

Integrated
Circuit
Systems, Inc.

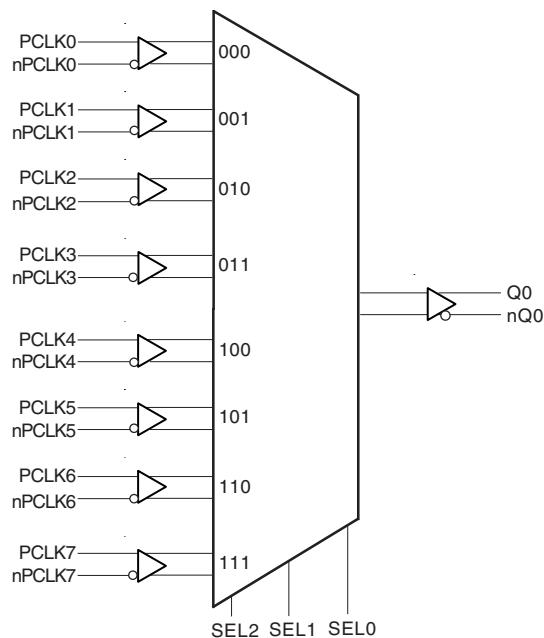
PRELIMINARY

ICS854058

8:1

DIFFERENTIAL-TO-LVDS CLOCK MULTIPLEXER

GENERAL DESCRIPTION



The ICS854058 is an 8:1 Differential-to-LVDS Clock Multiplexer which can operate up to 2.5GHz and is a member of the HiPerClockS™ family of High Performance Clock Solutions from ICS. The ICS854058 has 8 selectable differential clock inputs. The PCLK, nPCLK input pairs can accept LVPECL, LVDS, CML or SSTL levels. The fully differential architecture and low propagation delay make it ideal for use in clock distribution circuits. The select pins have internal pulldown resistors. The SEL2 pin is the most significant bit and the binary number applied to the select pins will select the same numbered data input (i.e., 000 selects PCLK0, nPCLK0).

FEATURES

- High speed 8:1 differential multiplexer
- 1 differential LVDS output
- 8 selectable differential PCLK, nPCLK inputs
- PCLK_x, nPCLK_x pairs can accept the following differential input levels: LVPECL, LVDS, CML, SSTL
- Maximum output frequency: 2.5GHz
- Translates any single ended input signal to LVDS levels with resistor bias on nPCLK_x input
- Part-to-part skew: TBD
- Propagation delay: 595ps (typical)
- Supply voltage range: 3.135V to 3.465V
- -40°C to 85°C ambient operating temperature

BLOCK DIAGRAM

PIN ASSIGNMENT

PCLK0	1	PCLK7	24
nPCLK0	2	nPCLK7	23
PCLK1	3	PLCK6	22
nPCLK1	4	nPCLK6	21
V _{DD}	5	V _{DD}	20
SEL0	6	Q0	19
SEL1	7	nQ0	18
SEL2	8	GND	17
PCLK2	9	PCLK5	16
nPCLK2	10	nPCLK5	15
PCLK3	11	PCLK4	14
nPCLK3	12	nPCLK4	13

ICS854058
24-Lead, 173-MIL TSSOP
4.4mm x 7.8mm x 0.92mm body package
G Package
Top View

The Preliminary Information presented herein represents a product in prototyping or pre-production. The noted characteristics are based on initial product characterization. Integrated Circuit Systems, Incorporated (ICS) reserves the right to change any circuitry or specifications without notice.

Integrated
Circuit
Systems, Inc.

PRELIMINARY

ICS854058

8:1

DIFFERENTIAL-TO-LVDS CLOCK MULTIPLEXER

TABLE 1. PIN DESCRIPTIONS

Number	Name	Type		Description
1	PCLK0	Input	Pulldown	Non-inverting differential LVPECL clock input.
2	nPCLK0	Input	Pullup/Pulldown	Inverting differential LVPECL clock input. $V_{DD}/2$ default when left floating.
3	PCLK1	Input	Pulldown	Non-inverting differential LVPECL clock input.
4	nPCLK1	Input	Pullup/Pulldown	Inverting differential LVPECL clock input. $V_{DD}/2$ default when left floating.
5, 20	V_{DD}	Power		Positive supply pins.
6, 7, 8	SEL0, SEL1, SEL2	Input	Pulldown	Clock select input pins. LVCMOS/LVTTL interface levels.
9	PCLK2	Input	Pulldown	Non-inverting differential LVPECL clock input.
10	nPCLK2	Input	Pullup/Pulldown	Inverting differential LVPECL clock input. $V_{DD}/2$ default when left floating.
11	PCLK3	Input	Pulldown	Non-inverting differential LVPECL clock input.
12	nPCLK3	Input	Pullup/Pulldown	Inverting differential LVPECL clock input. $V_{DD}/2$ default when left floating.
13	nPCLK4	Input	Pullup/Pulldown	Inverting differential LVPECL clock input. $V_{DD}/2$ default when left floating.
14	PCLK4	Input	Pulldown	Non-inverting differential LVPECL clock input.
15	nPCLK5	Input	Pullup/Pulldown	Inverting differential LVPECL clock input. $V_{DD}/2$ default when left floating.
16	PCLK5	Input	Pulldown	Non-inverting differential LVPECL clock input.
17	GND	Power		Power supply ground.
18, 19	nQ0, Q0	Output		Differential output pair. LVDS interface levels.
21	nPCLK6	Input	Pullup/Pulldown	Inverting differential LVPECL clock input. $V_{DD}/2$ default when left floating.
22	PCLK6	Input	Pulldown	Non-inverting differential LVPECL clock input.
23	nPCLK7	Input	Pullup/Pulldown	Inverting differential LVPECL clock input. $V_{DD}/2$ default when left floating.
24	PCLK7	Input	Pulldown	Non-inverting differential LVPECL clock input.

NOTE: *Pullup* and *Pulldown* refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Integrated
Circuit
Systems, Inc.

PRELIMINARY

ICS854058

8:1

DIFFERENTIAL-TO-LVDS CLOCK MULTIPLEXER

TABLE 2. PIN CHARACTERISTICS

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
$R_{PULLDOWN}$	Input Pulldown Resistor			75		$\text{K}\Omega$
$R_{VDD/2}$	Pullup/Pulldown Resistors			50		$\text{K}\Omega$

TABLE 3. CLOCK INPUT FUNCTION TABLE

Inputs			Outputs	
SEL2	SEL1	SEL0	Q0	nQ0
0	0	0	PCLK0	nPCLK0
0	0	1	PCLK1	nPCLK1
0	1	0	PCLK2	nPCLK2
0	1	1	PCLK3	nPCLK3
1	0	0	PCLK4	nPCLK4
1	0	1	PCLK5	nPCLK5
1	1	0	PCLK6	nPCLK6
1	1	1	PCLK7	nPCLK7

Integrated
Circuit
Systems, Inc.

PRELIMINARY

ICS854058

8:1

DIFFERENTIAL-TO-LVDS CLOCK MULTIPLEXER

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V_{DD}	4.6V
Inputs, V_I	-0.5V to $V_{DD} + 0.5$ V
Outputs, I_O	
Continuous Current	10mA
Surge Current	15mA
Package Thermal Impedance, θ_{JA}	70°C/W (0 lfpm)
Storage Temperature, T_{STG}	-65°C to 150°C

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, $V_{DD} = 3.3V \pm 5\%$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{DD}	Positive Supply Voltage		3.135	3.3	3.465	V
I_{DD}	Power Supply Current			68		mA

TABLE 4B. LVCMOS/LVTTL DC CHARACTERISTICS, $V_{DD} = 3.3V \pm 5\%$, $T_A = -40^\circ\text{C}$ TO 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{IH}	Input High Voltage	SEL0:SEL2	2		$V_{DD} + 0.3$	V
V_{IL}	Input Low Voltage	SEL0:SEL2	-0.3		0.8	V
I_{IH}	Input High Current	SEL0:SEL2	$V_{DD} = V_{IN} = 3.465V$		150	μA
I_{IL}	Input Low Current	SEL0:SEL2	$V_{DD} = 3.465V, V_{IN} = 0V$	-10		μA

TABLE 4C. LVPECL DC CHARACTERISTICS, $V_{DD} = 3.3V \pm 5\%$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
I_{IH}	Input High Current	PCLK0:PCLK7	$V_{DD} = V_{IN} = 3.465V$		150	μA
		nPCLK0:nPCLK7	$V_{DD} = V_{IN} = 3.465V$		150	μA
I_{IL}	Input Low Current	PCLK0:PCLK7	$V_{DD} = 3.465V, V_{IN} = 0V$	-10		μA
		nPCLK0:nPCLK7	$V_{DD} = 3.465V, V_{IN} = 0V$	-150		μA
V_{PP}	Peak-to-Peak Input Voltage		0.15			V
V_{CMR}	Common Mode Input Voltage; NOTE 1, 2		GND + 1.2			V

NOTE 1: Common mode voltage is defined as V_{IH} .

NOTE 2: For single ended applications, the maximum input voltage for PCLKx, nPCLKx is $V_{DD} + 0.3V$.

Integrated
Circuit
Systems, Inc.

PRELIMINARY

ICS854058

8:1

DIFFERENTIAL-TO-LVDS CLOCK MULTIPLEXER

TABLE 4D. LVDS DC CHARACTERISTICS, $V_{DD} = 3.3V \pm 5\%$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{OD}	Differential Output Voltage			350		mV
ΔV_{OD}	V_{OD} Magnitude Change			50		mV
V_{OS}	Offset Voltage			1.25		V
ΔV_{OS}	V_{OS} Magnitude Change			50		mV

TABLE 5. AC CHARACTERISTICS, $V_{DD} = 3.135V$ TO $3.465V$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f_{MAX}	Output Frequency				2.5	GHz
t_{PD}	Propagation Delay; NOTE 1			595		ps
$tsk(pp)$	Part-to-Part Skew; NOTE 2, 3			TBD		ps
t_R / t_F	Output Rise/Fall Time	20% to 80%		180		ps

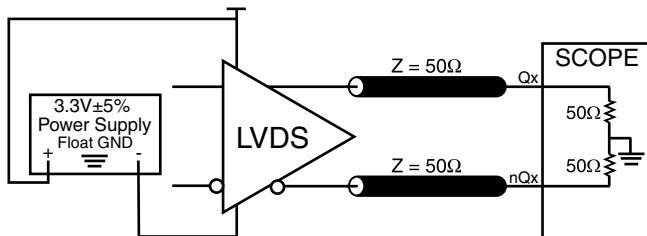
All parameters measured up to 1.3GHz unless noted otherwise.

NOTE 1: Measured from the differential input crossing point to the differential output crossing point.

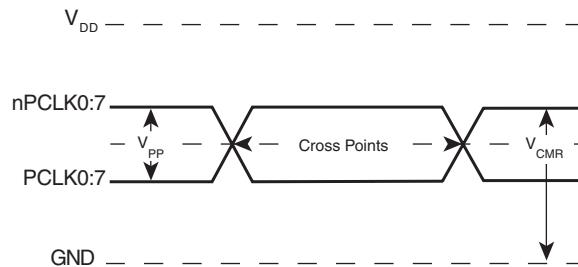
NOTE 2: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.

NOTE 3: This parameter is defined according with JEDEC Standard 65.

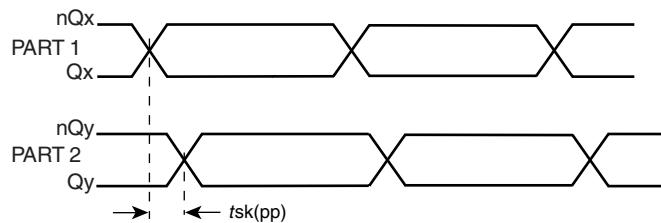
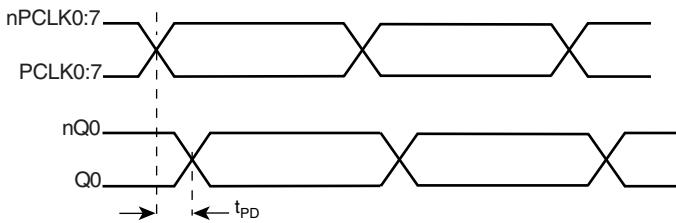
Integrated
Circuit
Systems, Inc.

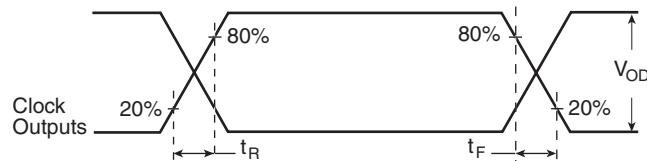

PRELIMINARY

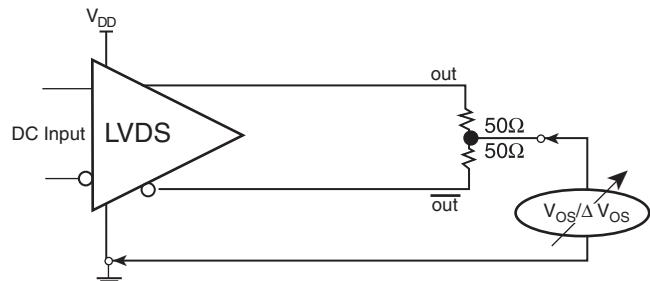
ICS854058

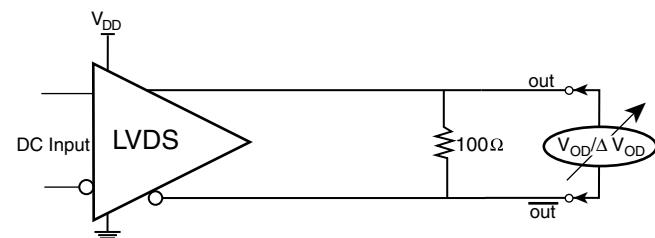

8:1

DIFFERENTIAL-TO-LVDS CLOCK MULTIPLEXER



PARAMETER MEASUREMENT INFORMATION


3.3V OUTPUT LOAD AC TEST CIRCUIT


DIFFERENTIAL INPUT LEVEL


PROPAGATION DELAY

PART-TO-PART SKEW

OUTPUT RISE/FALL TIME

DIFFERENTIAL OUTPUT VOLTAGE

Integrated
Circuit
Systems, Inc.

PRELIMINARY

ICS854058

8:1

DIFFERENTIAL-TO-LVDS CLOCK MULTIPLEXER

APPLICATION INFORMATION

WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS

Figure 1 shows how the differential input can be wired to accept single ended levels. The reference voltage $V_{REF} = V_{DD}/2$ is generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio

of R1 and R2 might need to be adjusted to position the V_{REF} in the center of the input voltage swing. For example, if the input clock swing is only 2.5V and $V_{DD} = 3.3V$, V_{REF} should be 1.25V and $R2/R1 = 0.609$.

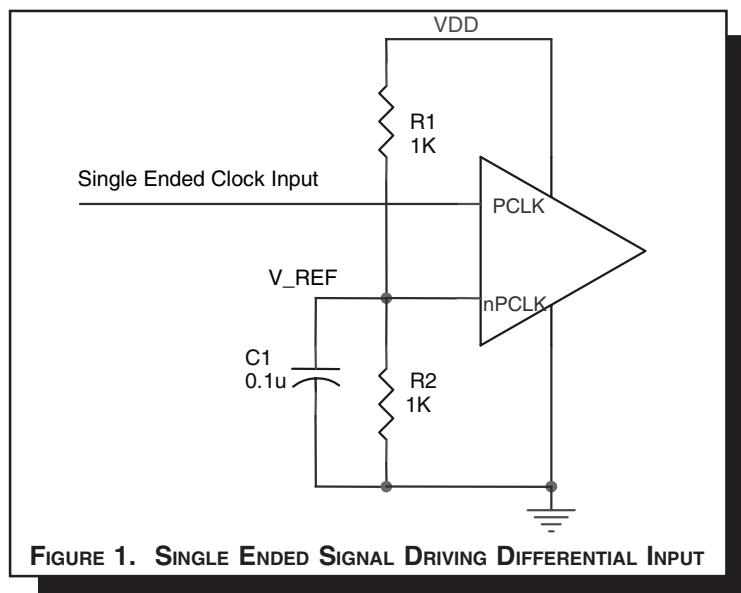


FIGURE 1. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT

LVDS DRIVER TERMINATION

A general LVDS interface is shown in Figure 2. In a 100Ω differential transmission line environment, LVDS drivers require a matched load termination of 100Ω across near the receiver in-

put. For a multiple LVDS outputs buffer, if only partial outputs are used, it is recommended to terminate the un-used outputs.

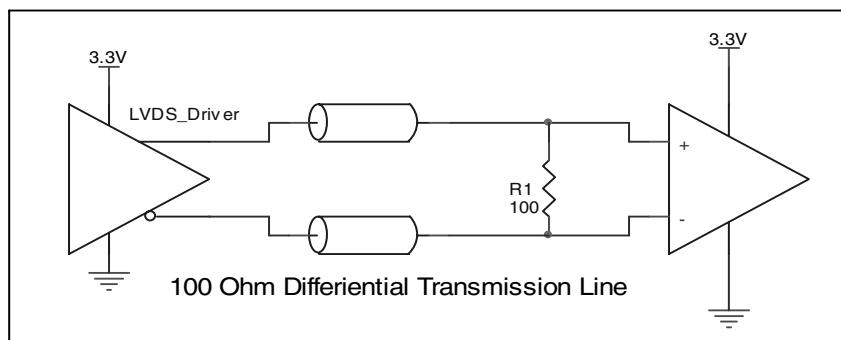


FIGURE 2. TYPICAL LVDS DRIVER TERMINATION

Integrated
Circuit
Systems, Inc.

PRELIMINARY

ICS854058

8:1

DIFFERENTIAL-TO-LVDS CLOCK MULTIPLEXER

LVPE CL CLOCK INPUT INTERFACE

The PCLK /nPCLK accepts LVPECL, CML, SSTL and other differential signals. Both V_{SWING} and V_{OH} must meet the V_{PP} and V_{CMR} input requirements. Figures 3A to 3E show interface examples for the HiPerClockS PCLK/nPCLK input driven by the most common driver types. The input interfaces sug-

gested here are examples only. If the driver is from another vendor, use their termination recommendation. Please consult with the vendor of the driver component to confirm the driver termination requirements.

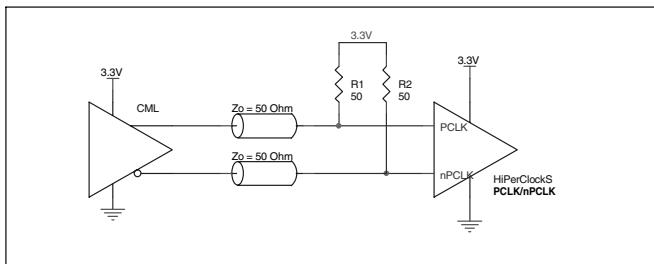


FIGURE 3A. HiPerClockS PCLK/nPCLK INPUT DRIVEN BY A CML DRIVER

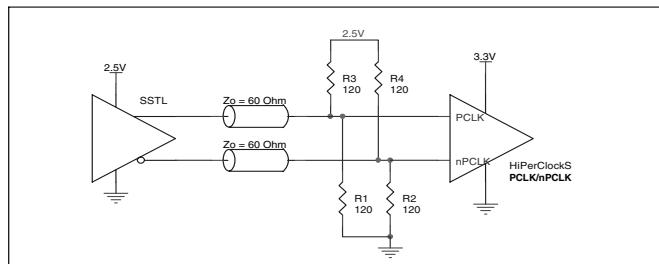


FIGURE 3B. HiPerClockS PCLK/nPCLK INPUT DRIVEN BY AN SSTL IN DRIVER

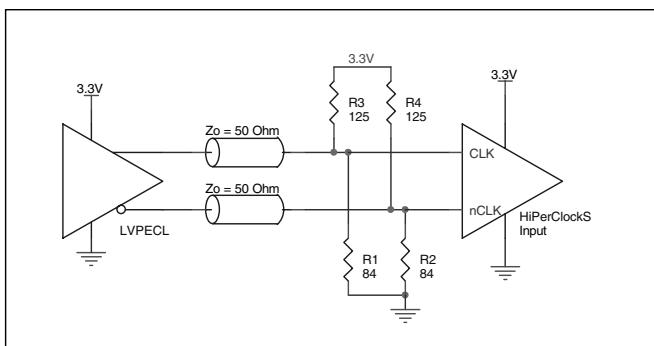


FIGURE 3C. HiPerClockS PCLK/nPCLK INPUT DRIVEN BY A 3.3V LVPECL DRIVER

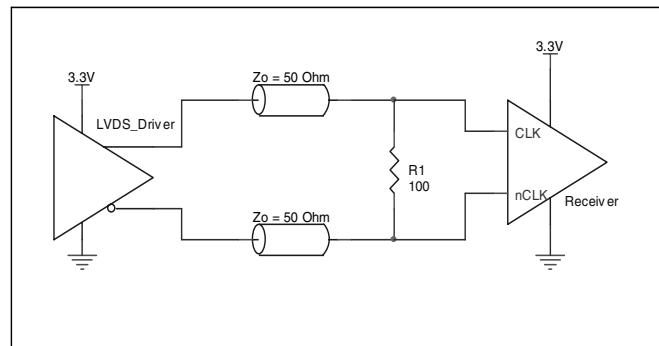


FIGURE 3D. HiPerClockS PCLK/nPCLK INPUT DRIVEN BY A 3.3V LVDS DRIVER

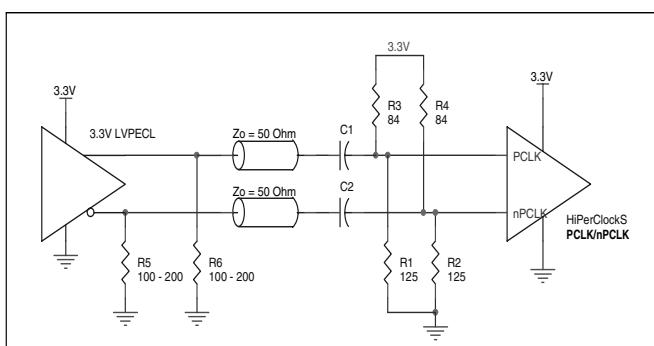


FIGURE 3E. HiPerClockS PCLK/nPCLK INPUT DRIVEN BY A 3.3V LVPECL DRIVER WITH AC COUPLE

SCHEMATIC EXAMPLE

An application schematic example of ICS854058 is shown in *Figure 4*. The inputs can accept various types of differential signals. In this example, the inputs are driven by LVDS drivers. The transmission lines are assumed to be 100Ω differential. The 100Ω matched loads termination should be located

near the receivers. It is recommended at least one decoupling capacitor per power pin. The decoupling capacitor should be low ESR and located as close as possible to the power pin.

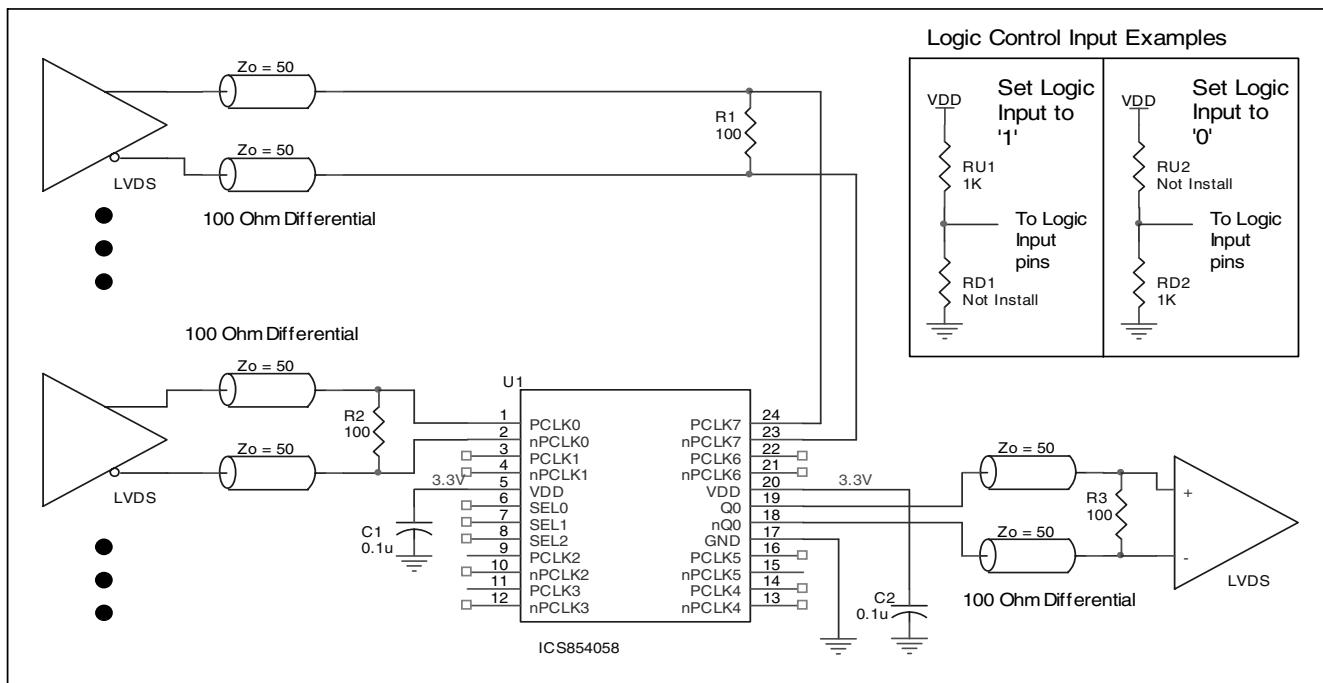


FIGURE 4. ICS854058 SCHEMATIC EXAMPLE

Integrated
Circuit
Systems, Inc.

PRELIMINARY

ICS854058

8:1

DIFFERENTIAL-TO-LVDS CLOCK MULTIPLEXER

RELIABILITY INFORMATION

TABLE 6. θ_{JA} vs. AIR FLOW TABLE FOR 24 LEAD TSSOP

θ_{JA} by Velocity (Linear Feet per Minute)			
Multi-Layer PCB, JEDEC Standard Test Boards	0 70°C/W	200 63°C/W	500 60°C/W

TRANSISTOR COUNT

The transistor count for ICS854058 is: 361

Integrated
Circuit
Systems, Inc.

PRELIMINARY

ICS854058

8:1

DIFFERENTIAL-TO-LVDS CLOCK MULTIPLEXER

PACKAGE OUTLINE - G SUFFIX FOR 24 LEAD TSSOP

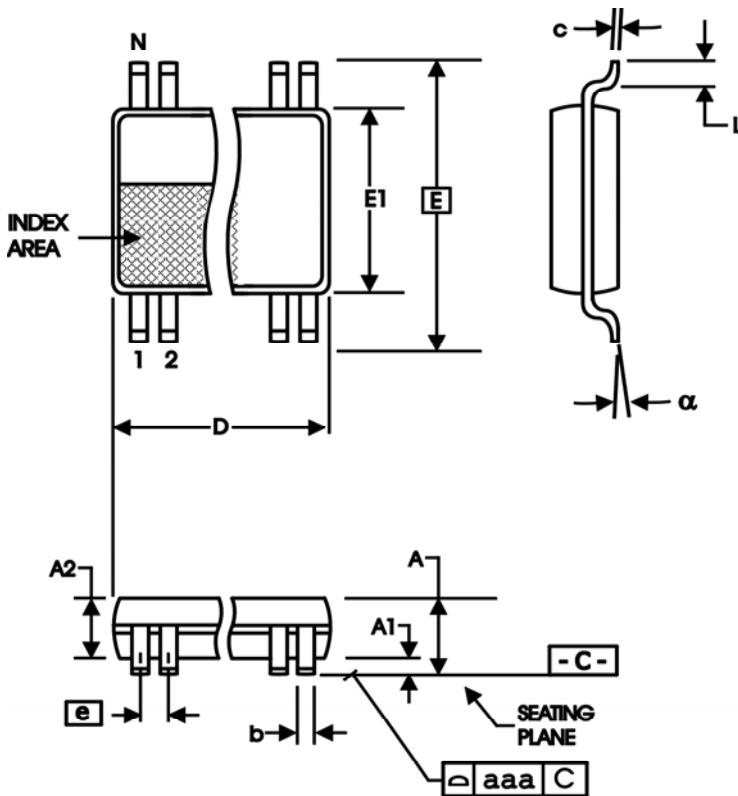


TABLE 7. PACKAGE DIMENSIONS

SYMBOL	Millimeters	
	Minimum	Maximum
N	24	
A	--	1.20
A1	0.05	0.15
A2	0.80	1.05
b	0.19	0.30
c	0.09	0.20
D	7.70	7.90
E	6.40 BASIC	
E1	4.30	4.50
e	0.65 BASIC	
L	0.45	0.75
alpha	0°	8°
aaa	--	0.10

Reference Document: JEDEC Publication 95, MS-153

PRELIMINARY

Integrated
Circuit
Systems, Inc.

ICS854058

8:1

DIFFERENTIAL-TO-LVDS CLOCK MULTIPLEXER

TABLE 8. ORDERING INFORMATION

Part/Order Number	Marking	Package	Count	Temperature
854058AG	ICS854058AG	24 Lead TSSOP	60 per tube	-40°C to 85°C
854058AG	ICS854058AG	24 Lead TSSOP on Tape and Reel	2500	-40°C to 85°C

The aforementioned trademark, HiPerClock™ is a trademark of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries.

While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and industrial applications. Any other applications such as those requiring high reliability, or other extraordinary environmental requirements are not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices or critical medical instruments.