3-channel BTL driver for CD players BA5933FP-Y

The BA5933FP-Y is a 3-channel BTL driver for CD player actuators and motors. This IC has an internal 5V regulator and a standard operational amplifier, and comes in a HSOP 25-pin package, allowing for application miniaturization.

Applications

CD players and CD-ROM drives

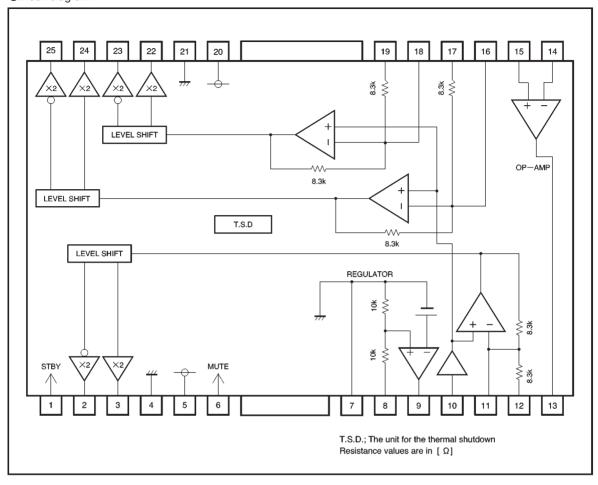
Features

- 1) 3-channel BTL driver.
- HSOP 25-pin power package allows for application miniaturization.
- 3) Internal standby function.
- 4) Internal thermal shutdown circuit.

- 5) Gain is adjustable with an attached resistor.
- 6) Internal 5V regulator. (requires attached PNP transistor)
- 7) Internal standard operational amplifier.

● Absolute maximum ratings (Ta = 25°C)

Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	18	V
Power dissipation	Pd	1.45 ^{*1}	w
Operating temperature	Topr	−35~+85	°C
Storage temperature	Tstg	− 55∼ + 150	°


^{*1} When mounted on a 70 × 70 × 1.5 mm glass epoxy board with less than 3% copper foil. Reduced by 11.6 mW for each increase in Ta of 1°C over 25°C.

● Recommended operating conditions (Ta = 25°C)

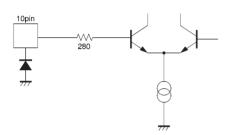
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Power supply voltage	Vcc	6	_	13.2	V	
		4.5	_	13.2	V	Wihtout regulator*2

^{*2} Pins 8 and 9 may be left open without regulator.

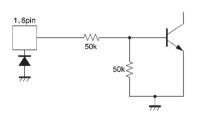
■Block diagram

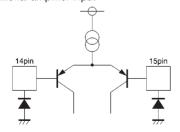
●Pin descriptions

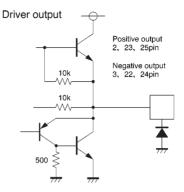
Pin No.	Pin name	Function
1	STBY	Standby mode switch
2	OUT1+	Channel 1 positive output
3	OUT1-	Channel 1 negative output
4	GND	Ground
5	Vcc	Vcc
6	MUTE	Mute
7	GND	Substrate ground
8	REG_OUT	Constant voltage output (collector for the attached transistor)
9	REG_B	Connect to the base of the attached transistor
10	BIAS	Bias input
11	IN1	Channel 1 gain adjustment input
12	IN1	Channel 1 fixed input
13	OP_OUT	Operational amplifier output


⋆ Po	sitive and	negative	output is	relative to	the	polarity	of the	input pins.
------	------------	----------	-----------	-------------	-----	----------	--------	-------------

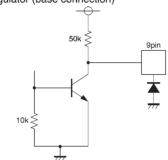
Pin No.	Pin name	Function			
14	OP_IN (-)	Operational amplifier negative input			
15	OP_IN (+)	Operational amplifier positive input			
16	IN2 [']	Channel 2 gain adjustment input			
17	IN2	Channel 2 gain fixed input			
18	IN3 [']	Channel 3 gain adjustment input			
19	IN3	Channel 3 gain fixed input			
20	Vcc	Vcc			
21	GND	Ground			
22	OUT3-	Channel 3 negative output			
23	оитз+	Channel 3 positive output			
24	OUT2-	Channel 2 negative output			
25	OUT2+	Channel 2 positive output			


Pin equivalent circuit diagrams

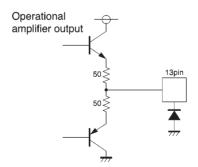

Bias



Standby switch muting

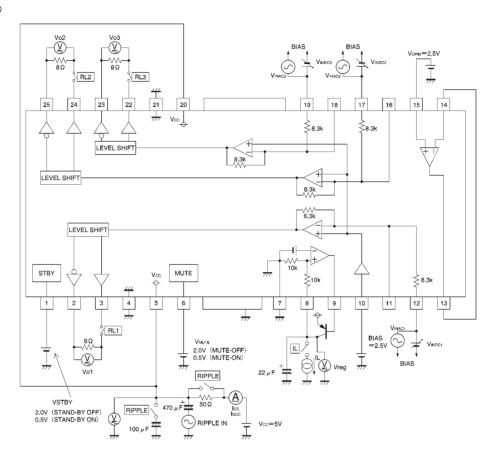


Operational amplifier input



Regulator (base connection)

Regulator output


•Electrical characteristics (unless otherwise noted, Ta = 25°C, Vcc = 5V, BIAS = 2.5V, RL = 8 Ω)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	
Quiescent current dissipation	lcc	_	7.0	10.0	mA	No load	
Standby current dissipation	Iscc	_	0	100	μΑ	No load	
Output voltage, offset	Voo	-50	_	50	mV	_	
Maximum output amplitude	Vом	2.5	3.0	_	V	_	
Closed loop voltage gain	Gvc	10.5	12.0	13.5	dB	V _{IN} =±0.3V	
Ripple rejection	RR	_	60	_	dB	RIPPLE IN=0.1Vrms, 100Hz	
Slew rate	SR	_	2.0	_	V/μs	100 kHz square wave, 2 V _{P-P} output	
Mute On voltage	V _{MON}	_	_	0.5	V	_	
Mute Off voltage	VMOFF	2.0	_	_	V	_	
Standby On voltage	Vson	_	_	0.5	V	_	
Standby Off voltage	Vsoff	2.0	_	_	V	_	
⟨5 V regulator⟩							
Output voltage	Vreg	4.75	5.00	5.25	V	Vcc=8V IL=100mA	
Output load differential	△VRL	-50	0	10	mV	Vcc=8V IL=0~200mA	
Power supply voltage differential	△VVcc	-8	0	25	mV	(Vcc=6~9V)	
⟨Operational amplifier⟩							
Offset voltage	Vofop	-5	0	5	mV	_	
Input bias current	V _{BOP}	_	_	300	nA	_	
Output high level voltage	Vонор	3.9	_	_	V	_	
Output low level voltage	Volop	_	_	1.1	V	_	
Output drive current (sink)	Isink	10	30	_	mA	Vcc at 50 Ω	
Output drive current (source)	Isource	10	25	_	mA	50Ω at ground	
Open loop voltage gain	Gvo	_	78	_	dB	V _{IN} =-75dBV, 1kHz	
Slew rate	SROP	_	1	_	V/μs	100 kHz square wave, 2 V _{P-P} output	
Ripple rejection	RRop	_	65	_	dB	V _{IN} =-20dBV, 100Hz	
Common mode rejection ratio	Смяя	_	84	_	dB	V _{IN} =-20dBV, 1kHz	

ONot designed for radiation resistance.

Measurement circuit

⟨Driver⟩

⟨Operational amplifier⟩

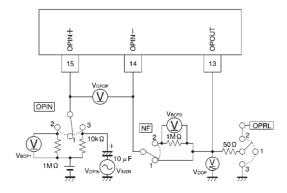


Fig. 1

Application example

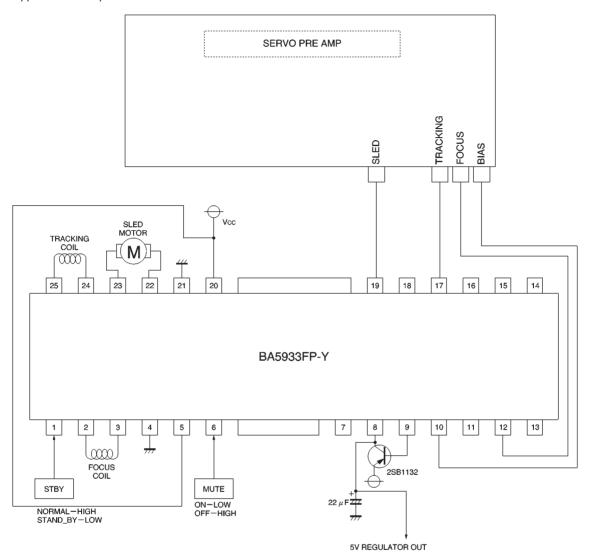


Fig. 2

Operation notes

- (1) The BA5933FP-Y has a thermal shutdown circuit. The output current is muted when the chip temperature rises above 175°C (typically). When the chip temperature falls to 150°C (typically), the driver circuit starts up again.
- (2) The output current can be muted by opening the mute pin (pin 6) voltage or lowering it below 0.5V. During normal use, pin 6 should be pulled up above 2.0V.
- (3) The bias pin (pin10) is muted when lowered below 1.4V (typically). Make sure it stays above 1.6V during normal use.
- (4) Muting occurs during thermal shutdown, mute-on operations or a drop in the bias pin voltage. In each case, only the drivers are muted. During muting, the output pins

- remain at the internal bias voltage, roughly (Vcc/2).
- (5) Connect the IC to a $0.1\mu F$ bypass capacitor between power supplies, at the base of the IC.
- (6) The radiating fin is connected to the package's internal GND, but should also be connected to an external GND.
- (7) The capacitor between regulator output (pin 8) and GND also serves to prevent oscillation of the IC, so select one with good temperature characteristics.
- (8) The IC can be switched to the standby mode by opening the standby mode switch (pin 1) voltage, or lowering it below 0.5V. During normal use, pin 1 should be pulled up above 2.0V.

Electrical characteristic curves

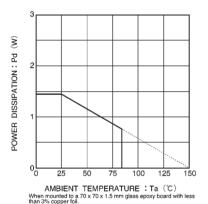


Fig. 3 Thermal derating curve

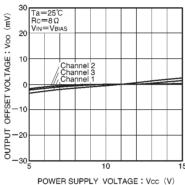


Fig. 4 Output offset voltage vs. power supply voltage

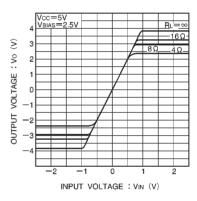


Fig. 5 I/O characteristics (Vcc = 5 V, variable load)

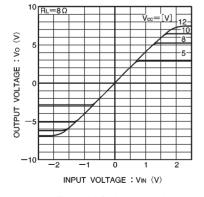


Fig. 5 I / O characteristics (variable Vcc)

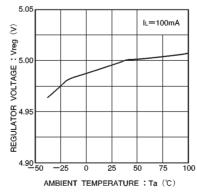


Fig. 7 Regulator voltage vs. temperature

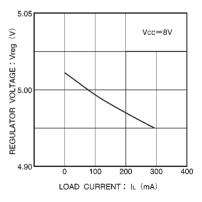


Fig. 8 Load current vs. regulator voltage

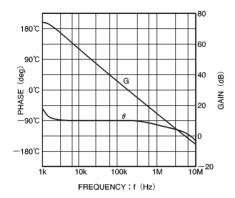
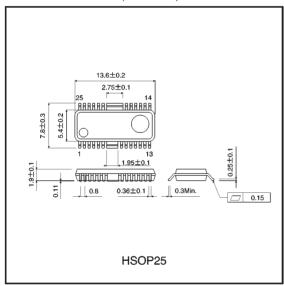



Fig. 9 Operational amplifier v.s. open loop characteristics

External dimensions (Units: mm)

