

Low Jitter and Power Clock Generator with SSCG

Key Features

- Low power dissipation
 - 14.5mA-typ CL=15pF
 - 20.0mA-max CL=15pF
- 3.3V +/-10% power supply range
- 27.000MHz crystal or clock input
- 27.000MHz REFCLK
- 100MHz SSCLK with SSEL0/1 spread options
- Low CCJ Jitter
- Low LT Jitter
- Internal Voltage Regulators
- 45% to 55% Output Duty Cycle
- On-chip Crystal Oscillator
- -10 to +85 Temperature Range
- 10-pin 3x3x0.75 mm TDFN package

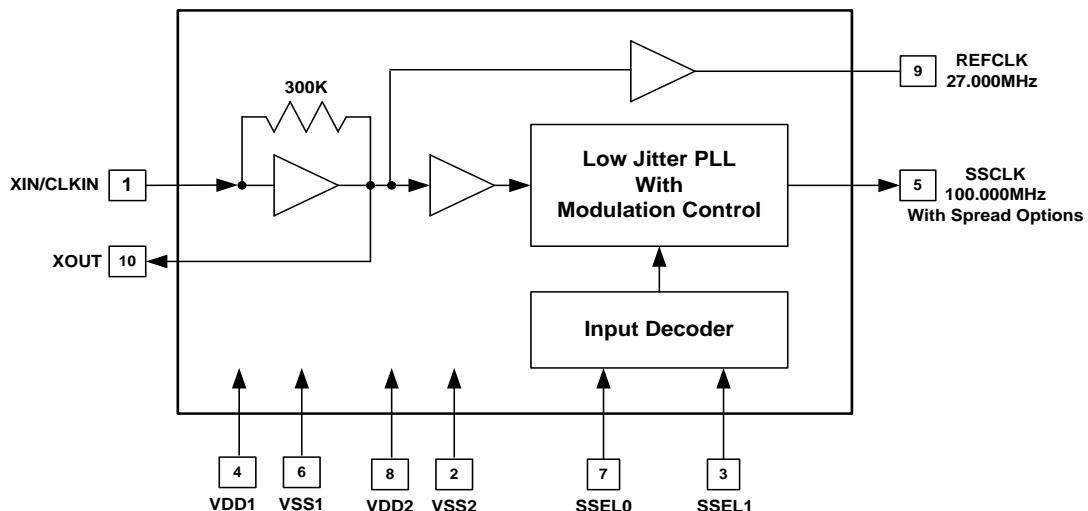
Application

- Video Cards
- NB and DT PCs
- HDTV and DVD-R/W
- Routers, Switches and Servers
- Data Communications
- Embedded Digital Applications

Description

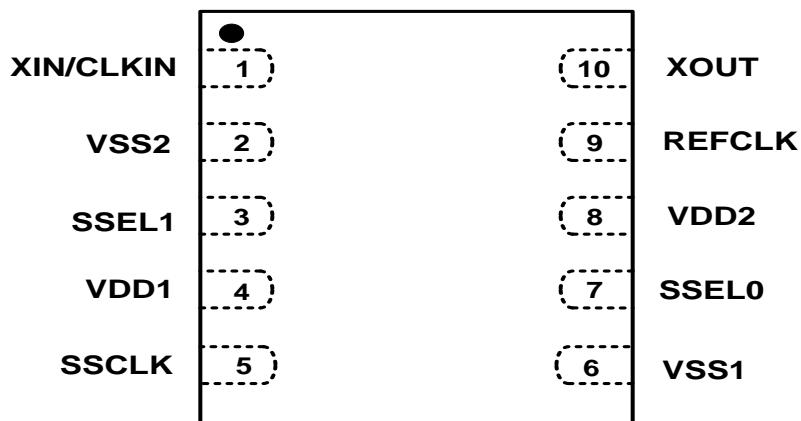
The SL16020DC is a low power dissipation spread spectrum clock generator using SLI proprietary low jitter PLL. The SL16020DC provides two output clocks. REFCLK (Pin-9) which is a buffered output of the 27.000MHz input crystal and SSCLK (Pin-5) which is synthesized as 100.000MHz nominal by an internal PLL using the 27.00MHz external input crystal or clock.

In addition, SSEL0 (Pin-7) and SSEL1 (Pin-3) spread percent selection control inputs enable users to select from 0.0% (no spread) to -1.5% down spread at 100.000MHz SSCLK output to reduce and optimize system EMI levels.


The SL16020DC operates in an extended temperature range of -10 to +85°C.

Contact SLI for other programmable frequencies, Spread Spectrum Clock (SSC) options, as well as 2.5V +/-10 and 1.8V +/-5% power supply options.

Benefits


- EMI Reduction
- Improved Jitter
- Low Power Dissipation
- Eliminates external Xtals or XOs

Block Diagram

Figure 1. Block Diagram

Pin Configuration

Figure 2. 10-Pin TDFN (3x3x0.75 mm)

Table 1. Pin Description

Pin Number	Pin Name	Pin Type	Pin Description
1	XIN	Input	External crystal or clock input. Capacitance at this pin is 4 pF-typ.
2	VSS2	Power	Power supply ground for 27.000MHz REFCLK output.
3	SSEL1	Input	SSEL1 spread percent selection pin. Refer to Table 5 for available spread options using SSEL1 pin. This pin has 150kΩ pull down resistor to VSS.
4	VDD1	Power	Positive power supply for 100.000MHz SSCLK output. 3.3V +/-10%.
5	SSCLK	Output	SSCLK clock output. 100.000MHz nominal. Refer to Table 5 for available spread % options by using SSEL0 and SSEL1 control pins.
6	VSS1	Power	Power supply ground for 100.000MHz SSCLK output.
7	SSEL0	Input	SSEL spread percent selection pin. Refer to Table 5 for available spread options using SSEL0 pin. This pin has 150kΩ pull down resistor to VSS.
8	VDD2	Power	Positive power supply for 27.000MHz REFCLK output. 3.3V +/-10%.
9	REFCLK	Output	REFCLK clock output. 27.000MHz nominal.
10	XOUT	Output	Crystal output. Capacitance at this pin 4 pF-typ. If clock input is used, leave this pin unconnected (N/C).

Table 2. Absolute Maximum Ratings

Description	Condition	Min	Max	Unit
Supply voltage, VDD		-0.5	4.2	V
All Inputs and Outputs		-0.5	VDD+0.5	V
Ambient Operating Temperature	In operation, extended C grade	-10	85	°C
Storage Temperature	No power is applied	-65	150	°C
Junction Temperature	In operation, power is applied	-	125	°C
Soldering Temperature		-	260	°C
ESD Rating (Human Body Model)	JEDEC22-A114D	-4,000	4,000	V
ESD Rating (Charge Device Model)	JEDEC22-C101C	-1,500	1,500	V
ESD Rating (Machine Model)	JEDEC22-A115D	-200	200	V

Table 3. DC Electrical Characteristics (C-Grade)

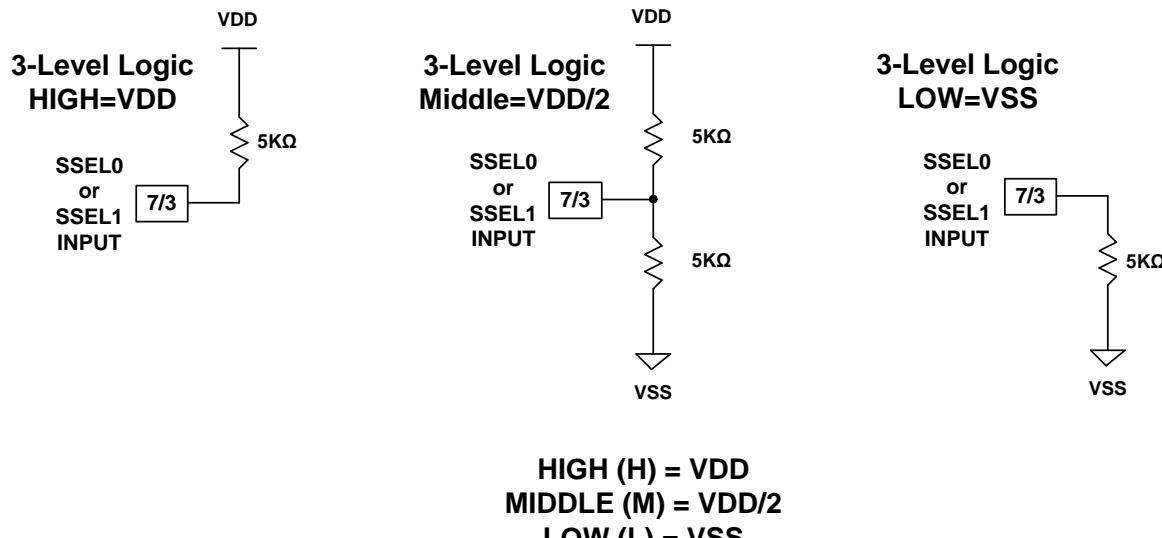
Unless otherwise stated VDD= 3.3V+/- 10%, CL=15pF and Ambient Temperature range -10 to +85Deg C

Description	Symbol	Condition	Min	Typ	Max	Unit
Operating Voltage	VDD1/2	VDD1=VDD2=3.3V +/-10%	2.97	3.3	3.63	V
Input Low Voltage	VINL	SSEL0 and SSEL1	0	-	0.2	V
Input Middle Voltage	VINM	SSEL0 and SSEL1	0.4VDD	-	0.6VDD	
Input High Voltage	VINH	SSEL0 and SSEL1	0.9VDD	-	VDD	V
Output Low Voltage	VOL	IOL=15mA, Pins 5 and 9	-	-	0.4	V
Output High Voltage	VOH	IOH=-15mA, Pins 5 and 9	VDD-0.4	-	-	V
Power Supply Current	IDD	SSEL=1, M or 0, CL=15pF, VDD=3.63V and T=85°C	-	14.5	20.0	mA
Input Capacitance	CIN1	XIN and XOUT, Pins 1 and 10	-	4	-	pF
Input Capacitance	CIN2	SSEL0/1, Pins 7 and 3	-	3	5	pF
Load Capacitance	CL	SSCLK and REFCLK, Pins 5 and 9	-	-	15	pF
Pull Down Resistor	RPD	Pins 3 and 7	100	150	250	kΩ

Table 4. AC Electrical Characteristics (C-Grade)

Unless otherwise stated VDD= 3.3V+/-10%, CL=15pF and Ambient Temperature range -10 to +85 Deg C

Parameter	Symbol	Condition	Min	Typ	Max	Unit
Frequency Range	FR-1	Input crystal or clock range, +/-10 ppm accuracy if a crystal is used	-	27.000	-	MHz
Frequency Range	FR-2	REFCLK, Pin 9	-	27.000	-	MHz
Frequency Range	FR-3	SSCLK, Pin 5	-	100.000	-	MHz
Frequency Accuracy	FACC1	REFCLK, Pin 9	-	+/-0	-	ppm
Frequency Accuracy	FACC2	SSCLK, Pin 5, SSEL0/1=0	-	+/-0	-	ppm
Rise and Fall Time	TR/F-1	REFCLK, Pin 9, CL=5pF, measured from 20% to 80% of VDD	-	1.0	1.5	ns
Rise and Fall Time	TR/F-2	REFCLK, Pin 9, CL=15pF, measured from 20% to 80% of VDD	-	1.5	2.0	ns
Rise and Fall Time	TR/F-3	SSCLK, Pin 5, CL=5pF, measured from 20% to 80% of VDD	-	0.75	1.0	ns
Rise and Fall Time	TR/F-4	SSCLK, Pin 5, CL=15pF, measured from 20% to 80% of VDD	-	1.5	1.75	ns
Output Duty Cycle	DC	SSCLK and REFCLK , Pins 5 and 9 measured at VDD/2, CL=15pF	45	50	55	%
Cycle-to-Cycle Jitter	CCJ1	SSCLK, Pin 5, all S0/1 states	-100	+/-50	100	ps
Cycle-to-Cycle Jitter	CCJ2	REFCLK, Pins 9, all S0/1 states	-150	+/-100	150	ps
Long Term Jitter	LTJ	REFCLK, Pins 9, 10,000 cycles, all S0/1 states	-	150	250	ps
Power-up Time (VDD)	tPU1	Time from 0.9VDD to valid frequency at output Pins 5 and 9	-	2.0	5.0	ms
Spread Percent Change Settling Time	tSS%	Time from SSEL0/1 change to stable SSCLK with spread %	-	-	1.0	ms
Modulation Frequency	MF	SSCLK, 100MHz nominal, Pin 5	31	32	33	kHz
Modulation Type and Slew Rate	FMTSR	SSCLK, Pin 5, Triangular Modulation Profile	-	-	0.125	%/ μ s

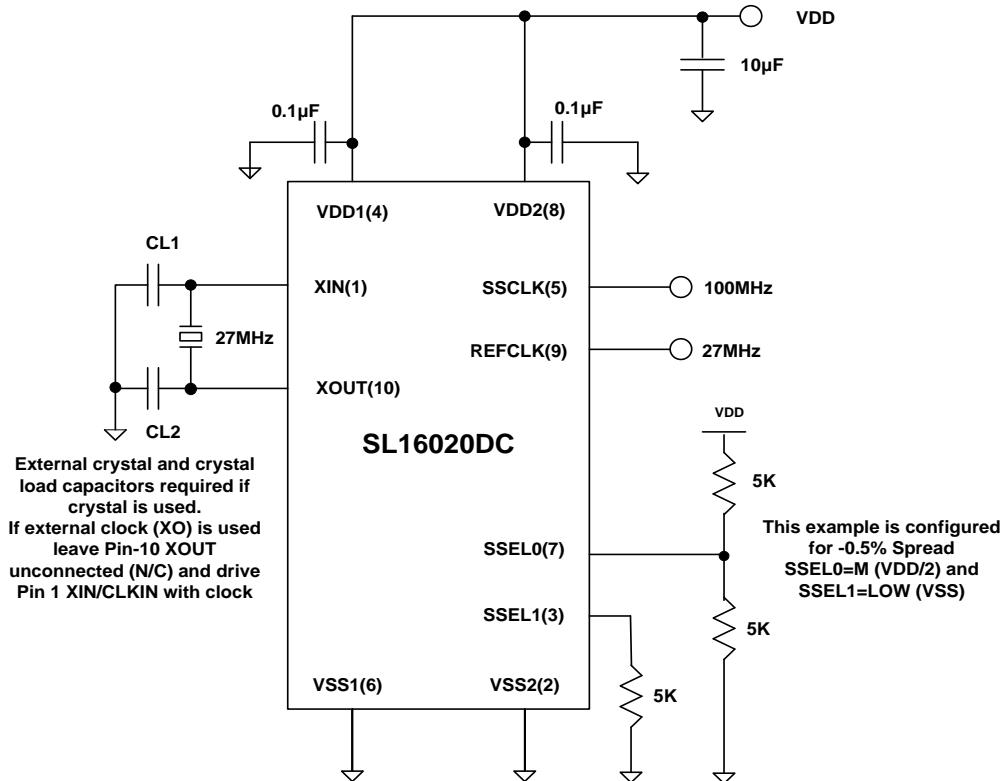

Table 5. SSEL1 and SSEL0 versus Spread % Selection at SSCLK

SSEL1 (Pin 3)	SSEL0 (Pin 7)	Spread Percent (%) SSCLK (Pin 5)
Low (VSS)	Low (VSS)	Spread Off (No Spread)
Low (VSS)	Middle (VDD/2)	-0.50%
Low (VSS)	High (VDD)	-0.375%
Middle (VDD/2)	Low (VSS)	-0.25%
Middle (VDD/2)	Middle (VDD/2)	-0.75%
Middle (VDD/2)	High (VDD)	-1.00%
High (VDD)	Low (VSS)	-1.50%
High (VDD)	Middle (VDD/2)	Spread Off (No Spread)-Test
High (VDD)	High (VDD)	Spread Off (No Spread)-Test

Table 6. Recommended Crystal Specifications

Description	Min	Typ	Max	Unit
Nominal Frequency (Fundamental Crystal)	-	27.000	-	MHz
Crystal Accuracy	-	+/-10	-	ppm
Load Capacitance	6	12	18	pF
Shunt Capacitance	-	-	7.0	pF
Equivalent Series Resistance (ESR)	-	-	30	Ω
Drive Level	-	-	1.0	mW

External Resistor Dividers for 3-Level Logic Implementation


Figure 3. FSEL0 and FSEL1 Spread % Selection Logic

Note: SSEL0 and SSEL1 pins use 3-Level L(LOW) = VSS, M(MIDDLE)=VDD/2 and H(HIGH) = VDD 3-Level logic to provide 9 spread % values at SSCLK (pin 5) as given in Table 5.

Use 5kΩ/5kΩ external resistor dividers at SSEL0 and SSEL1 pins from VDD to VSS to obtain VDD/2 for M=VDD/2 Logic level as shown above in Figure 3.

External Components and Design Considerations

Typical Application Circuit

Figure 4. Typical Application Schematic

Comments and Recommendations

Crystal and Crystal Load: Only use a parallel resonant fundamental AT cut crystal. DO NOT USE higher overtone crystals. To meet the crystal initial accuracy specification (in ppm) make sure that external crystal load capacitor is matched to crystal load specification. To determine the value of CL1 and CL2, use the following formula;

$$C1 = C2 = 2CL - (C_{pin} + C_p)$$

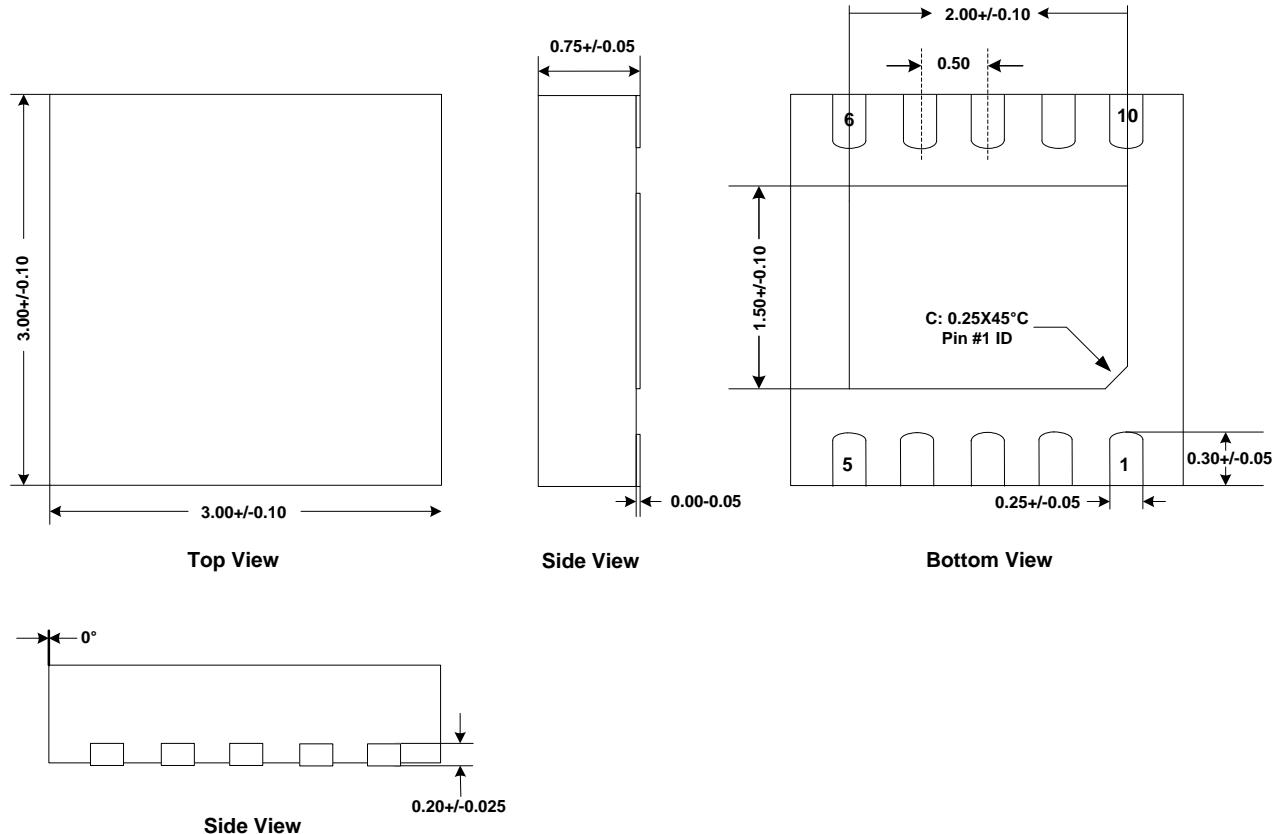
Where: CL is load capacitance stated by crystal manufacturer

C_{pin} is the SL16010 pin capacitance (4pF)

C_p is the parasitic capacitance of the PCB traces.

EXAMPLE: if a crystal with CL=12pF specification is used and C_p=1pF (parasitic PCB capacitance on PCB), 19 or 20pF external capacitors from pins XIN (pin-1) and XOUT (Pin-10) to VSS are required since CXIN=CXOUT=4pF for the SL1610DC product. Users must verify C_p value.

Decoupling Capacitor: A decoupling capacitor of 0.1µF must be used between VDD1/2 pins and VSS1/2 pin. Place the capacitor on the component side of the PCB as close to the VDD1/2 pins as possible. The PCB trace to the VDD1/2 pins and to the VSS via should be kept as short as possible. Do not use vias between the decoupling capacitor and the VDD1/2 pins. In addition, a 10uf capacitor should be placed between VDD and VSS.


Series Termination Resistor: A series termination resistor is recommended if the distance between the outputs (REFCLK and SSCLK) and the load if PCB trace is over 1 ½ inch. The nominal impedance of the outputs is about 24

Ω. Use $22\ \Omega$ resistors in series with the outputs to terminate 50Ω trace impedance and place $22\ \Omega$ resistors as close to the clock outputs as possible.

Package Outline and Package Dimensions

10-Pin TDFN Package (3x3x0.75 mm)

Dimensions are in mm

Table 7. Thermal Characteristics

Parameter	Symbol	Condition	Min	Typ	Max	Unit
Thermal Resistance Junction to Ambient	θ_{JA1}	Still air	-	75	-	$^{\circ}\text{C/W}$
	θ_{JA2}	1m/s air flow	-	70	-	$^{\circ}\text{C/W}$
	θ_{JA3}	3m/s air flow	-	55	-	$^{\circ}\text{C/W}$
Thermal Resistance Junction to Case	θ_{JC}	Independent of air flow	-	25	-	$^{\circ}\text{C/W}$

Table 8. Ordering Information

Ordering Number	Marking	Shipping Package	Package	Temperature
SL16020DC	SL16020DC	Tube	10-pin TDFN	-10 to 85°C
SL16020DCT	SL16020DC	Tape and Reel	10-pin TDFN	-10 to 85°C

Note:

- SL16020DC is RoHS compliant and Halogen Free.**

Product Revisions History

Revision	Date	Originator	Description
Rev 1.0	11/12/2009	C. Ozdalga	Original
Rev 1.1	11/12/2009	C. Ozdalga	Change spread % from -1.50% to -0.375% for S1=0 (VSS) and S0=1(VDD) state on Table 5.
Rev 1.2	11/23/2009	C. Ozdalga	Add 150kΩ weak pull down resistors at S0 and S1 pins to VSS.
Rev2.0	4/19/2010	C. Ozdalga	Final datasheet after product qualification. CCJ1 SSCLK decreased to +/-50-ps-typ and +/-100ps-max and CCJ2 REFCLK decreased to +/-100ps-typ and +/-150ps-max and LTJ decreased to +/-250ps-max. IDD change to 20mA-max (AMD spec 50mA-max).
Rev 2.1	6/14/2010	C. Ozdalga	Add clock input function (in addition to crystal). SL16020DC works with both external crystal and clock (XO).
Rev 2.2	8/1/2010	C. Ozdalga	Add "Halogen Free", page 8.

ClockBuilder Pro

One-click access to Timing tools, documentation, software, source code libraries & more. Available for Windows and iOS (CBGo only).

www.silabs.com/CBPro

Timing Portfolio
www.silabs.com/timing

SW/HW
www.silabs.com/CBPro

Quality
www.silabs.com/quality

Support and Community
community.silabs.com

Disclaimer

Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are not designed or authorized for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®, ISOModem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

<http://www.silabs.com>