output stages
- High collector current
- Low collector-emitter saturation voltage
- Complementary types: BCX51...BCX53 (PNP)

Туре	Marking	Pir	Package		
BCX54	ВА	1 = B	2 = C	3 = E	SOT89
BCX54-10	ВС	1 = B	2 = C	3 = E	SOT89
BCX54-16	BD	1 = B	2 = C	3 = E	SOT89
BCX55	BE	1 = B	2 = C	3 = E	SOT89
BCX55-10	BG	1 = B	2 = C	3 = E	SOT89
BCX55-16	BM	1 = B	2 = C	3 = E	SOT89
BCX56	ВН	1 = B	2 = C	3 = E	SOT89
BCX56-10	ВК	1 = B	2 = C	3 = E	SOT89
BCX56-16	BL	1 = B	2 = C	3 = E	SOT89

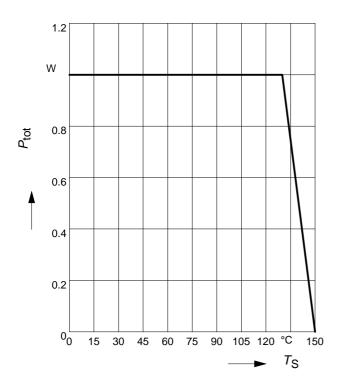
1

Maximum Ratings

Parameter	Symbol	BCX54	BCX55	BCX56	Unit	
Collector-emitter voltage	V _{CEO}	45 60		80	V	
Collector-base voltage	V _{CBO}	45 60		100		
Emitter-base voltage	V_{EBO}	5 5		5		
DC collector current	l _C	1			А	
Peak collector current	I _{CM}	1.5				
Base current	I_{B}	100			mA	
Peak base current	I _{BM}	200				
Total power dissipation, $T_S = 130 ^{\circ}\text{C}$	P_{tot}	1			W	
Junction temperature	T_{i}	150			°C	
Storage temperature	$T_{\rm stg}$	-65 150				
Thermal Resistance						
Junction - soldering point ¹⁾	RthJS	≤20			K/W	

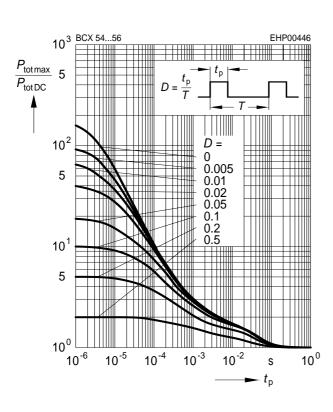
2

 $^{^{1}}$ For calculation of R_{thJA} please refer to Application Note Thermal Resistance

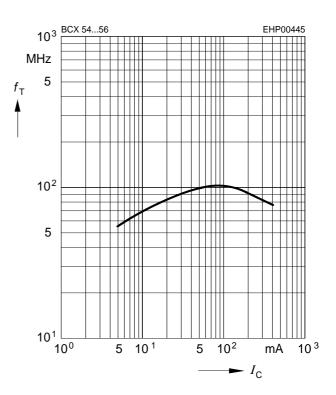

Electrical Characteristics at $T_A = 25$ °C, unless otherwise specified.

Parameter		Symbol	Values			Unit
			min.	typ.	max.	
DC Characteristics					!	•
Collector-emitter breakdown voltage		V _{(BR)CEO}				V
$I_{\rm C} = 10 \text{ mA}, I_{\rm B} = 0$	BCX54		45	-	-	
	BCX55		60	-	-	
	BCX56		80	-	-	
Collector-base breakdown voltage		V _{(BR)CBO}]
$I_{\rm C} = 100 \mu \text{A}, I_{\rm B} = 0$	BCX54		45	-	-	
	BCX55		60	-	-	
	BCX56		100	-	-	
Emitter-base breakdown voltage		V _{(BR)EBO}	5	-	-	
$I_{\rm E} = 10 \ \mu {\rm A}, \ I_{\rm C} = 0$		(5.1)250				
Collector cutoff current		/ _{CBO}	-	-	100	nA
$V_{CB} = 30 \text{ V}, I_{E} = 0$						
Collector cutoff current		I _{CBO}	-	-	20	μΑ
$V_{\text{CB}} = 30 \text{ V}, I_{\text{E}} = 0, T_{\text{A}} = 150 ^{\circ}\text{C}$						
DC current gain 1)		h _{EE}	25	-	-	-
$I_{\rm C} = 5 \text{ mA}, \ V_{\rm CE} = 2 \text{ V}$. –				
DC current gain 1)		h _{FE}]
$I_{\rm C}$ = 150 mA, $V_{\rm CE}$ = 2 V	BCX5456		40	-	250	
	hFE-grp.10		63	100	160	
	hFE-grp.16		100	160	250	
DC current gain 1)		h _{FE}	25	-	-	
$I_{\rm C} = 500 \text{ mA}, \ V_{\rm CE} = 2 \text{ V}$. –				
Collector-emitter saturation voltage1)		V _{CEsat}	-	-	0.5	V
$I_{\rm C} = 500 \text{ mA}, I_{\rm B} = 50 \text{ mA}$						
Base-emitter voltage 1)		V _{BE(ON)}	-	-	1	
$I_{\rm C} = 500 \text{ mA}, \ V_{\rm CE} = 2 \text{ V}$		(51.7)				
AC Characteristics		· · · · · · · · · · · · · · · · · · ·		•	•	•
Transition frequency		f _T	-	100	-	MHz
$I_{\rm C} = 50 \text{ mA}, \ V_{\rm CE} = 10 \text{ V}, \ f = 20 \text{ MH}$	Нz	-				

¹⁾ Pulse test: $t \le 300\mu s$, D = 2%

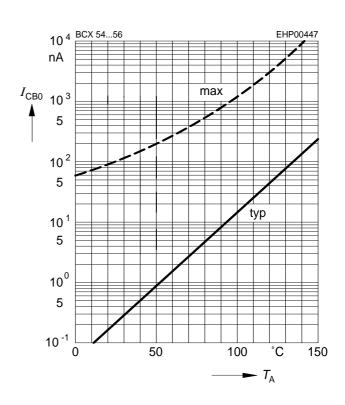


Total power dissipation $P_{tot} = f(T_S)$


Permissible pulse load

$$P_{\text{totmax}} / P_{\text{totDC}} = f(t_p)$$

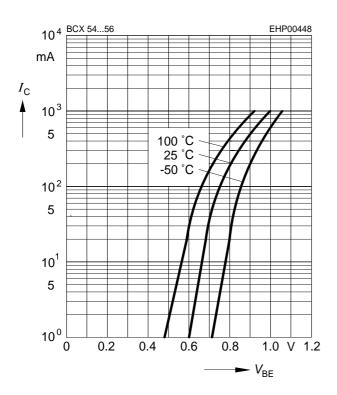
Transition frequency $f_T = f(I_C)$


$$V_{CE} = 10V$$

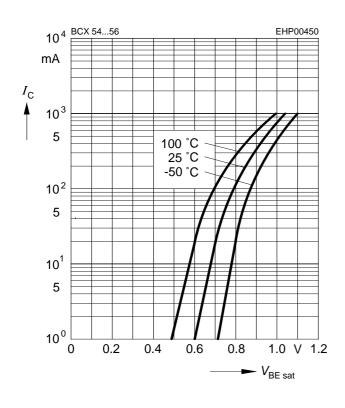
Collector cutoff current $I_{CBO} = f(T_A)$

$$V_{\text{CB}} = 30 \text{V}$$

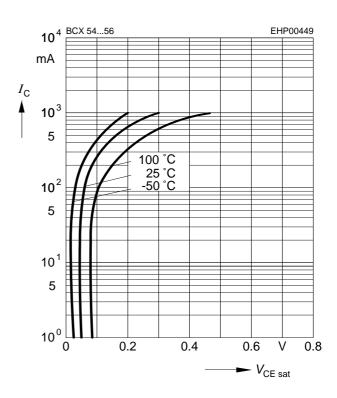
4



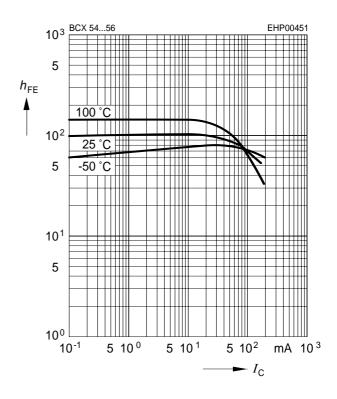
Jul-10-2001


Collector current $I_{C} = f(V_{BE})$

$$V_{CE} = 2V$$


Base-emitter saturation voltage

$$I_{C} = f(V_{BEsat}), h_{FE} = 10$$


Collector-emitter saturation voltage

$$I_{\rm C} = f(V_{\rm CEsat}), h_{\rm FE} = 10$$

DC current gain $h_{FE} = f(I_C)$

$$V_{CE} = 2V$$

Published by Infineon Technologies AG, St.-Martin-Strasse 53, 81669 München
© Infineon Technologies AG 2004. All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.Infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.