ULN2004AI HIGH-VOLTAGE HIGH-CURRENT DARLINGTON TRANSISTOR ARRAY

SLRS055 - APRIL 2004

- 500-mA-Rated Collector Current (Single Output)
- High-Voltage Outputs . . . 50 V
- Output Clamp Diodes
- Inputs Compatible With Various Types of Logic
- Relay-Driver Applications

(TOP VIEW) 16**∏** 1C 1B l 2B **∏** 15 **∏** 2C 3B **∏** 3 14**∏** 3C 4B 🛮 4 13 4C 5B **∏** 5 12**∏** 5C 6В П 6 11 **∏** 6C 7B **∏** 7 10 7C E [] 8 9 COM

D, N, OR NS PACKAGE

description/ordering information

The ULN2004AI is a high-voltage, high-current Darlington transistor array. This device consists of seven npn Darlington pairs that feature

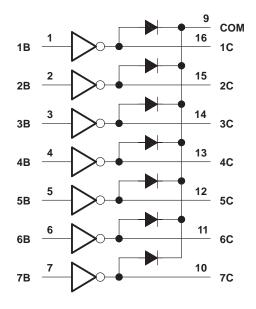
high-voltage outputs with common-cathode clamp diodes for switching inductive loads. The collector-current rating of a single Darlington pair is 500 mA. The Darlington pairs can be paralleled for higher-current capability. Applications include relay drivers, hammer drivers, lamp drivers, display drivers (LED and gas discharge), line drivers, and logic buffers.

The ULN2004AI has a 10.5-k Ω series base resistor for each Darlington pair for operation directly with TTL or 5-V CMOS devices.

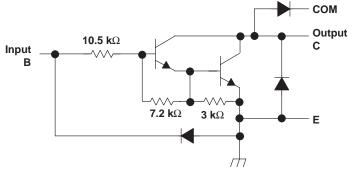
ORDERING INFORMATION

T _A PACKAGE [†]		_{3E} †	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	PDIP (N)	Tube of 25	ULN2004AIN	ULN2004AIN
4000 +- 40500	SOIC (D)	Tube of 40	ULN2004AID	ULN2004AI
−40°C to 105°C	SOIC (D)	Reel of 2500	ULN2004AIDR	ULINZUU4AI
	SOP (NS)	Reel of 2000	ULN2004AINSR	ULN2004AI

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



SLRS055 - APRIL 2004

logic diagram

schematics (each Darlington pair)

All resistor values shown are nominal.

ULN2004AI HIGH-VOLTAGE HIGH-CURRENT DARLINGTON TRANSISTOR ARRAY

SLRS055 - APRIL 2004

absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)†

Collector-emitter voltage	50 V
Clamp diode reverse voltage (see Note 1)	
Input voltage, V _I (see Note 1)	30 V
Peak collector current (see Notes 2 and 4)	500 mA
Output clamp current, I _{OK}	500 mA
Total emitter-terminal current	–2.5 A
Operating free-air temperature range, T _A	40°C to 105°C
Package thermal impedance, θ _{JA} (see Notes 2 and 3): D package	73°C/W
N package	67°C/W
NS package	64°C/W
Operating virtual junction temperature, T _J	150°C
Storage temperature range, T _{stq}	. −65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values are with respect to the emitter/substrate terminal E, unless otherwise noted.
 - 2. Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.
 - 3. The package thermal impedance is calculated in accordance with JESD 51-7.

electrical characteristics, T_A = 25°C

	PARAMETER	TEST FIGURE	TEST C	CONDITIONS	MIN TY	P MAX	UNIT	
				I _C = 125 mA		5		
	On state input valte as		\\ 0\\	$I_C = 200 \text{ mA}$		6] ,, [
V _{I(on)}	On-state input voltage	6	V _{CE} = 2 V	$I_C = 275 \text{ mA}$		7	V	
				$I_C = 350 \text{ mA}$		8	1	
	Collector-emitter saturation voltage	5	I _I = 250 μA,	$I_C = 100 \text{ mA}$	0	.9 1.1		
V _{CE(sat)}			I _I = 350 μA,	$I_C = 200 \text{ mA}$		1 1.3	V	
(,			I _I = 500 μA,	I _C = 350 mA	1	.2 1.6		
ICEX	Collector cutoff current	1	V _{CE} = 50 V,	I _I = 0		50	μΑ	
٧F	Clamp forward voltage	8	I _F = 350 mA		1	.7 2	V	
		4	V _I = 5 V		0.3	5 0.5		
II	Input current		V _I = 12 V			1 1.45	mA	
I _R	Clamp reverse current	7	V _R = 50 V			50	μΑ	
Ci	Input capacitance		$V_{I} = 0,$	f = 1 MHz	1	5 25	pF	

ULN2004AI **HIGH-VOLTAGE HIGH-CURRENT DARLINGTON** TRANSISTOR ARRAY SLRS055 – APRIL 2004

electrical characteristics, $T_A = -40^{\circ} C$ to $105^{\circ} C$

	PARAMETER	TEST FIGURE	TEST C	TEST CONDITIONS			MAX	UNIT
				$I_C = 125 \text{ mA}$			5	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	On atata input valtage	6	N 2.V	$I_C = 200 \text{ mA}$			6	.,
V _{I(on)}	On-state input voltage	0	V _{CE} = 2 V	$I_C = 275 \text{ mA}$			7	V
				$I_C = 350 \text{ mA}$			8]
			$I_I = 250 \mu A$,	$I_C = 100 \text{ mA}$		0.9	1.1	
VCE(sat)	Collector-emitter saturation voltage	5	$I_{I} = 350 \mu A$,	$I_C = 200 \text{ mA}$		1	1.3	V
			$I_{I} = 500 \mu A$,	$I_C = 350 \text{ mA}$		1.2	1.6	
		1	V _{CE} = 50 V,	$I_I = 0$			50	
ICEX	Collector cutoff current	2	V _{CE} = 50 V	$I_I = 0$			100	μΑ
				V _I = 1 V			500]
٧F	Clamp forward voltage	8	I _F = 350 mA			1.7	2	V
I _{I(off)}	Off-state input current	3	$V_{CE} = 50 \text{ V},$	$I_C = 500 \mu A$	50	65		μΑ
	land almost	4	V _I = 5 V			0.35	0.5	A
Ц	Input current	4	V _I = 12 V			1	1.45	mA
I_{R}	Clamp reverse current	7	V _R = 50 V				100	μΑ
Ci	Input capacitance		$V_{I} = 0,$	f = 1 MHz		15	25	pF

switching characteristics, $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	Propagation delay time, low- to high-level output	See Figure 8		0.25	1	μs
tPHL	Propagation delay time, high- to low-level output	See Figure 8		0.25	1	μs
Vон	High-level output voltage after switching	$V_S = 50 \text{ V}, \qquad I_O \approx 300 \text{ mA},$ See Figure 9	V _S -20			mV

switching characteristics, $T_{\mbox{\scriptsize A}}$ = $-40^{\circ}\mbox{\scriptsize C}$ to $105^{\circ}\mbox{\scriptsize C}$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	Propagation delay time, low- to high-level output	See Figure 8		1	10	μs
tPHL	Propagation delay time, high- to low-level output	See Figure 8		1	10	μs
Vон	High-level output voltage after switching	$V_S = 50 \text{ V}, \qquad I_O \approx 300 \text{ mA},$ See Figure 9	V _S - 500			mV

PARAMETER MEASUREMENT INFORMATION

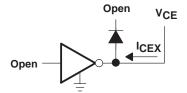


Figure 1. I_{CEX} Test Circuit

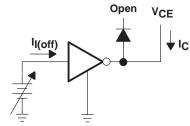
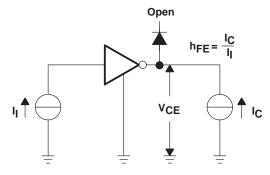



Figure 3. I_{I(off)} Test Circuit

NOTE: I_I is fixed for measuring $V_{CE(sat)}$, variable for measuring h_{FE}.

Figure 5. h_{FE}, V_{CE(sat)} Test Circuit

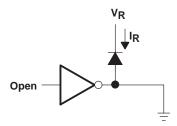


Figure 7. I_R Test Circuit

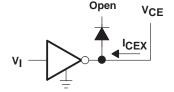


Figure 2. I_{CEX} Test Circuit

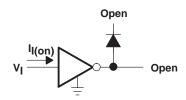


Figure 4. I_I Test Circuit

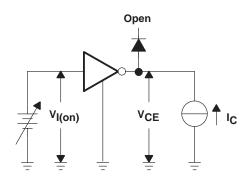


Figure 6. V_{I(on)} Test Circuit

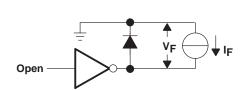


Figure 8. V_F Test Circuit

PARAMETER MEASUREMENT INFORMATION

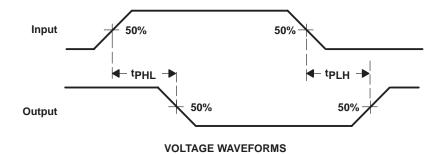
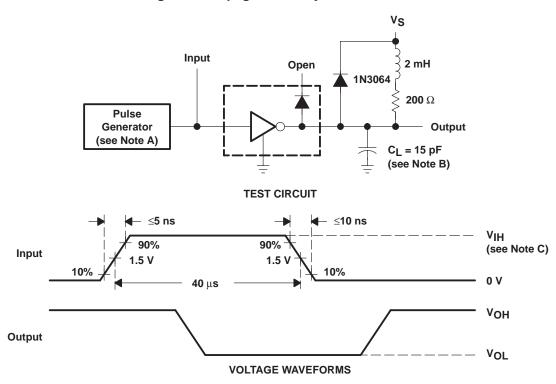
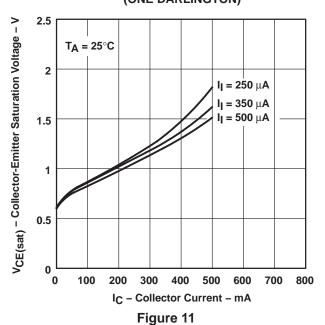
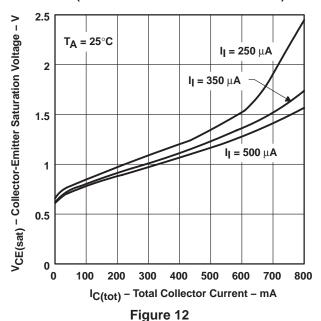



Figure 9. Propagation Delay-Time Waveforms

NOTES: A. The pulse generator has the following characteristics: PRR = 12.5 kHz, Z_O = 50 Ω .

- B. C_L includes probe and jig capacitance.
- C. For testing, $\dot{V}_{IH} = 3 \text{ V}$


Figure 10. Latch-Up Test Circuit and Voltage Waveforms


SLRS055 - APRIL 2004

TYPICAL CHARACTERISTICS

COLLECTOR-EMITTER
SATURATION VOLTAGE
vs
COLLECTOR CURRENT
(ONE DARLINGTON)

COLLECTOR-EMITTER
SATURATION VOLTAGE
vs
TOTAL COLLECTOR CURRENT
(TWO DARLINGTONS IN PARALLEL)

COLLECTOR CURRENT

INPUT CURRENT 500 $R_L = 10 \Omega$ 450 T_A = 25°C 400 I_C - Collector Current - mA V_S = 10 V 350 V_S = 8 V 300 250 200 150 100 50 0 0 100 25 50 75 125 150 175 200 I_I - Input Current - μA

SLRS055 - APRIL 2004

APPLICATION INFORMATION

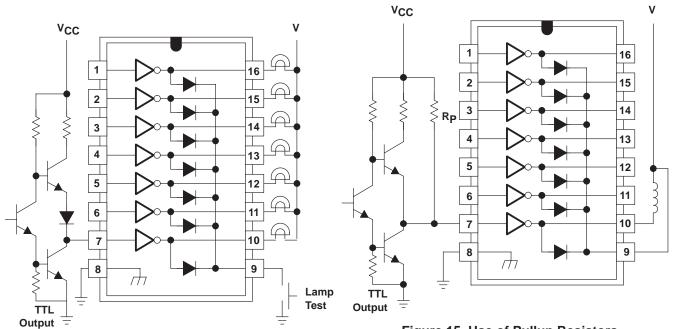


Figure 14. TTL to Load

Figure 15. Use of Pullup Resistors to Increase Drive Current

www.ti.com 23-May-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
ULN2004AID	Active	Production	SOIC (D) 16	40 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 105	ULN2004AI
ULN2004AID.A	Active	Production	SOIC (D) 16	40 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 105	ULN2004AI
ULN2004AIDR	Active	Production	SOIC (D) 16	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 105	ULN2004AI
ULN2004AIDR.A	Active	Production	SOIC (D) 16	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 105	ULN2004AI
ULN2004AIN	Active	Production	PDIP (N) 16	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	-40 to 105	ULN2004AIN
ULN2004AIN.A	Active	Production	PDIP (N) 16	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	-40 to 105	ULN2004AIN
ULN2004AINSR	Active	Production	SOP (NS) 16	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 105	ULN2004AI
ULN2004AINSR.A	Active	Production	SOP (NS) 16	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 105	ULN2004AI

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

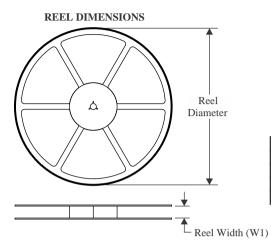
⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

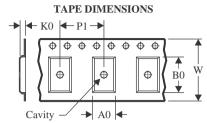
⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

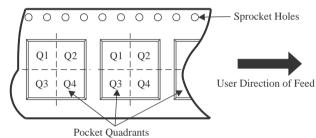
PACKAGE OPTION ADDENDUM


www.ti.com 23-May-2025


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

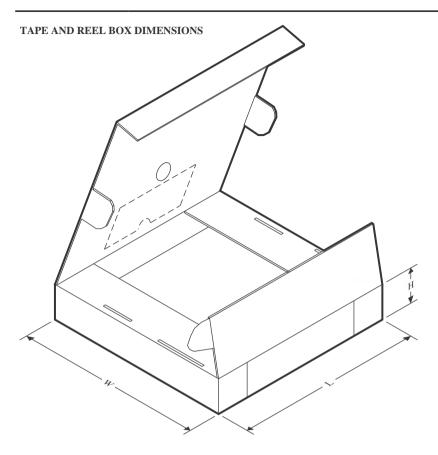
PACKAGE MATERIALS INFORMATION

www.ti.com 23-Jul-2025


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

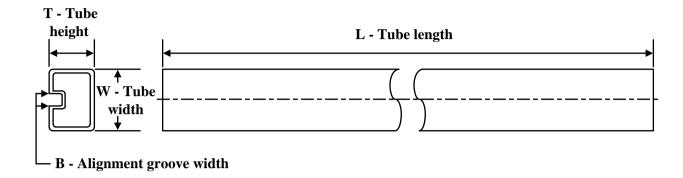


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ULN2004AIDR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
ULN2004AINSR	SOP	NS	16	2000	330.0	16.4	8.1	10.4	2.5	12.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 23-Jul-2025

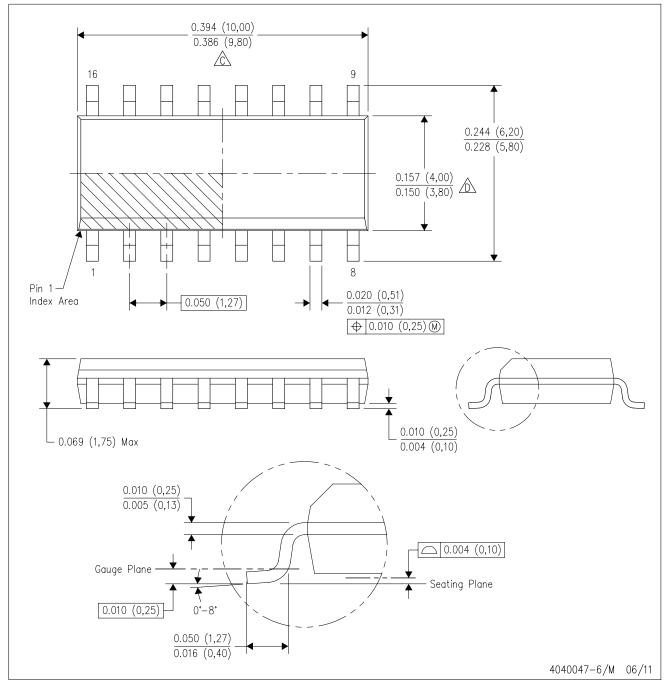

*All dimensions are nominal

Ì	Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm) 32.0	
	ULN2004AIDR	SOIC	D	16	2500	353.0	353.0		
ı	ULN2004AINSR	SOP	NS	16	2000	353.0	353.0	32.0	

PACKAGE MATERIALS INFORMATION

www.ti.com 23-Jul-2025

TUBE



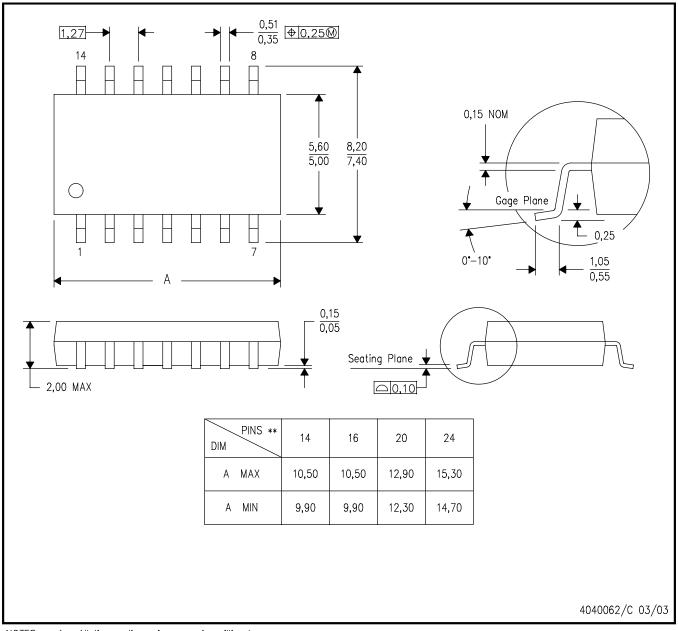
*All dimensions are nominal

7 til dillionsions are nominal	7 til dillionolono dio nominal									
Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)		
ULN2004AID	D	SOIC	16	40	507	8	3940	4.32		
ULN2004AID.A	D	SOIC	16	40	507	8	3940	4.32		
ULN2004AIN	N	PDIP	16	25	506	13.97	11230	4.32		
ULN2004AIN	N	PDIP	16	25	506	13.97	11230	4.32		
ULN2004AIN.A	N	PDIP	16	25	506	13.97	11230	4.32		
ULN2004AIN.A	N	PDIP	16	25	506	13.97	11230	4.32		

D (R-PDS0-G16)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.



MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

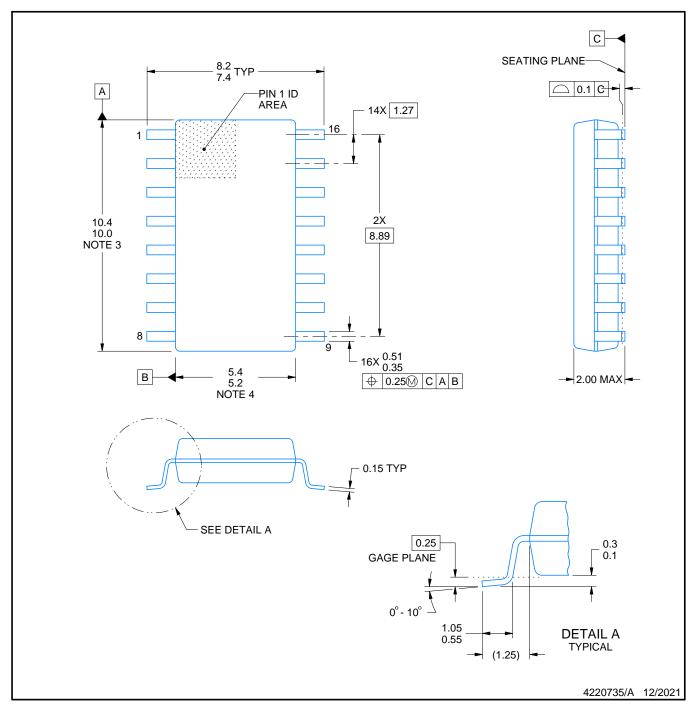
PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

N (R-PDIP-T**)

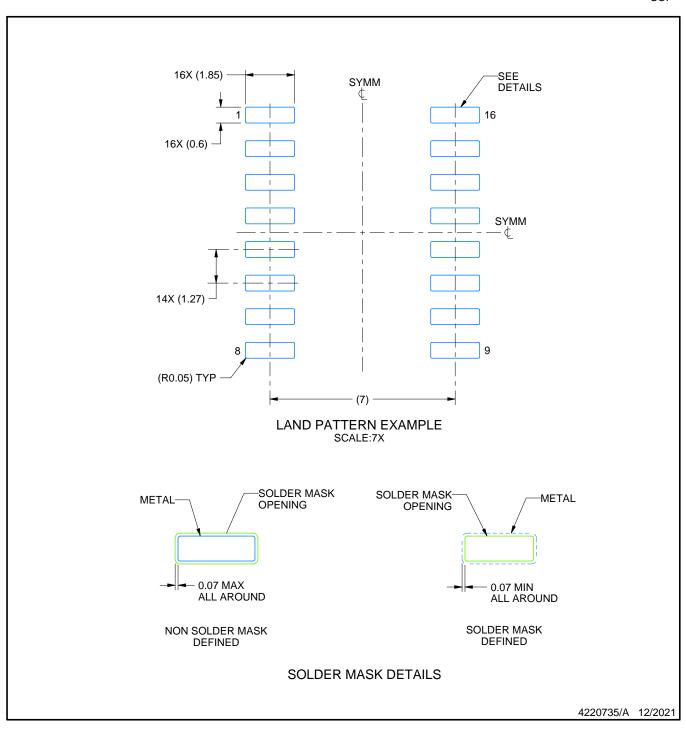
PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

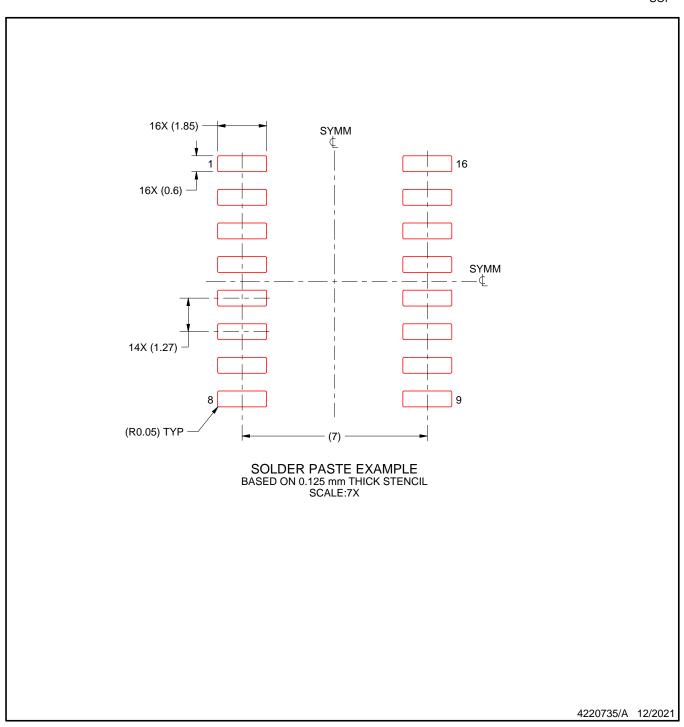
SOP


- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing
- per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.

SOF



NOTES: (continued)

- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOF

NOTES: (continued)

- 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated