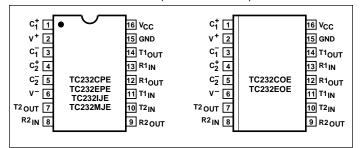


\*Patented

## **DUAL RS-232 TRANSMITTER/RECEIVER AND POWER SUPPLY**


## **FEATURES**

- Operates From Single 5V Power Supply
- 2 Drivers and 2 Receivers
- On-Board Voltage Quadrupler
- Input Levels .....±30V
- Output Swing With +5V Supply .....±9V
- Low Supply Current ...... 5 mA
- Does not require external ±12V supplies

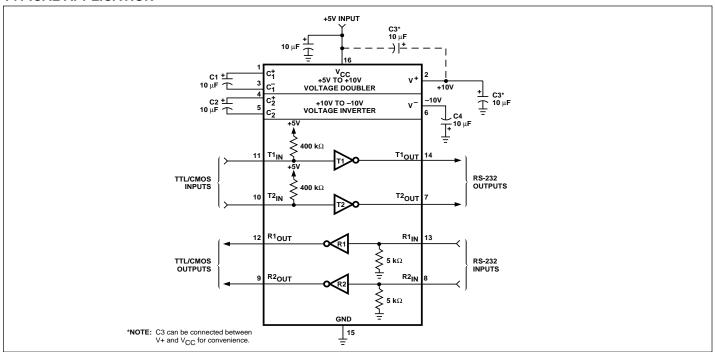
## **APPLICATIONS**

- **RS-232C Communication Links**
- **■** Modems, peripherals, computers
- Battery-powered systems

## PIN CONFIGURATIONS (DIP and SOIC)



## **GENERAL DESCRIPTION**


The TC232 is a dual RS-232 transmitter/receiver that complies with EIA /TIA RS-232E guidelines and is ideal for all RS-232 communication links. This device operates from a 5V power supply and contains two charge pump voltage converters that produce  $\pm 10V$  power supplies.

The TC232 has four level translators. Two are RS-232 transmitters that convert TTL/CMOS input levels to 9V RS-232 outputs. The other two translators are RS-232 receivers that convert RS-232 inputs to 5V TTL/CMOS output levels. The receivers have a nominal threshold of 1.3V, a typical hysteresis of 0.5V, and can operate with inputs up to  $\pm 30$ V.

## ORDERING INFORMATION

| Package            | Temp. Range                                                                               |
|--------------------|-------------------------------------------------------------------------------------------|
| 16-Pin SOIC (Wide) | 0°C to +70°C                                                                              |
| 16-Pin Plastic DIP | 0°C to +70°C                                                                              |
| 16-Pin SOIC (Wide) | - 40°C to +85°C                                                                           |
| 16-Pin Plastic DIP | – 40°C to +85°C                                                                           |
| 16-Pin CerDIP      | – 25°C to +85°C                                                                           |
| 16-Pin CerDIP      | – 55°C to +125°C                                                                          |
|                    | 16-Pin SOIC (Wide) 16-Pin Plastic DIP 16-Pin SOIC (Wide) 16-Pin Plastic DIP 16-Pin CerDIP |

## TYPICAL APPLICATION



## DUAL RS-232 TRANSMITTER/ RECEIVER AND POWER SUPPLY

## **TC232**

## **ABSOLUTE MAXIMUM RATINGS\***

| V <sub>CC</sub> +                                                   | 6V |
|---------------------------------------------------------------------|----|
| V <sup>+</sup> +12                                                  |    |
| V <sup>-</sup> +12                                                  | 2V |
| Input Voltages                                                      |    |
| $T1_{IN}$ , $T2_{IN}$ 0.3 to ( $V_{CC}$ +0.3                        | V) |
| R1 <sub>IN</sub> , R2 <sub>IN</sub> ±30                             | 0V |
| Output Voltages                                                     |    |
| $T1_{OUT}$ , $T2_{OUT}$ (V++0.3V) to (V0.3                          |    |
| R1 <sub>OUT</sub> , R2 <sub>OUT</sub> –0.3 to (V <sub>CC</sub> +0.3 | V) |
| Short Circuit Duration                                              |    |
| V <sup>+</sup>                                                      | ес |
| V <sup>-</sup> 30s                                                  | ес |
| T1 <sub>OUT</sub> , T2 <sub>OUT</sub> Continuo                      | us |
| Storage Temperature Range65°C to +150                               | °С |

| Package Power Dissipation (T <sub>A</sub> ≤ 70°C) |       |
|---------------------------------------------------|-------|
| CerDIP                                            | 890mW |
| Derate 9.5 mW/°C Above +70°C                      |       |
| Plastic DIP                                       | 840mW |
| Derate 7 mW/°C Above +70°C                        |       |
| Small Outline (SOIC)                              | 760mW |
| Derate 7 mW/°C Above +70°C                        |       |

<sup>\*</sup>Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

# **ELECTRICAL CHARACTERISTICS:** $V_{CC} = 5V \pm 10\%$ , $T_A = operating temperature range, test circuit unless otherwise noted.$

| Parameter                              | Test Conditions                                                                                   | Min  | Тур | Max | Unit   |
|----------------------------------------|---------------------------------------------------------------------------------------------------|------|-----|-----|--------|
| Output Voltage Swing                   | T1 <sub>OUT</sub> , T2 <sub>OUT</sub> Loaded With 3 k $\Omega$ to Ground                          | ±5   | ±9  | ±10 | V      |
| Power Supply Current                   |                                                                                                   | _    | 5   | 10  | mA     |
| Input Logic Threshold Low              | T1 <sub>IN</sub> , T2 <sub>IN</sub>                                                               | _    | _   | 0.8 | V      |
| Input Logic Threshold High             | T1 <sub>IN</sub> , T2 <sub>IN</sub>                                                               | 2    | _   | _   | V      |
| Logic Pull-Up Current                  | $T1_{IN}$ , $T2_{IN} = 0V$                                                                        | _    | 15  | 200 | μΑ     |
| RS-232 Input Voltage Operating Range   |                                                                                                   | - 30 | _   | +30 | V      |
| RS-232 Input Threshold Low             | V <sub>CC</sub> = 5V                                                                              | 0.8  | 1.2 | _   | V      |
| RS-232 Input Threshold High            | $V_{CC} = 5V$                                                                                     | _    | 1.7 | 2.4 | V      |
| RS-232 Input Hysteresis                |                                                                                                   | 0.2  | 0.5 | 1   | V      |
| RS-232 Input Resistance                | $T_A = +25^{\circ}C, V_{CC} = 5V$                                                                 | 3    | 5   | 7   | kΩ     |
| TTL/CMOS Output Voltage Low            | I <sub>OUT</sub> = 3.2 mA                                                                         | _    | _   | 0.4 | V      |
| TTL/CMOS Output Voltage High           | I <sub>OUT</sub> = – 1 mA                                                                         | 3.5  | _   | _   | V      |
| Propagation Delay                      | RS-232 to TTL or TTL to RS-232                                                                    | _    | 0.5 | _   | μsec   |
| Instantaneous Slew Rate                | $C_L$ = 10 pF, $R_L$ = 3 k $\Omega$ to 7 k $\Omega$ ,<br>$T_A$ = +25°C (Note 1)                   | _    | _   | 30  | V/µsec |
| Transition Region Slew Rate            | $R_L = 3 \text{ k}\Omega$ , $C_L = 2500 \text{ pF}$<br>Measured From +3V to – 3V<br>or –3V to +3V | _    | 3   | _   | V/µsec |
| Output Resistance                      | $V_{CC} = V^{+} = V^{-} = 0V, V_{OUT} = \pm 2V$                                                   | 300  | _   | _   | Ω      |
| RS-232 Output<br>Short-Circuit Current |                                                                                                   |      | ±10 | _   | mA     |

NOTE 1. Sample tested.

## **DETAILED DESCRIPTION**

The TC232 contains a +5V to ±10V dual charge pump voltage converter, a dual transmitter and a dual receiver.

## +5V to ±10V Dual Charge Pump Voltage Converter

The TC232 power supply consists of two charge pumps. One uses external capacitor C1 to double the +5V input to +10V, with output impedance of about  $200\Omega$ . The other uses C2 to invert +10V to - 10V, with overall output impedance of  $450\Omega$  (including effects of +5V to +10V doubler impedance).

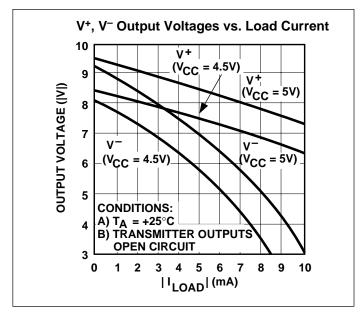
The clock in the doubler circuit will start at  $\approx$ 4.2V in the typical part, but external loads may make this point rise to as high as 4.5V with a load of 2 k $\Omega$  on each of the two output voltages.

Because of this, use of the doubler and inverter to run additional external circuits should be limited. The maximum current should be no more than 2.5 mA from the +10V and - 10V. in order to guarantee start-up of the doubler clock.

The test circuit employs 22  $\mu$ F capacitors for C1 to C4, but the value is not critical. These capacitors usually are low-cost aluminum or tantalum electrolytic capacitors.

Increasing C1 and C2 to 47  $\mu F$  lowers the output impedance of the +10V doubler and the - 10V inverter by the change in the ESR of the capacitors.

Increasing C3 and C4 lowers ripple on the  $\pm 10\text{V}$  outputs and 16 kHz ripple on the RS-232 outputs. Where size is critical, the value of C1 to C4 can be lowered to 1  $\mu\text{F}$ . The use of a low ESR capacitor will help lower the output ripple and keep the output impedance of the  $\pm 10\text{V}$  as low as possible.


## **Dual Transmitter**

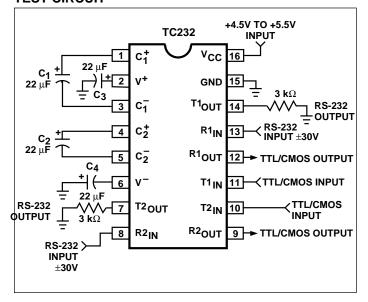
TC232 transmitters are CMOS inverters driven by  $\pm 10 \text{V}$  internally-generated voltages. The input is TTL/CMOS compatible, with a logic threshold of about 26% of  $V_{CC}$  (1.3V for 5V  $V_{CC}$ ). The input of an unused transmitter can be left unconnected, since an internal 400 k $\Omega$  pull-up resistor connected between the transmitter input and  $V_{CC}$  pulls the input HIGH and forces the unused transmitter output to the LOW state.

With V<sub>CC</sub> at 5V, the outputs will go from (V+ - 0.6V) to V<sup>-</sup> with no load and will swing  $\pm 9$ V when loaded with 3 k $\Omega$ . The minimum output voltage swing, with V<sub>CC</sub> at 4.5V and at maximum ambient temperature, is  $\pm 5$ V. This conforms to RS-232 specifications for "worst-case" conditions.

EIA/TIA RS-232E specs limit the slew rate at output to less than 30V/µs.

The powered-down output impedance ( $V_{CC} = 0V$ ) is a minimum of 300 $\Omega$  with  $\pm 2V$  applied to outputs.

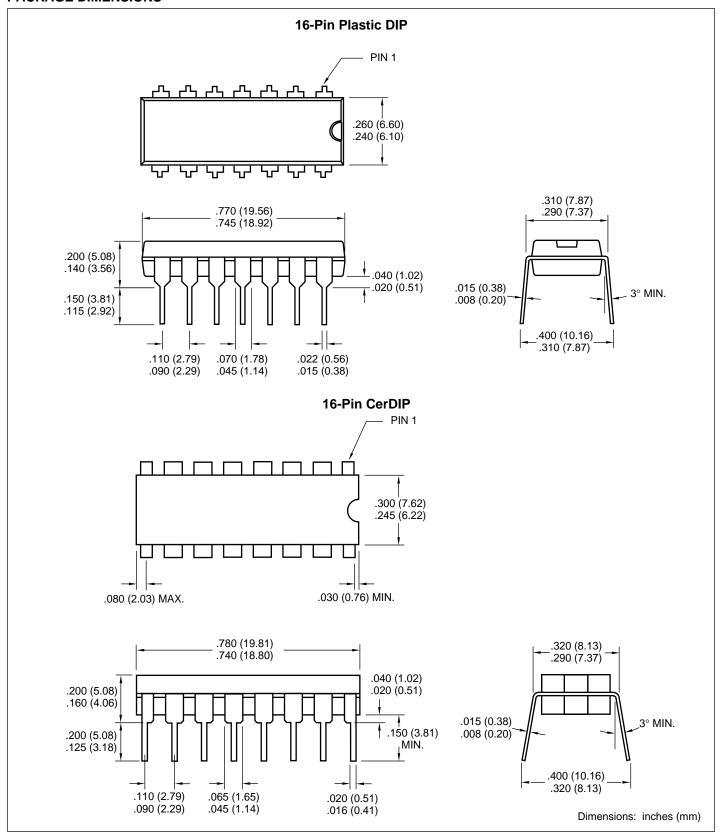



The outputs are protected and can be short-circuited to ground indefinitely.

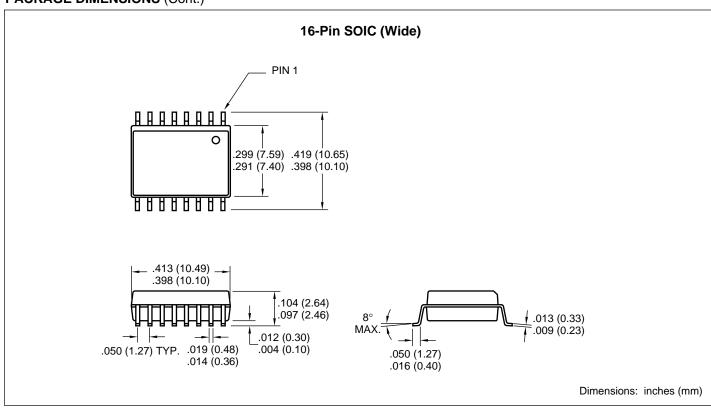
## **Dual Receiver**

TC232 receivers meet RS-232 input specifications. Input impedance is between 3 k $\Omega$  and 7 k $\Omega$ . Switching thresholds are within the  $\pm 3V$  limits, and the receivers withstand up to  $\pm 30V$  inputs. RS-232 and TTL/CMOS input compatible, the receivers have 0.8V V<sub>IL</sub> and 2.4V V<sub>IH</sub> with 0.5V hysteresis to reject noise.

The TTL/CMOS compatible receiver output is LOW when an RS-232 input is greater than 2.4V. It is HIGH when an input is floating or between +0.8V and – 30V.


## **TEST CIRCUIT**




## DUAL RS-232 TRANSMITTER/ RECEIVER AND POWER SUPPLY

## **TC232**

## **PACKAGE DIMENSIONS**



## **PACKAGE DIMENSIONS (Cont.)**





## WORLDWIDE SALES AND SERVICE

#### **AMERICAS**

#### **Corporate Office** 2355 West Chandler Blvd.

Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: http://www.microchip.com

#### Rocky Mountain

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7966 Fax: 480-792-7456

#### Atlanta

500 Sugar Mill Road, Suite 200B Atlanta, GA 30350 Tel: 770-640-0034 Fax: 770-640-0307

#### Austin

Analog Product Sales 8303 MoPac Expressway North Suite A-201 Austin, TX 78759 Tel: 512-345-2030 Fax: 512-345-6085

#### **Boston**

2 Lan Drive, Suite 120 Westford, MA 01886 Tel: 978-692-3848 Fax: 978-692-3821

#### **Boston**

Analog Product Sales Unit A-8-1 Millbrook Tarry Condominium 97 Lowell Road Concord, MA 01742 Tel: 978-371-6400 Fax: 978-371-0050

## Chicago

333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075

#### Dallas

4570 Westgrove Drive, Suite 160 Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924

## Dayton

Two Prestige Place, Suite 130 Miamisburg, OH 45342 Tel: 937-291-1654 Fax: 937-291-9175

## Detroit

Tri-Atria Office Building 32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260

### Los Angeles

18201 Von Karman, Suite 1090 Irvine, CA 92612 Tel: 949-263-1888 Fax: 949-263-1338

### Mountain View

Analog Product Sales 1300 Terra Bella Avenue Mountain View, CA 94043-1836 Tel: 650-968-9241 Fax: 650-967-1590

#### **New York**

150 Motor Parkway, Suite 202 Hauppauge, NY 11788 Tel: 631-273-5305 Fax: 631-273-5335

#### San Jose

Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955

#### Toronto

6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699 Fax: 905-673-6509

## ASIA/PACIFIC

#### China - Beijing

Microchip Technology Beijing Office New China Hong Kong Manhattan Bldg.

No. 6 Chaoyangmen Beidajie Beijing, 100027, No. China Tel: 86-10-85282100 Fax: 86-10-85282104

## China - Shanghai

Microchip Technology Shanghai Office Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051 Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

#### **Hong Kong** Microchip Asia Pacific

RM 2101, Tower 2, Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

Microchip Technology Inc.

#### India

India Liaison Office Divyasree Chambers 1 Floor, Wing A (A3/A4) No. 11, OíShaugnessey Road Bangalore, 560 025, India Tel: 91-80-2290061 Fax: 91-80-2290062

## Japan

Microchip Technology Intl. Inc. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122

#### Korea

Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea Tel: 82-2-554-7200 Fax: 82-2-558-5934

## ASIA/PACIFIC (continued)

#### Singapore

Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore, 188980 Tel: 65-334-8870 Fax: 65-334-8850

#### Taiwan

Microchip Technology Taiwan 11F-3. No. 207 Tung Hua North Road Taipei, 105, Taiwan Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

#### **EUROPE**

#### Australia

Microchip Technology Australia Pty Ltd Suite 22, 41 Rawson Street Epping 2121, NSW Australia Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

#### Denmark

Microchip Technology Denmark ApS Regus Business Centre Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910

## **France**

Arizona Microchip Technology SARL Parc díActivite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - Ier Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

## Germany

Arizona Microchip Technology GmbH Gustav-Heinemann Ring 125 D-81739 Munich, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44

#### Germany

Analog Product Sales Lochhamer Strasse 13 D-82152 Martinsried, Germany Tel: 49-89-895650-0 Fax: 49-89-895650-22

#### Italy

Arizona Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza

Milan, Italy

Tel: 39-039-65791-1 Fax: 39-039-6899883

## **United Kingdom**

Arizona Microchip Technology Ltd. 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44 118 921 5869 Fax: 44-118 921-5820

All rights reserved. © 2001 Microchip Technology Incorporated. Printed in the USA. 1/01



Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchipis products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, except as maybe explicitly expressed herein, under any intellectual property rights. The Microchip logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other trademarks mentioned herein are the property of their respective companies.

6 © 2001 Microchip Technology Inc. DS21396A TC232-6 10/21/96