#### INTEGRATED CIRCUITS

### DATA SHEET



### **SAA4979H**

Sample rate converter with embedded high quality dynamic noise reduction and expansion port

**Product specification** 

2002 May 28





## Sample rate converter with embedded high quality dynamic noise reduction and expansion port

**SAA4979H** 

| CONTENT                | rs                                          | 8    | CONTROL REGISTER DESCRIPTION                    |
|------------------------|---------------------------------------------|------|-------------------------------------------------|
| 1                      | FEATURES                                    | 8.1  | Host interface detail                           |
|                        |                                             | 8.2  | Special Function Registers (SFRs)               |
| 2                      | GENERAL DESCRIPTION                         | 9    | LIMITING VALUES                                 |
| 3                      | QUICK REFERENCE DATA                        | 10   | THERMAL CHARACTERISTICS                         |
| 4                      | ORDERING INFORMATION                        | 11   | CHARACTERISTICS                                 |
| 5                      | BLOCK DIAGRAM                               | 12   | TRANSFER FUNCTIONS                              |
| 6                      | PINNING                                     | 13   | APPLICATION INFORMATION                         |
| 7                      | FUNCTIONAL DESCRIPTION                      | 14   | PACKAGE OUTLINE                                 |
| 7.1                    | Digital processing at 1f <sub>H</sub> level |      |                                                 |
| 7.1.1                  | ITU 656 decoder                             | 15   | SOLDERING                                       |
| 7.1.2                  | Double window and picture-in-picture        | 15.1 | Introduction to soldering surface mount         |
|                        | processing                                  | 45.0 | packages                                        |
| 7.1.3                  | Black bar detector                          | 15.2 | Reflow soldering                                |
| 7.1.4                  | Dynamic noise reduction                     | 15.3 | Wave soldering                                  |
| 7.1.5                  | Noise estimator                             | 15.4 | Manual soldering                                |
| 7.2                    | Embedded DRAM                               | 15.5 | Suitability of surface mount IC packages for    |
| 7.2.1                  | 3.5-Mbit field memory                       |      | wave and reflow soldering methods               |
| 7.3                    | Digital processing at 2f <sub>H</sub> level | 16   | DATA SHEET STATUS                               |
| 7.3.1                  | Sample rate conversion                      | 17   | DEFINITIONS                                     |
| 7.3.2                  | Expansion port                              | 18   | DISCLAIMERS                                     |
| 7.3.3                  | Panoramic zoom                              |      | PURCHASE OF PHILIPS I <sup>2</sup> C COMPONENTS |
| 7.3.4                  | Digital colour transient improvement        | 19   | PURCHASE OF PHILIPS I'C COMPONENTS              |
| 7.3.5<br>7.3.6         | Y horizontal smart peaking                  |      |                                                 |
| 7.3.6                  | Non-linear phase filter Post processing     |      |                                                 |
| 7.3. <i>1</i><br>7.4   | Triple 10-bit digital-to-analog conversion  |      |                                                 |
| 7. <del>4</del><br>7.5 | Microcontroller                             |      |                                                 |
| 7.5.1                  | Host interface                              |      |                                                 |
| 7.5.1                  | I <sup>2</sup> C-bus interface              |      |                                                 |
| 7.5.3                  | SNERT-bus                                   |      |                                                 |
| 7.5.4                  | I/O ports                                   |      |                                                 |
| 7.5.5                  | Watchdog timer                              |      |                                                 |
| 7.5.6                  | Reset                                       |      |                                                 |
| 7.6                    | System controller                           |      |                                                 |
| 7.6.1                  | Read enable output                          |      |                                                 |
| 7.6.2                  | Read enable input                           |      |                                                 |
| 7.6.3                  | Input enable                                |      |                                                 |
| 7.6.4                  | Horizontal deflection                       |      |                                                 |
| 7.6.5                  | Vertical deflection                         |      |                                                 |
| 7.6.6                  | Auxiliary display signal                    |      |                                                 |
| 7.6.7                  | Read enable 2                               |      |                                                 |
| 7.6.8                  | Output input enable 2                       |      |                                                 |
| 7.6.9                  | Reset read 2                                |      |                                                 |
| 7.6.10                 | Reset write 2                               |      |                                                 |
| 7.7                    | Line-locked clock generation                |      |                                                 |
| 7.8                    | Boundary scan test                          |      |                                                 |

### Sample rate converter with embedded high quality dynamic noise reduction and expansion port

**SAA4979H** 

#### 1 FEATURES

- Digital YUV input according to ITU 656 standard
- 4:2:2 field rate upconversion (50 to 100 Hz or 60 to 120 Hz)
- 3.5-Mbit embedded DRAM
- Sample rate conversion for linear zoom and compression
- Panorama mode
- · Dynamic noise reduction
- · Noise estimator
- · Black bar detection
- · Luminance horizontal smart peaking
- Digital Colour Transient Improvement (DCTI)
- Triple 10-bit Digital-to-Analog Converter (DAC)
- Line-locked PLL
- Expansion port for SAA4992H and SAA4991WP
- · Double window and Picture-In-Picture (PIP) processing
- Embedded 80C51 microcontroller
- 32-Kbyte internal ROM (mask programmable)
- 512-byte internal RAM

- I<sup>2</sup>C-bus controlled
- Synchronous No parity Eight bit Reception and Transmission (SNERT) interface
- Boundary Scan Test (BST).

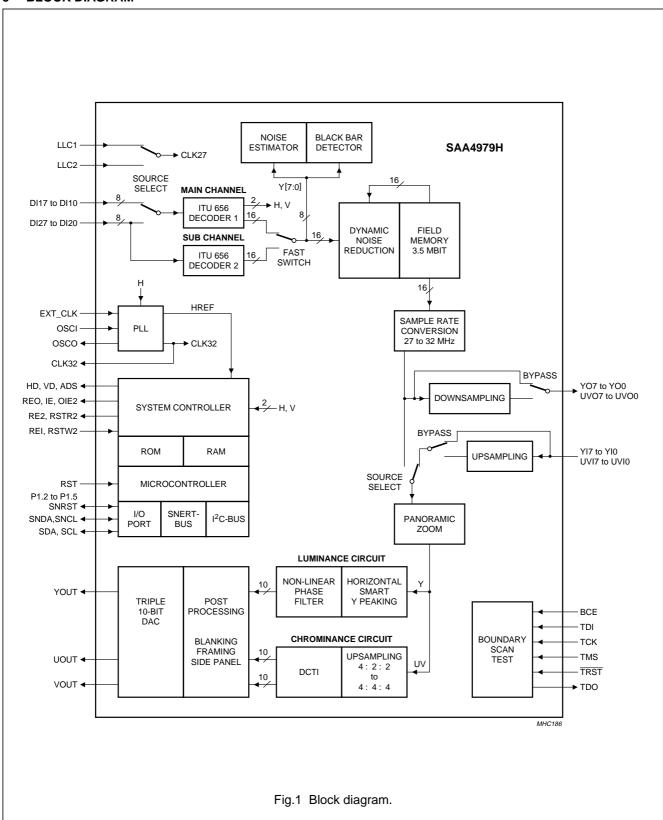


The SAA4979H provides an economic stand-alone solution for 4: 2: 2 field rate upconversion (50 to 100 Hz or 60 to 120 Hz) including the required field memory combined with picture improvement features and dynamic field based noise reduction. The IC contains two digital input channels to allow field or frame based picture-in-picture processing. It also offers a feature expansion port for vector based motion estimation and compensation ICs such as SAA4991WP or SAA4992H.

#### 3 QUICK REFERENCE DATA

| SYMBOL                              | PARAMETER                 | MIN. | TYP. | MAX. | UNIT |
|-------------------------------------|---------------------------|------|------|------|------|
| $V_{DDD}$                           | digital supply voltage    | 3.0  | 3.3  | 3.6  | V    |
| $V_{DDA}$                           | analog supply voltage     | 3.15 | 3.30 | 3.45 | V    |
| V <sub>DDO</sub> ; V <sub>DDI</sub> | I/O supply voltage        | 3.0  | 3.3  | 3.6  | V    |
| $V_{DDP}$                           | protection supply voltage | 3.0  | 5.0  | 5.5  | V    |
| I <sub>DDD</sub>                    | digital supply current    | _    | 120  | 160  | mA   |
| I <sub>DDA</sub>                    | analog supply current     | _    | 40   | 50   | mA   |
| P <sub>tot</sub>                    | total power dissipation   | _    | _    | 0.9  | W    |
| T <sub>amb</sub>                    | ambient temperature       | -20  | _    | +70  | °C   |

#### 4 ORDERING INFORMATION


| TYPE     |        | PACKAGE                                                                                                             |          |
|----------|--------|---------------------------------------------------------------------------------------------------------------------|----------|
| NUMBER   | NAME   | DESCRIPTION                                                                                                         | VERSION  |
| SAA4979H | QFP128 | plastic quad flat package; 128 leads (lead length 1.6 mm); body $28 \times 28 \times 3.4$ mm; high stand-off height | SOT320-2 |



## Sample rate converter with embedded high quality dynamic noise reduction and expansion port

**SAA4979H** 

#### 5 BLOCK DIAGRAM



# Sample rate converter with embedded high quality dynamic noise reduction and expansion port

**SAA4979H** 

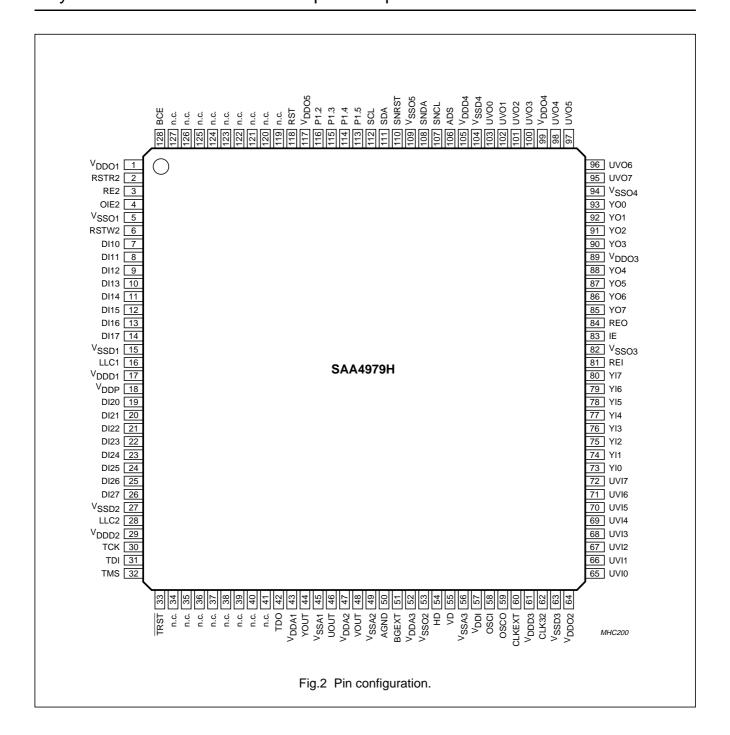
#### 6 PINNING

| SYMBOL            | PIN      | TYPE                        | DESCRIPTION                         |
|-------------------|----------|-----------------------------|-------------------------------------|
| V <sub>DDO1</sub> | 1        | supply                      | I/O supply voltage 1 (3.3 V)        |
| RSTR2             | 2        | digital output (test input) | reset read, source 2                |
| RE2               | 3        | digital output (test input) | read enable, source 2               |
| OIE2              | 4        | digital output (test input) | output/input enable, source 2       |
| V <sub>SSO1</sub> | 5        | ground                      | I/O ground 1                        |
| RSTW2             | 6        | digital input               | reset write, source 2               |
| DI10              | 7        | digital input               | ITU 656 input bit 0 (LSB), source 1 |
| DI11              | 8        | digital input               | ITU 656 input bit 1, source 1       |
| DI12              | 9        | digital input               | ITU 656 input bit 2, source 1       |
| DI13              | 10       | digital input               | ITU 656 input bit 3, source 1       |
| DI14              | 11       | digital input               | ITU 656 input bit 4, source 1       |
| DI15              | 12       | digital input               | ITU 656 input bit 5, source 1       |
| DI16              | 13       | digital input               | ITU 656 input bit 6, source 1       |
| DI17              | 14       | digital input               | ITU 656 input bit 7 (MSB), source 1 |
| V <sub>SSD1</sub> | 15       | ground                      | digital ground 1                    |
| LLC1              | 16       | digital input               | 27 MHz clock signal, source 1       |
| V <sub>DDD1</sub> | 17       | supply                      | digital supply voltage 1 (3.3 V)    |
| $V_{DDP}$         | 18       | supply                      | protection supply voltage (5 V)     |
| DI20              | 19       | digital input               | ITU 656 input bit 0 (LSB), source 2 |
| DI21              | 20       | digital input               | ITU 656 input bit 1, source 2       |
| DI22              | 21       | digital input               | ITU 656 input bit 2, source 2       |
| DI23              | 22       | digital input               | ITU 656 input bit 3, source 2       |
| DI24              | 23       | digital input               | ITU 656 input bit 4, source 2       |
| DI25              | 24       | digital input               | ITU 656 input bit 5, source 2       |
| DI26              | 25       | digital input               | ITU 656 input bit 6, source 2       |
| DI27              | 26       | digital input               | ITU 656 input bit 7 (MSB), source 2 |
| V <sub>SSD2</sub> | 27       | ground                      | digital ground 2                    |
| LLC2              | 28       | digital input               | 27 MHz clock signal, source 2       |
| $V_{DDD2}$        | 29       | supply                      | digital supply voltage 2 (3.3 V)    |
| TCK               | 30       | digital input               | test clock                          |
| TDI               | 31       | digital input               | test data input                     |
| TMS               | 32       | digital input               | test mode select                    |
| TRST              | 33       | digital input               | test reset (active LOW)             |
| n.c.              | 34 to 41 | _                           | not connected                       |
| TDO               | 42       | digital output              | test data output                    |
| V <sub>DDA1</sub> | 43       | supply                      | analog supply voltage 1 (3.3 V)     |
| YOUT              | 44       | analog output               | Y analog output                     |
| V <sub>SSA1</sub> | 45       | ground                      | analog ground 1                     |
| UOUT              | 46       | analog output               | −(B − Y) analog output              |
| V <sub>DDA2</sub> | 47       | supply                      | analog supply voltage 2 (3.3 V)     |

# Sample rate converter with embedded high quality dynamic noise reduction and expansion port

**SAA4979H** 

| SYMBOL            | PIN | TYPE           | DESCRIPTION                                     |
|-------------------|-----|----------------|-------------------------------------------------|
| VOUT              | 48  | analog output  | –(R – Y) analog output                          |
| V <sub>SSA2</sub> | 49  | ground         | analog ground 2                                 |
| AGND              | 50  | ground         | analog ground (without substrate contacts)      |
| BGEXT             | 51  | analog I/O     | band gap external I/O                           |
| $V_{DDA3}$        | 52  | supply         | analog supply voltage 3 (3.3 V)                 |
| V <sub>SSO2</sub> | 53  | ground         | I/O ground 2                                    |
| HD                | 54  | digital output | horizontal synchronisation output, display part |
| VD                | 55  | digital output | vertical synchronisation output, display part   |
| V <sub>SSA3</sub> | 56  | ground         | analog ground 3                                 |
| V <sub>DDI</sub>  | 57  | supply         | I/O internal supply voltage (3.3 V)             |
| OSCI              | 58  | analog input   | oscillator input                                |
| OSCO              | 59  | analog output  | oscillator output                               |
| CLKEXT            | 60  | digital input  | external clock input                            |
| V <sub>DDD3</sub> | 61  | supply         | digital supply voltage 3 (3.3 V)                |
| CLK32             | 62  | digital output | 32 MHz clock output                             |
| V <sub>SSD3</sub> | 63  | ground         | digital ground 3                                |
| V <sub>DDO2</sub> | 64  | supply         | I/O supply voltage 2 (3.3 V)                    |
| UVI0              | 65  | digital input  | UV digital input bit 0 (LSB)                    |
| UVI1              | 66  | digital input  | UV digital input bit 1                          |
| UVI2              | 67  | digital input  | UV digital input bit 2                          |
| UVI3              | 68  | digital input  | UV digital input bit 3                          |
| UVI4              | 69  | digital input  | UV digital input bit 4                          |
| UVI5              | 70  | digital input  | UV digital input bit 5                          |
| UVI6              | 71  | digital input  | UV digital input bit 6                          |
| UVI7              | 72  | digital input  | UV digital input bit 7 (MSB)                    |
| YI0               | 73  | digital input  | Y digital input bit 0 (LSB)                     |
| YI1               | 74  | digital input  | Y digital input bit 1                           |
| YI2               | 75  | digital input  | Y digital input bit 2                           |
| YI3               | 76  | digital input  | Y digital input bit 3                           |
| YI4               | 77  | digital input  | Y digital input bit 4                           |
| YI5               | 78  | digital input  | Y digital input bit 5                           |
| YI6               | 79  | digital input  | Y digital input bit 6                           |
| YI7               | 80  | digital input  | Y digital input bit 7 (MSB)                     |
| REI               | 81  | digital input  | read enable input                               |
| V <sub>SSO3</sub> | 82  | ground         | I/O ground 3                                    |
| IE                | 83  | digital output | input enable                                    |
| REO               | 84  | digital output | read enable output                              |
| YO7               | 85  | digital output | Y digital output bit 7 (MSB)                    |
| YO6               | 86  | digital output | Y digital output bit 6                          |
| YO5               | 87  | digital output | Y digital output bit 5                          |
| YO4               | 88  | digital output | Y digital output bit 4                          |


# Sample rate converter with embedded high quality dynamic noise reduction and expansion port

**SAA4979H** 

| SYMBOL            | PIN        | TYPE           | DESCRIPTION                                 |
|-------------------|------------|----------------|---------------------------------------------|
| $V_{DDO3}$        | 89         | supply         | I/O supply voltage 3 (3.3 V)                |
| YO3               | 90         | digital output | Y digital output bit 3                      |
| YO2               | 91         | digital output | Y digital output bit 2                      |
| YO1               | 92         | digital output | Y digital output bit 1                      |
| YO0               | 93         | digital output | Y digital output bit 0 (LSB)                |
| V <sub>SSO4</sub> | 94         | ground         | I/O ground 4                                |
| UVO7              | 95         | digital output | UV digital output bit 7 (MSB)               |
| UVO6              | 96         | digital output | UV digital output bit 6                     |
| UVO5              | 97         | digital output | UV digital output bit 5                     |
| UVO4              | 98         | digital output | UV digital output bit 4                     |
| V <sub>DDO4</sub> | 99         | supply         | I/O supply voltage 4 (3.3 V)                |
| UVO3              | 100        | digital output | UV digital output bit 3                     |
| UVO2              | 101        | digital output | UV digital output bit 2                     |
| UVO1              | 102        | digital output | UV digital output bit 1                     |
| UVO0              | 103        | digital output | UV digital output bit 0 (LSB)               |
| V <sub>SSD4</sub> | 104        | ground         | digital ground 4                            |
| $V_{DDD4}$        | 105        | supply         | digital supply voltage 4 (3.3 V)            |
| ADS               | 106        | digital output | auxiliary display signal                    |
| SNCL              | 107        | digital output | SNERT clock                                 |
| SNDA              | 108        | digital I/O    | SNERT serial data                           |
| V <sub>SSO5</sub> | 109        | ground         | microcontroller I/O ground                  |
| SNRST             | 110        | digital I/O    | SNERT restart (port 1.0)                    |
| SDA               | 111        | digital I/O    | I <sup>2</sup> C-bus serial data (port 1.7) |
| SCL               | 112        | digital I/O    | I <sup>2</sup> C-bus clock (port 1.6)       |
| P1.5              | 113        | digital I/O    | port 1 data input/output signal 5           |
| P1.4              | 114        | digital I/O    | port 1 data input/output signal 4           |
| P1.3              | 115        | digital I/O    | port 1 data input/output signal 3           |
| P1.2              | 116        | digital I/O    | port 1 data input/output signal 2           |
| V <sub>DDO5</sub> | 117        | supply         | microcontroller I/O supply voltage (3.3 V)  |
| RST               | 118        | digital input  | microcontroller reset input                 |
| n.c.              | 119 to 127 | _              | not connected                               |
| BCE               | 128        | digital input  | boundary scan compliant enable              |

### Sample rate converter with embedded high quality dynamic noise reduction and expansion port

**SAA4979H** 



### Sample rate converter with embedded high quality dynamic noise reduction and expansion port

**SAA4979H** 

#### 7 FUNCTIONAL DESCRIPTION

#### 7.1 Digital processing at 1f<sub>H</sub> level

#### 7.1.1 ITU 656 DECODER

The SAA4979H provides 2 digital video input channels, which comply to the ITU 656 standard.

720 active video pixels per line are processed at a line-locked clock of 27 MHz, which has to be provided by the signal source. Luminance and chrominance information have to be multiplexed in the following order:  $C_{B1}$ ,  $Y_1$ ,  $C_{R1}$ ,  $Y_2$ , ... Timing reference codes must be inserted at the beginning and end of each video line (see Table 1):

- A 'Start of Active Video' (SAV) code before the first active video sample (see Table 2)
- A 'End of Active Video' (EAV) code after the last active video sample (see Table 2).

The incoming active video data must be limited to 1 to 254, since the data words 00H and FFH are used for identification of the timing reference headers.

The digital signal input levels should comply to the CCIR-601 standard (see Fig.3). The data stream is decoded into the internal 4:2:2 YUV format at a 13.5 MHz clock rate. If required the sign of the UV signals can be inverted for both channels (control inputs: uv\_sign1 and uv\_sign2).

The signal source of the main channel can be selected from both inputs by the internal microcontroller (control input: Select\_data\_input1).

Table 1 ITU data format

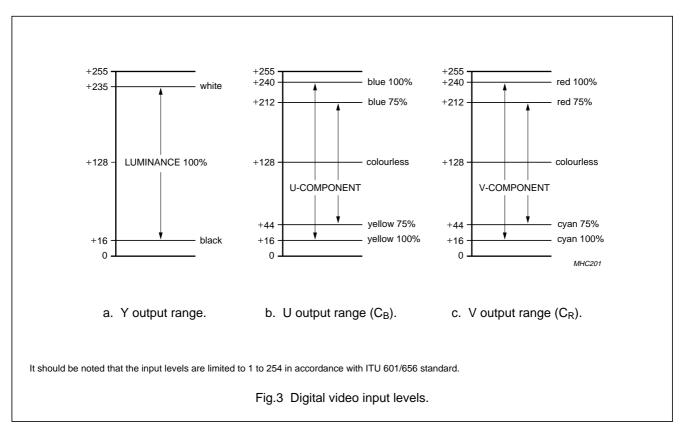

| ANK    |    |    | EFE | MING<br>REN<br>E (HI | ICE |                  | 7  | 20 PI)           | KELS | S YUV            | 4:2 | 2 : 2 | DATA               |      |    | TIN<br>EFE<br>ODE |    | ICE |    | ANKI<br>ERIO |  |
|--------|----|----|-----|----------------------|-----|------------------|----|------------------|------|------------------|-----|-------|--------------------|------|----|-------------------|----|-----|----|--------------|--|
| <br>80 | 10 | FF | 00  | 00                   | SAV | C <sub>B</sub> 0 | Y0 | C <sub>R</sub> 0 | Y1   | C <sub>B</sub> 2 | Y2  |       | C <sub>R</sub> 718 | Y719 | FF | 00                | 00 | EAV | 80 | 10           |  |

Table 2 SAV/EAV format

| BIT 7 | BIT 6                                              | BIT 5 | BIT 4 | BIT 3                        | BIT 2 | BIT 1     | BIT 0  |
|-------|----------------------------------------------------|-------|-------|------------------------------|-------|-----------|--------|
|       | (F)                                                | (V)   | (H)   | (P3)                         | (P2)  | (P1)      | (P0)   |
| 1     | field bit<br>1st field: F = 0;<br>2nd field: F = 1 |       | · ·   | reserve<br>recomm<br>accordi | •     | protectio | n bits |

### Sample rate converter with embedded high quality dynamic noise reduction and expansion port

**SAA4979H** 



### 7.1.2 DOUBLE WINDOW AND PICTURE-IN-PICTURE PROCESSING

Data from the sub channel can be inserted into the data stream of the main channel by means of a fast switch. The two channels can be used together with one or two external field memories to implement, for example, double window or PIP processing. Both field based and frame based PIP processing is supported. The synchronization of the sub channel to the main channel is achieved by providing synchronized read signals (RE2 and RSTR2) for the external field memories, whereas the write signals need to be provided together with the incoming data by the external signal source.

A multi-PIP mode is also supported by freezing the data in the internal field memory within certain areas via the programmable internal control signal IE<sub>int</sub>.

#### 7.1.3 BLACK BAR DETECTOR

Black bar detection searches for the last black line in the upper part of the screen and for the first black line in the lower part of the screen. The detection is done within a programmable window (control inputs: bbd\_hstart, bbd\_hstop, bbd\_vstart and bbd\_vstop). To avoid disturbances of LOGOs in the video, the window can be shifted to the horizontal centre of the lines. A video line is considered to be black if the luminance values of that line within the detection window are not greater than a certain slice level (control input: bbd\_slice\_level) for more than a specific number of pixels (control input: bbd\_event\_value).

The numbers of the first and the last active video line can be read out by the microcontroller (control outputs: bbd\_1st\_videoline and bbd\_last\_videoline).

### Sample rate converter with embedded high quality dynamic noise reduction and expansion port

**SAA4979H** 

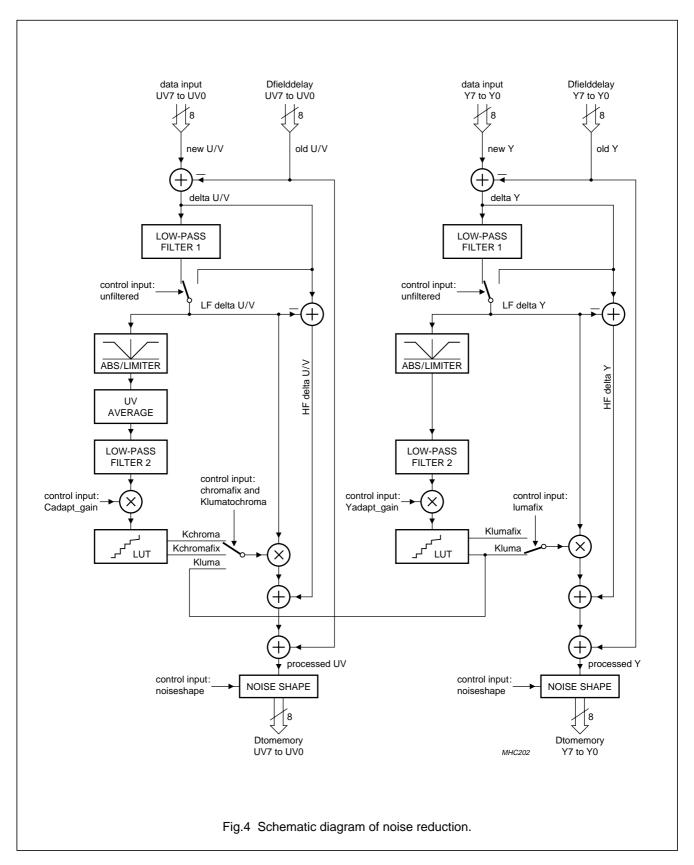
#### 7.1.4 DYNAMIC NOISE REDUCTION

The main function of the noise reduction is shown in Fig.4. It is divided into two signal paths for chrominance and luminance. In principal two operating modes can be used, the fixed and the adaptive mode. In both modes the applied frequency range, in which the noise reduction takes place, can be reduced or not reduced (control input: unfiltered).

The noise reduction operates field recursive with an averaging ratio (K factor) between fresh (new) and over previous fields averaged (old) luminance and chrominance values. Noise reduction can be activated by forcing the NREN control bit to HIGH. If NREN is LOW the noise reduction block is bridged via a data multiplexer.

In the fixed mode, the noise reduction produces a constant weighted input averaging. Because of smearing effects this mode should not be used for normal operation except for K=1. The fixed mode can be activated separately for chrominance (control input: chromafix) and luminance (control input: lumafix).

In the adaptive mode, the averaging ratio is based on the absolute differences of the inputs of luminance and chrominance respectively. If the absolute difference is low, only a small part of the fresh data will be added. In cases of high difference, much of the fresh data will be taken. This occurs either in situations of movement or where a significant vertical contrast is seen. The relationship between the amount of movement and the K factor values is defined in a look-up table where the steps can be programmed (control input: Kstep).


It should be noted that recursion is done over fields, and that pixel positions between the new and old fields always have a vertical offset of one line. So averaging is not only done in the dimension of time but also in the vertical direction. Therefore averaging vertically on, for example, a vertical black to white edge would produce a grey result.

The averaging in chrominance can optionally be slaved to the luminance averaging (control input: Klumatochroma), in that case chrominance differences are not taken into account for the K factor setting of the chrominance signal path.

The noise reduction scheme also decreases the cross-colour patterns effectively if the adaptive noise reduction for the averaging in chrominance is slaved to the luminance averaging (control input: Klumatochroma). The cross-colour pattern does not produce an increase of the measured luminance difference, therefore this pattern will be averaged over many fields.

### Sample rate converter with embedded high quality dynamic noise reduction and expansion port

**SAA4979H** 



### Sample rate converter with embedded high quality dynamic noise reduction and expansion port

**SAA4979H** 

#### 7.1.4.1 Band-splitting

The frequencies of the difference signals of luminance (delta Y) and chrominance (delta U/V) can be split optionally into an upper band (HF) and a lower band (LF) with a low-pass filter in both signal paths. The lower frequency band signals (LF delta Y and LF delta U/V) are used as input for the noise reduction function.

The lower frequency band of the difference signals can also be used for the motion detection. If, for example, only the lower frequency band contains information, the specific picture content does not move or is moving slowly.

Optionally it is possible to bridge the band-splitting (control input: unfiltered = 1).

#### 7.1.4.2 Motion detection

The same signals (the noise reduction is applied to) are also used to detect the amount of motion in the difference signals. Therefore, the absolute values of the difference signals are generated and limited to a maximum value. The absolute values of the difference signal of U and V are then averaged. The signals are low-pass filtered for smoothing these signals. The filtered signals are amplified, depending on the setting of the control inputs: Yadapt\_gain and Cadapt\_gain respectively.

The amplified signals, which correlate to the amount of movement in the chrominance or luminance signal path, are transferred into 1 out of 9 possible K factor values via look-up tables. The look-up tables consist of 9 intervals, each related to one K factor. The boundaries between the 9 intervals are defined by 8 programmable steps (control inputs: Kstep0 to Kstep7). The step values are valid for the look-up tables for both the chrominance and the luminance path. For example, signal values between Kstep2 and Kstep3 result in a K factor of K =  $^{3}/_{8}$ .

#### 7.1.4.3 K factor

The amount of noise reduction (field averaging) is described my means of the K factor. When K=1 no averaging is applied and the new field information is used. When K=0 no averaging is applied and thus only the old field information is used like in a still picture mode. All values inbetween mean that a weighted averaging is applied. It is possible to use fixed K factor values if the control inputs lumafix or chromafix are set to logic 1. The possible fixed K factor values of the control inputs Klumafix and Kchromafix are given in Table 6.

#### 7.1.4.4 Noise shape

Possible shadow picture information in the chrominance and luminance path, resulting from a low K factor value, will be eliminated if the noise shaping is activated. The noise shaping function can be switched off via the microcontroller (control input: noiseshape).

#### 7.1.5 Noise estimator

The noise level of the luminance signal can be measured within a programmable window (control inputs: ne\_hstart, ne\_hstop, ne\_vstart and ne\_vstop). The correlation in flat areas is used to estimate the noise in the video signal. A large number of estimates of the noise is calculated for every video field. Such an estimate is obtained by summing absolute differences between current pixel values and delayed pixel values within blocks of 4 pixels. Within the lower part of the total range of possible estimates 15 intervals are defined. Each interval is defined by a lower boundary and an upper boundary. The lower boundary is equal to the number of the interval, whereas the upper boundary has a fixed relationship to the lower boundary (control input: gain\_upbnd).

The lower boundary is increased or decreased by 1 in each field until an interval is found which contains at least a predefined number of estimates, and is at the same time lowest in the range. The value of the lower boundary of this interval determines the current noise figure output. The predefined number of estimates can be set via the microcontroller (control input: wanted\_value), and good results were obtained with a value which is approximately 0.27% of the total number of blocks.

For video fields with a lot of noise the number of small differences is very low, that means the number of noise estimates in the lower intervals is close to 0. Contrary to this, for clean sequences this number is very high. This means that for clean sequences the noise estimate figure will be close to 0, and for sequences with a lot of noise the noise estimate figure (control output: nest) will reach 15.

To improve the performance of the noise estimator, several functions are implemented which can be controlled by the microcontroller. To increase the sensitivity of the noise measurement a prefilter with different gain settings is available (control input: Ypscale). Since the video content, e.g. sequences with a lot of high frequencies, can influence the noise estimate figure, a detail-counter is built-in.

### Sample rate converter with embedded high quality dynamic noise reduction and expansion port

**SAA4979H** 

The detail-counter calculates the number of absolute differences between current and previous pixels within a programmable interval defined by the control inputs lb\_detail and upb\_detail. The result of the 16-bit detail-counter (control outputs: detail\_cnt\_h and detail\_cnt\_l) can be used to increase or decrease the result of the noise estimation figure (control input: compensate).

In order to reduce the effect of clipping, only the blocks where the sum of the luminance value is within a predefined range are taken into account. The control signal clip\_offs can be used to increase or decrease this range. A grey-counter gives information whether enough pixels with values in the grey range are present in a video field (control output: grey\_cnt). When this number is lower than a predefined threshold, e.g. for complete fields towards black or white, all blocks are taken into account.

#### 7.2 Embedded DRAM

#### 7.2.1 3.5-MBIT FIELD MEMORY

The basic functionality of the field memory, which is shown in Fig.5, is similar to the SAA4956TJ. The memory size is extended to 3538944 bits. The data path is 16-bit wide (8-bit chrominance and 8-bit luminance). The field memory is capable of storing, for example, up to 307 video lines of 720 pixels in a 4:2:2 format. After writing or reading 18 words of 16-bit width, a data transfer is performed from the serial to parallel data registers (writing) or from the parallel to the serial registers (reading). The field memory has one write interface (controller and registers) to store 1fH data and two read interfaces, one to read field delayed 1f<sub>H</sub> data for the noise reduction function and the other to read 2f<sub>H</sub> data for the following data processing. Since two asynchronous clock domains are involved (SWCKint as 1f<sub>H</sub> clock and SRCKint as 2f<sub>H</sub> clock) the read and write access to the memory array is controlled asynchronously by the memory arbitration logic triggered via request and acknowledge pulses.

The write operation starts with a reset write (RSTWint) address pointer operation during the write enable (WEint) LOW phase. The RSTWint LOW-to-HIGH transition, referred to the rising edge of the write clock SWCKint, must be at least 18 clock cycles ahead of the first written data (WEint HIGH) and 18 clock cycles after the last written data. The reset write transfers data temporarily stored in the serial write registers to the memory array and resets the write counter to the lowest address. Write enable (WEint) is used to enable or disable a data write operation. The WEint signal controls the data inputs D0 to D15.

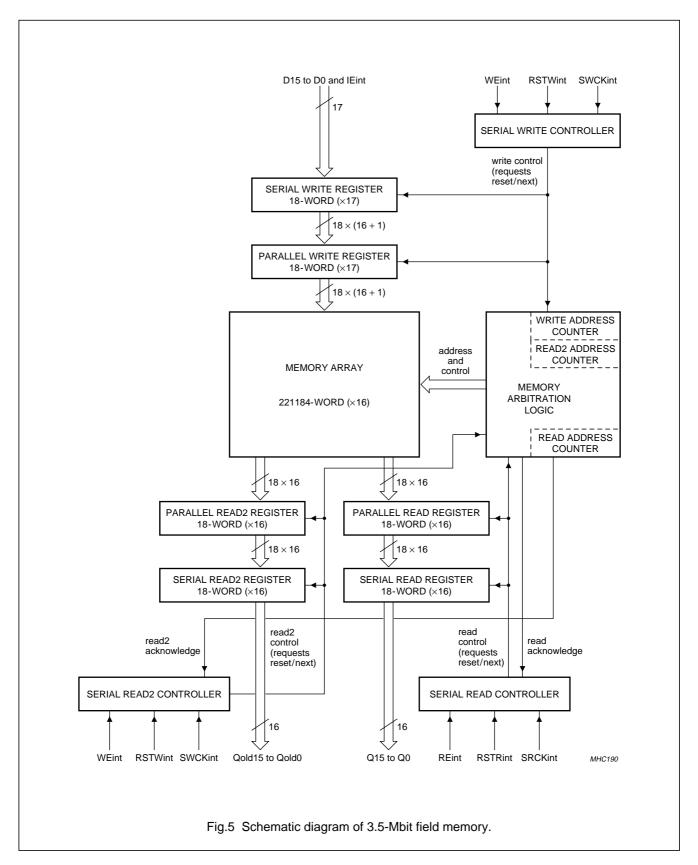
In addition, the internal write address pointer is incremented if WEint is HIGH at the positive transition of the SWCKint write clock. The data is latched if WEint was HIGH at the previous positive transition of SWCKint. Input enable (IEint) LOW can also suppress the storage of the data into the memory array but does not influence the write pointer increment. It is used to freeze parts of the field data e.g for PIP processing.

The read operation starts with a reset (RSTRint) of the read address pointer during the read enable (REint) LOW phase. The RSTRint LOW-to-HIGH transition, referred to the rising edge of the read clock SRCKint, must be at least 18 clock cycles ahead of the first read data (REint HIGH) and 18 clock cycles after the last read data. The reset read resets the read counter to the lowest address and requests a read operation of the data of the lowest address to the serial read register. Read enable (REint) is used to enable or disable the read operation. The REint controls the data outputs Q0 to Q15. REint HIGH increments the read counter.

In parallel to the write operation a read2 operation is done using the same control signals as the write operation: SWCKint, WEint and RSTWint. It reads the old data of the previous field. The data Qold is needed as data input (Dfielddelay) for the noise reduction.

When the WEint signal is HIGH it indicates that active video (valid 1f<sub>H</sub> data) is to be stored. The start of WEint HIGH is triggered by the H and V status bits of the ITU data stream. The start of WEint HIGH can be delayed by the control signals weint\_hstart (number of clock delays) and weint\_vstart (number of video lines delay). The stop of WEint HIGH is controlled by weint\_hstop and weint\_vstop.

When the IEint signal is HIGH it indicates that active video (valid  $1f_H$  data) is also to be stored. The video data is not stored and earlier written data is maintained (frozen) if WEint is HIGH and IEint is LOW. The start of IEint HIGH is triggered by the H and V status bits of the ITU data stream. The start of IEint HIGH can be delayed by the control signals ieint\_hstart (number of clock delays) and ieint\_vstart (number of video lines delay). The stop of IEint HIGH is controlled by ieint\_hstop and ieint\_vstop.


RSTWint is triggered by the V status bit of the ITU data stream.

RSTRint is identical to the VD output signal.

REint is provided by the following sample rate conversion to gather 2f<sub>H</sub> data if it is needed.

### Sample rate converter with embedded high quality dynamic noise reduction and expansion port

#### **SAA4979H**



### Sample rate converter with embedded high quality dynamic noise reduction and expansion port

**SAA4979H** 

#### 7.3 Digital processing at 2f<sub>H</sub> level

#### 7.3.1 SAMPLE RATE CONVERSION

The sample rate conversion block is used to obtain 848 active pixels per line out of the original 720 pixels according to the relation of the two sampling frequencies (32 MHz and 27 MHz). The interpolation for phase positions between the original samples is achieved with a variable phase delay filter with 10 taps for luminance signals and 6 taps for chrominance signals.

The conversion to a higher sample frequency of 32 MHz is done to improve the motion estimation performance in combination with external feature ICs, which can process up to 848 pixels per line at a 32 MHz clock. Bypassing this function keeps the original 720 pixels per line (control input: bypass\_FSRC).

#### 7.3.2 EXPANSION PORT

For a further extension of the system an expansion port is available, which is applicable for either a 4:2:2 format or a reduced 4:1:1 format for data input and output at a 32 MHz line-locked clock; see Table 3. However, the internal data is processed in a 8-bit wide 4:2:2 format.

To generate the 4:1:1 format at the output the U and V samples from the 4:2:2 data stream are filtered by a low-pass filter, before being subsampled with a factor of 2 and formatted to 4:1:1 format. Bypassing this function keeps the data in the 4:2:2 format.

An internal bandwidth detector is implemented to detect whether the colour difference signals provide either the full 4:2:2 bandwidth or a reduced 4:1:1 bandwidth. Therefore absolute differences between original data and downsampled data are calculated and can be read out by the microcontroller (control output: UV\_bw\_detect). Low absolute differences indicate that the original data does not contain the full 4:2:2 bandwidth. This information can be used to switch the upsample and downsample filter on or off (control inputs: bypass\_upsampling and bypass\_downsampling). Bandwidth detection is done within a programmable window (control inputs: bw\_hstart, bw\_hstop and bw\_vstart, bw\_vstop).

In the event of a 4:1:1 format at the input an upconverter to 4:2:2 is applied with a linear interpolation filter for creation of the extra samples. These are combined with the original samples from the 4:1:1 stream.

The first phase of the YUV data stream is available on the output bus two clock cycles after the rising edge of the REI input signal. The start position, when the first phase of the YUV data stream arrives on the input bus, can be set via the control register exp\_hstart.

The luminance output signal is in 8-bit straight binary format, whereas the chrominance output signals are in twos complement format. The input data at the expansion slot is expected in the same format. U and V input signals are inverted if the corresponding control bit mid\_uv\_inv is set.

Table 3 YUV formats

| OUTPUT PIN |     | 4:1:11 | FORMAT |     | 4:2:21 | FORMAT | INPUT PIN |
|------------|-----|--------|--------|-----|--------|--------|-----------|
| YO7        | Y07 | Y17    | Y27    | Y37 | Y07    | Y17    | YI7       |
| YO6        | Y06 | Y16    | Y26    | Y36 | Y06    | Y16    | YI6       |
| YO5        | Y05 | Y15    | Y25    | Y35 | Y05    | Y15    | YI5       |
| YO4        | Y04 | Y14    | Y24    | Y34 | Y04    | Y14    | YI4       |
| YO3        | Y03 | Y13    | Y23    | Y33 | Y03    | Y13    | YI3       |
| YO2        | Y02 | Y12    | Y22    | Y32 | Y02    | Y12    | YI2       |
| YO1        | Y01 | Y11    | Y21    | Y31 | Y01    | Y11    | YI1       |
| YO0        | Y00 | Y10    | Y20    | Y30 | Y00    | Y10    | YI0       |
| UVO7       | U07 | U05    | U03    | U01 | U07    | V07    | UVI7      |
| UVO6       | U06 | U04    | U02    | U00 | U06    | V06    | UVI6      |
| UVO5       | V07 | V05    | V03    | V01 | U05    | V05    | UVI5      |
| UVO4       | V06 | V04    | V02    | V00 | U04    | V04    | UVI4      |
| UVO3       | _   | _      | _      | _   | U03    | V03    | UVI3      |
| UVO2       | _   | _      | _      | _   | U02    | V02    | UVI2      |
| UVO1       |     |        |        | _   | U01    | V01    | UVI1      |
| UVO0       | _   | _      | _      | _   | U00    | V00    | UVI0      |

### Sample rate converter with embedded high quality dynamic noise reduction and expansion port

**SAA4979H** 

#### 7.3.3 PANORAMIC ZOOM

The panoramic zoom block contains a second sample rate converter, which performs the following tasks:

- Linear horizontal sample rate conversion in both zoom and compress direction, with a sample rate conversion factor between 0 and 2, meaning infinite zoom up to a compression with a factor of 2
- Dynamic sample rate conversion e.g. for panorama mode display of 4 : 3 material on a 16 : 9 screen.

For linear horizontal zoom or compression the sample rate conversion factor is static during a video line (control input: c0). Positive values of c0 are suitable for compression, negative values result in expansion.

In panorama mode the video lines are geometrically expanded towards the sides. The sample rate conversion factor is modulated along the video line. A parabolic shape of the sample rate conversion factor can be obtained with the parameter c2, which controls the second order variation of the sample rate. Negative values of c2 are suitable for panorama mode, positive values result in the inverse mode (amaronap mode).

The panoramic zoom block also provides a dynamically controlled delay with an accuracy up to  ${}^{1}/_{64}$  of a pixel and a range of -0.5 to +0.5 lines (control input: hshift).

Sufficient accuracy in interpolation for phase positions between the original samples is achieved with a variable phase delay filter with 10 taps for luminance signals and 6 taps for chrominance signals.

#### 7.3.4 DIGITAL COLOUR TRANSIENT IMPROVEMENT

The Digital Colour Transient Improvement (DCTI) is intended for U and V signals originating from a 4:1:1 source. Horizontal transients are detected and enhanced without overshoots by differentiating, make absolute and again differentiating the U and V signals separately. This results in a 4:4:4 U and V bandwidth. To prevent third-harmonic distortion, which is typical for this processing, a so called over the hill protection prevents peak signals becoming distorted.

It is possible to control the following settings via the microcontroller: gain width (see Fig.10), threshold (i.e. immunity against noise), selection of simple or improved first differentiating filter (see Fig.9), limit for pixel shift range (see Fig.11), common or separate processing of U and V signals, hill protection mode (i.e. no discolourations in narrow colour gaps), low-pass filtering for U and V signals (see Fig.12) and a so called super hill

mode, which avoids discolourations in transients within a colour component.

#### 7.3.5 HORIZONTAL SMART Y PEAKING

A linear peaking is applied, which amplifies the luminance signal in the middle and the upper ranges of the bandwidth.

The filtering is an addition of:

- · The original signal
- The original signal high-passed with maximum gain at a frequency of ½f<sub>s</sub> (sample frequency f<sub>s</sub> = 32 MHz)
- The original signal band-passed with a centre frequency of 4.76 MHz.

The band-passed and high-passed signals are weighted with the factors 0,  $\frac{1}{16}$ ,  $\frac{2}{16}$ ,  $\frac{3}{16}$ ,  $\frac{4}{16}$ ,  $\frac{5}{16}$ ,  $\frac{6}{16}$  and  $\frac{8}{16}$ , resulting in a maximum gain difference of 2 dB per step at the centre frequencies.

Coring is added to avoid amplification of low amplitudes in the high-pass and band-pass filtered signals, which are considered to be noise. The coring threshold can be programmed as 0 (off),  $\pm 4$ ,  $\pm 8$ ,  $\pm 12$  to  $\pm 60$  LSB with respect to the (signed) 10-bit signal.

In addition the peaking gain can be reduced depending on the signal amplitude, programming range 0 (no attenuation),  $\frac{1}{4}$ ,  $\frac{2}{4}$  and  $\frac{4}{4}$ . It is also possible to make larger undershoots than overshoots, programming range 0 (no attenuation of undershoots),  $\frac{1}{4}$ ,  $\frac{2}{4}$  and  $\frac{4}{4}$ .

A steepness detector is built-in, which provides information for dynamic control of the peaking. For that the maximum absolute value of the band-pass filtered signal within a video field is calculated and can be read out by the microcontroller (control output: steepness\_max).

#### 7.3.6 NON-LINEAR PHASE FILTER

The non-linear phase filter adjusts possible group delay differences in the Y, U and V output channels. The filter coefficients are:  $[-\lambda\times(1-\mu);\ 1+\lambda;\ -\lambda\times\mu]$  where  $\lambda$  determines the strength of the filter and  $\mu$  determines the asymmetry. The effect of the asymmetry is a decrease in the delay for higher frequencies with  $\mu \leq 0.5$ . Control settings are provided for  $\lambda=0,\ 1/8,\ 2/8,\ 3/8$  and  $\mu=0,\ 1/4,\ 1/2$ .

2002 May 28

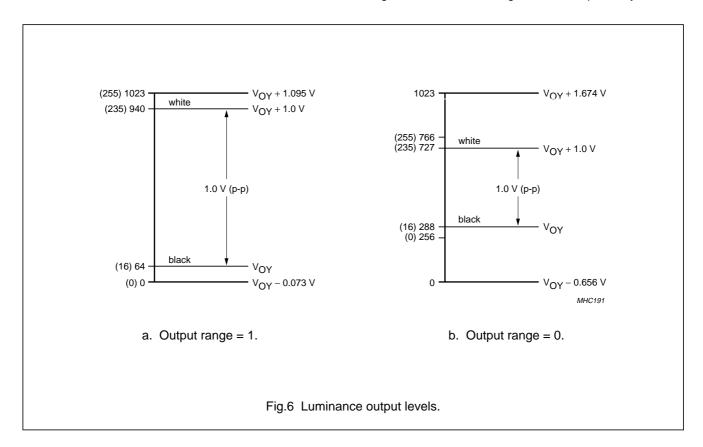
### Sample rate converter with embedded high quality dynamic noise reduction and expansion port

**SAA4979H** 

#### 7.3.7 POST PROCESSING

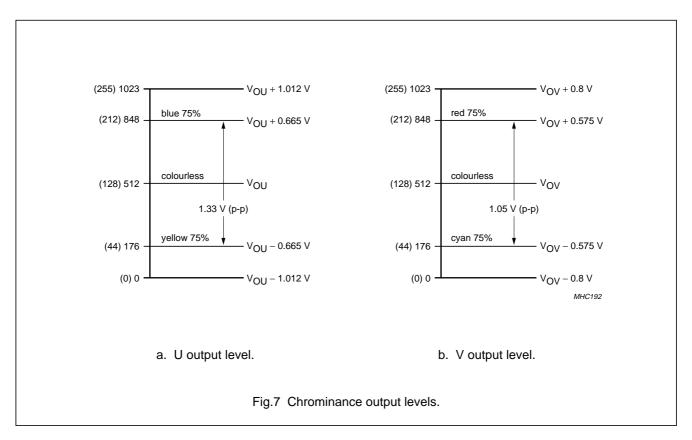
Blanking is done just before the digital-to-analog conversion by switching Y to a fixed black value and UV to a colourless value. The blanking window is defined by the control inputs: bln\_hstart, bln\_hstop, bln\_vstart and bln\_vstop.

Side panels are generated by switching the Y, U and V to defined values within a horizontal window (control inputs: sidepanel\_hstart and sidepanel\_hstop); the 8 MSBs of Y and the 4 MSBs of U and V are programmable (control inputs: sidepanel\_y, sidepanel\_u and sidepanel\_v).


Framing e.g. for picture-in-picture mode, can be achieved by another programmable window (control inputs: PIP\_frame\_hstart, PIP\_frame\_hstop, PIP\_frame\_vstart and PIP\_frame\_vstop). The vertical and horizontal frame width can be programmed from 1 up to 15 pixels (control inputs: PIP\_frame\_heigth and PIP\_frame\_width). Framing uses the same colour and luminance values as the side panels.

The range of the Y output signal can be chosen between 9 and 10 bits (control input: output\_range). In the event of 9 bits for the nominal signal there is room left for under and overshoot, adding up to a total of 10 bits. In the event of selecting all 10 bits of the luminance digital-to-analog converter for the nominal signal any under or overshoot will be clipped (see Fig.6).

The Y samples can be shifted onto 16 positions with respect to the UV samples (control input: y\_delay). The zero delay setting is suitable for the nominal case of aligned input data. The other settings provide eight samples with less delay to seven samples with more delay in Y.


#### 7.4 Triple 10-bit digital-to-analog conversion

Three identical 10-bit converters are used to map the 4:4:4 YUV data to analog levels with a 32 MHz data rate. The polarity of the colour difference signals U and V is switchable by the control bit uv\_inv\_out. The output ranges are illustrated in Figs 6 and 7 respectively.



### Sample rate converter with embedded high quality dynamic noise reduction and expansion port

**SAA4979H** 



#### 7.5 Microcontroller

The SAA4979H contains an embedded 80C51 microcontroller core including 512-byte RAM and 32-Kbyte ROM. The microcontroller runs on a 16 MHz clock, generated by dividing the 32 MHz display clock by a factor of 2.

#### 7.5.1 HOST INTERFACE

For controlling internal registers a host interface, consisting of a parallel address and data bus, is built-in. The interface can be addressed as internal AUXRAM via a MOVX type of instruction. The complete range of internal control registers and the corresponding host addresses are described in Section 8.1. User access to these control registers via the I<sup>2</sup>C-bus can be implemented in the embedded software.

#### 7.5.2 I<sup>2</sup>C-BUS INTERFACE

The I<sup>2</sup>C-bus interface in the SAA4979H is used in a slave receive and transmit mode for communication with a central system microcontroller. The standardized bus frequencies of both 100 kHz and 400 kHz can be accommodated.

The  $I^2C$ -bus slave address of the SAA4979H is 0110100 R/ $\overline{W}$ . During slave transmit mode the SCL LOW period may be extended by pulling SCL to LOW (in accordance with the  $I^2C$ -bus specification).

Detailed information about the software dependent I<sup>2</sup>C-bus subaddresses of the control registers and a detailed description of the transmission protocol can be found in Application Note "I<sup>2</sup>C-bus register specification of the SAA4979H".

#### 7.5.3 SNERT-BUS INTERFACE

A SNERT interface is built-in, which operates in a master receive and transmit mode for communication with peripheral circuits such as SAA4991WP or SAA4992H. The SNERT interface replaces the standard UART interface. Contrary to the 80C51 UART interface there are additional special function registers (see Table 10) and there is no byte separation time between address and data.

### Sample rate converter with embedded high quality dynamic noise reduction and expansion port

**SAA4979H** 

The SNERT interface transforms the parallel data from the microcontroller into 1 or 2 Mbaud SNERT data, switchable via microcontroller. The SNERT-bus consists of three signals: SNCL used as serial clock signal, generated by the SNERT interface; SNDA used as bidirectional data line and SNRST used as reset signal, generated by the microcontroller at port pin P1.0 to indicate the start of a transmission.

The read or write operation must be set by the microcontroller. When writing to the bus, 2 bytes are loaded by the microcontroller: one for the address, the other for the data. When reading from the bus, one byte is loaded by the microcontroller for the address, the received byte is the data from the addressed SNERT location.

#### 7.5.4 I/O PORTS

A parallel 8-bit I/O port (P1) is available, where P1.0 is used as SNERT reset signal (SNRST), P1.2 to P1.5 can be used for application specific control signals, and P1.6 and P1.7 are used as I<sup>2</sup>C-bus signals (SCL and SDA).

#### 7.5.5 WATCHDOG TIMER

The microcontroller contains an internal Watchdog timer, which can be activated by setting the corresponding special function register PCON.4. Only a synchronous reset will clear this bit. To prevent a system reset the Watchdog timer must be reloaded within a specified time. The Watchdog timer contains an 11-bit prescaler and is therefore incremented every 0.768 ms (16 MHz clock). The time interval between the timers reloading and the occurrence of a reset depends on the reloaded 8-bit value.

#### 7.5.6 RESET

A reset is accomplished by holding the RST pin HIGH for at least  $0.75~\mu s$  while the display clock is running and the supply voltage is stabilized.

#### 7.6 System controller

The system controller provides all necessary internal read and write signals for controlling the embedded field memory. The required control signals (REO and IE) for applications with motion compensation circuits and the drive signals (HD and VD) for the horizontal and vertical deflection power stages are also generated.

The system controller also supports double window or picture-in-picture processing in combination with an external field memory by providing the required memory control signals (RE2, RSTW2 and OIE2).

The system controller is connected to the microcontroller via the host interface.

#### 7.6.1 READ ENABLE OUTPUT

The Read Enable Output (REO) signal is intended for control of an external feature IC. It is a composite signal consisting of a horizontal and a vertical part. The horizontal and vertical positions are programmable (control inputs: reo\_hstart, reo\_hstop, reo\_vstart and reo\_vstop).

#### 7.6.2 READ ENABLE INPUT

The Read Enable Input (REI) signal is used in applications with external feature ICs connected to the expansion port. It has to be provided by the external circuit (see Section 7.3.2).

#### 7.6.3 INPUT ENABLE

The Input Enable (IE) signal is intended for control of field memories in applications together with an external feature IC connected to the expansion port. It can be directly set or reset via the microcontroller.

#### 7.6.4 HORIZONTAL DEFLECTION

The Horizontal Deflection (HD) signal is for driving a deflection circuit; start and stop values of the horizontal position are programmable in a resolution of 4 clock cycles (control inputs: hd\_start and hd\_stop).

#### 7.6.5 VERTICAL DEFLECTION

The Vertical Deflection (VD) signal is for driving a deflection circuit. This signal has a cycle time of 10 ms and the start and stop values of the vertical position are programmable in steps of 16  $\mu$ s (control inputs: vd\_start and vd\_stop).

#### 7.6.6 AUXILIARY DISPLAY SIGNAL

The Auxiliary Display Signal (ADS) is for general purposes; the horizontal and vertical positions are programmable (control inputs: ads\_hstart, ads\_hstop, ads\_vstart and ads\_vstop).

#### 7.6.7 READ ENABLE 2

The Read Enable 2 (RE2) signal is intended for control of an external field memory at input channel 2 in picture-in-picture applications. It is a composite signal consisting of a horizontal and a vertical part. The horizontal and vertical positions are programmable (control inputs: re2\_hstart, re2\_hstop, re2\_vstart and re2\_vstop).

### Sample rate converter with embedded high quality dynamic noise reduction and expansion port

**SAA4979H** 

#### 7.6.8 OUTPUT/INPUT ENABLE 2

The Output/Input Enable 2 (OIE2) signal is intended for control of one or two external field memories at input channel 2 in picture-in-picture applications. It can be directly set or reset via the microcontroller.

#### 7.6.9 RESET READ 2

The Reset Read 2 (RSTR2) signal is intended for control of the read access of an external field memory at input channel 2 in picture-in-picture applications. It is derived from the internal vertical reference signal of the main channel.

#### 7.6.10 RESET WRITE 2

The Reset Write 2 (RSTW2) input is used in picture-in-picture applications with an external field memory at input channel 2, and has to be provided by an external circuit which controls the field memory write access.

#### 7.7 Line-locked clock generation

An internal PLL generates the 32 MHz line-locked display clock CLK32. The PLL consists of a ring oscillator, DTO and digital control loop. The PLL characteristic is controlled by means of the microcontroller.

#### 7.8 Boundary scan test

The SAA4979H has built-in logic and 6 dedicated pins to support boundary scan testing which allows board testing without special hardware (nails). The SAA4979H follows the "IEEE Std. 1149.1 - Standard Test Access Port and Boundary-Scan Architecture" set by the Joint Test Action Group (JTAG) chaired by Philips.

The 6 special pins are Test Mode Select (TMS), Test Clock (TCK), Test Reset (TRST), Test Data Input (TDI), Boundary-scan Compliant Enable (BCE) and Test Data Output (TDO). To achieve compliance to the "IEEE Std. 1149.1" a logic HIGH has to be applied to the BCE pin. Internal pull-up resistors at the input pins TMS, TRST and TDI are not implemented.

#### 8 CONTROL REGISTER DESCRIPTION

#### 8.1 Host interface detail

Table 4 Write register at 1f<sub>H</sub>

|                          | Ū      | ••                   |                                                                 |
|--------------------------|--------|----------------------|-----------------------------------------------------------------|
| HOST<br>ADDRESS<br>(HEX) | ВІТ    | NAME                 | DESCRIPTION                                                     |
| Host addres              | s 0102 | H to 011CH (system o | control)                                                        |
| 0102                     | 0 to 7 | weint_vstart         | write enable internal memory vertical start (lower 8 of 9 bits) |
| 0103                     | 0 to 7 | weint_vstop          | write enable internal memory vertical stop (lower 8 of 9 bits)  |
| 0104                     | 0      | weint_vstart (MSB)   | write enable internal memory vertical start (MSB)               |
|                          | 1      | weint_vstop (MSB)    | write enable internal memory vertical stop (MSB)                |
|                          | 2      | fm1_still            | still picture mode; 0 = normal mode, 1 = still picture mode     |
|                          | 3      | pip_2fm_dc           | direct controlled PIP mode; 0 = normal mode, 1 = direct mode    |
|                          | 4      | sfr                  | field recognition mode; 0 = normal mode, 1 = inverse mode       |
|                          | 5      | sfm                  | single field mode; 0 = normal mode, 1 = single field mode       |
|                          | 6      | re2_vstart (MSB)     | read enable PIP window vertical start (MSB)                     |
|                          | 7      | re2_vstop (MSB)      | read enable PIP window vertical stop (MSB)                      |
| 0105                     | 0 to 7 | re2_vstart           | read enable PIP window vertical start (lower 8 of 9 bits)       |
| 0106                     | 0 to 7 | re2_vstop            | read enable PIP window vertical stop (lower 8 of 9 bits)        |
| 0107                     | 0 to 7 | re2_hstart           | read enable PIP window horizontal start (lower 8 of 10 bits)    |
| 0108                     | 0 to 7 | re2_hstop            | read enable PIP window horizontal stop (lower 8 of 10 bits)     |

# Sample rate converter with embedded high quality dynamic noise reduction and expansion port

**SAA4979H** 

| HOST<br>ADDRESS<br>(HEX) | BIT    | NAME                 | DESCRIPTION                                                                                                           |
|--------------------------|--------|----------------------|-----------------------------------------------------------------------------------------------------------------------|
| 0109                     | 0 to 3 | min_dist_maintosub   | minimum distance between main and sub channel                                                                         |
|                          | 4      | pip_raster_corr      | PIP raster correction; 0 = off, 1 = on                                                                                |
|                          | 5      | pip_on               | PIP mode; 0 = off, 1 = on                                                                                             |
|                          | 6      | pip_2field           | PIP 2-field mode; 0 = single field mode, 1 = 2-field mode                                                             |
|                          | 7      | mpip_on              | multi-PIP mode; 0 = off, 1 = on                                                                                       |
| 010A                     | 0 to 7 | dispvpos             | vertical position of the display related to acquisition                                                               |
| 0112                     | 0 to 7 | weint_hstart         | write enable internal memory horizontal start (lower 8 of 10 bits)                                                    |
| 0113                     | 0 to 7 | weint_hstop          | write enable internal memory horizontal stop (lower 8 of 10 bits)                                                     |
| 0114                     | 0 to 1 | weint_hstart (MSBs)  | write enable internal memory horizontal start (higher 2 of 10 bits)                                                   |
|                          | 2 to 3 | weint_hstop (MSBs)   | write enable internal memory horizontal stop (higher 2 of 10 bits)                                                    |
|                          | 4 to 5 | re2_hstart (MSBs)    | read enable PIP window horizontal start (higher 2 of 10 bits)                                                         |
|                          | 6 to 7 | re2_hstop (MSBs)     | read enable PIP window horizontal stop (higher 2 of 10 bits)                                                          |
| 0116                     | 0 to 7 | h656int_hstart       | internal H reference horizontal start; 4 pixel resolution                                                             |
| 0117                     | 0 to 7 | h656int_hstop        | internal H reference horizontal stop; 4 pixel resolution                                                              |
| 0118                     | 0 to 7 | ieint_hstart         | input enable internal memory horizontal start (lower 8 of 10 bits)                                                    |
| 0119                     | 0 to 7 | ieint_hstop          | input enable internal memory horizontal stop (lower 8 of 10 bits)                                                     |
| 011A                     | 0 to 7 | ieint_vstart         | input enable internal memory vertical start (lower 8 of 10 bits)                                                      |
| 011B                     | 0 to 7 | ieint_vstop          | input enable internal memory vertical stop (lower 8 of 10 bits)                                                       |
| 011C                     | 0 to 1 | ieint_hstart (MSBs)  | input enable internal memory horizontal start (higher 2 of 10 bits)                                                   |
|                          | 2 to 3 | ieint_hstop (MSBs)   | input enable internal memory horizontal stop (higher 2 of 10 bits)                                                    |
|                          | 4      | ieint_vstart (MSB)   | input enable internal memory vertical start (MSB)                                                                     |
|                          | 5      | ieint_vstop (MSB)    | input enable internal memory vertical stop (MSB)                                                                      |
|                          | 6 to 7 |                      | reserved                                                                                                              |
| Host addres              | s 0185 | H to 018EH (noise es | timator)                                                                                                              |
| 0185                     | 0 to 1 | ypscale              | scale of prefilter coefficients: (1/1, 1/2, 1/4, bypass prefilter)                                                    |
|                          | 2 to 5 | compensate           | compensation value (4-bit signed)                                                                                     |
|                          | 6 to 7 | _                    | reserved                                                                                                              |
| 0186                     | 0 to 2 | gain_upbnd           | gain of upper boundary: 0, 1, 2, 3, 4, 5, 6 and 7                                                                     |
|                          | 3      | sob_negl             | neglect sum over block value if HIGH                                                                                  |
|                          | 4      | sel_sob_negl         | enable of control bit sob_negl: 0 = disable, 1 = enable                                                               |
|                          | 5 to 6 | clip_offs            | clip offset: 1, 2, 4 and 8                                                                                            |
|                          | 7      | _                    | reserved                                                                                                              |
| 0187                     | 0 to 7 | wanted_value         | wanted value in steps of $^{1}\!\!/_{256}\%$ , i.e. predefined number of estimates; range: 0 to $^{255}\!\!/_{256}\%$ |
| 0188                     | 0 to 7 | lb_detail            | lower boundary of detail counter                                                                                      |
| 0189                     | 0 to 7 | upb_detail           | upper boundary of detail counter                                                                                      |
| 018A                     | 0 to 7 | ne_hstart            | noise measurement window horizontal start; 4 pixel resolution                                                         |
| 018B                     | 0 to 7 | ne_hstop             | noise measurement window horizontal stop; 4 pixel resolution                                                          |
| 018C                     | 0 to 7 | ne_vstart            | noise measurement window vertical start (lower 8 of 9 bits)                                                           |

# Sample rate converter with embedded high quality dynamic noise reduction and expansion port

**SAA4979H** 

| HOST<br>ADDRESS<br>(HEX) | ВІТ    | NAME                  | DESCRIPTION                                                                       |
|--------------------------|--------|-----------------------|-----------------------------------------------------------------------------------|
| 018D                     | 0 to 7 | ne_vstop              | noise measurement window vertical stop (lower 8 of 9 bits)                        |
| 018E                     | 0      | ne_vstart (MSB)       | noise measurement window vertical start (MSB)                                     |
|                          | 1      | ne_vstop (MSB)        | noise measurement window vertical stop (MSB)                                      |
|                          | 2 to 7 | _                     | reserved                                                                          |
| Host addres              | s 018F | H (front-end control) |                                                                                   |
| 018F                     | 0      | Select_data_input1    | select data input for main channel: 0 = input 2, 1 = input 1                      |
|                          | 1      | uv_sign1              | UV sign of main channel 1: 0 = unsigned, 1 = signed                               |
|                          | 2      | uv_sign2              | UV sign of sub channel 2: 0 = unsigned, 1 = signed                                |
|                          | 3 to 7 | _                     | reserved                                                                          |
| Host addres              | s 0190 | H to 0196H (noise red | duction)                                                                          |
| 0190                     | 0 to 3 | Kstep0                | step in adaptive curve from $K = \frac{1}{16}$ to $K = \frac{1}{8}$ ; weight of 1 |
|                          | 4 to 7 | Kstep1                | step in adaptive curve from $K = \frac{1}{8}$ to $K = \frac{2}{8}$ ; weight of 1  |
| 0191                     | 0 to 3 | Kstep2                | step in adaptive curve from $K = \frac{2}{8}$ to $K = \frac{3}{8}$ ; weight of 2  |
|                          | 4 to 7 | Kstep3                | step in adaptive curve from $K = \frac{3}{8}$ to $K = \frac{4}{8}$ ; weight of 2  |
| 0192                     | 0 to 3 | Kstep4                | step in adaptive curve from $K = \frac{4}{8}$ to $K = \frac{5}{8}$ ; weight of 4  |
|                          | 4 to 7 | Kstep5                | step in adaptive curve from $K = \frac{5}{8}$ to $K = \frac{6}{8}$ ; weight of 4  |
| 0193                     | 0 to 3 | Kstep6                | step in adaptive curve from $K = \frac{6}{8}$ to $K = \frac{7}{8}$ ; weight of 8  |
|                          | 4 to 7 | Kstep7                | step in adaptive curve from $K = \frac{7}{8}$ to $K = \frac{8}{8}$ ; weight of 8  |
| 0194                     | 0 to 3 | Klumafix              | value of the fixed K factor of the luminance; see Table 6                         |
|                          | 4 to 6 | Yadapt_gain           | value of the gain of the adaptive curve of the luminance; see Table 5             |
|                          | 7      | lumafix               | adaptive (lumafix = 0) or fixed K mode (lumafix = 1) of the luminance             |
| 0195                     | 0 to 3 | Kchromafix            | value of the fixed K factor of the chrominance; see Table 6                       |
|                          | 4 to 6 | Cadapt_gain           | value of the gain of the adaptive curve of the chrominance; see Table 5           |
|                          | 7      | chromafix             | adaptive (chromafix = 0) or fixed K mode (chromafix = 1) of chrominance           |
| 0196                     | 0      | Klumatochr            | if HIGH: uses luminance K factor for chrominance path                             |
|                          | 1      | unfiltered            | if HIGH: band splitting is deactivated, complete difference signals are used      |
|                          | 2      | noiseshape            | if HIGH: noise shaping is activated                                               |
|                          | 3      | splitscreen           | if HIGH: split screen demo mode is activated                                      |
|                          | 4      | NREN                  | noise reduction enable; 0 = off; 1 = on                                           |
|                          | 5 to 7 | _                     | reserved                                                                          |
| Host addres              | s 019A | H to 019FH (black ba  | r detection)                                                                      |
| 019A                     | 0 to 5 | bbd_event_value       | black bar detection event value                                                   |
|                          | 6 to 7 | _                     | reserved                                                                          |
| 019B                     | 0 to 5 | bbd_slice_level       | black bar detection slice level                                                   |
|                          | 6      | bbd_vstop (MSB)       | black bar detection window vertical stop (MSB)                                    |
|                          | 7      | bbd_vstart (MSB)      | black bar detection window vertical start (MSB)                                   |
| 019C                     | 0 to 7 | bbd_hstart            | black bar detection window horizontal start; 4 pixel resolution                   |

## Sample rate converter with embedded high quality dynamic noise reduction and expansion port

**SAA4979H** 

| HOST<br>ADDRESS<br>(HEX) | віт    | NAME       | DESCRIPTION                                                    |
|--------------------------|--------|------------|----------------------------------------------------------------|
| 019D                     | 0 to 7 | bbd_hstop  | black bar detection window horizontal stop; 4 pixel resolution |
| 019E                     | 0 to 7 | bbd_vstart | black bar detection window vertical start (lower 8 of 9 bits)  |
| 019F                     | 0 to 7 | bbd_vstop  | black bar detection window vertical stop (lower 8 of 9 bits)   |

Table 5 Gain settings of adaptive values for chrominance and luminance

| Yadapt_gain/0 | Yadapt_gain/Cadapt_gain [2:0] |       |  |  |  |
|---------------|-------------------------------|-------|--|--|--|
| HEX           | DECIMAL                       | GAIN  |  |  |  |
| 00            | 0                             | 1/8   |  |  |  |
| 01            | 1                             | 2/8   |  |  |  |
| 02            | 2                             | 4/8   |  |  |  |
| 03            | 3                             | 8/8   |  |  |  |
| 04            | 4                             | 16/8  |  |  |  |
| 05            | 5                             | 32/8  |  |  |  |
| 06            | 6                             | 64/8  |  |  |  |
| 07            | 7                             | 128/8 |  |  |  |

Table 6 Settings of fixed K factor values

| Klumafix/Kch | nromafix [3:0] | W.Cooker                      |  |
|--------------|----------------|-------------------------------|--|
| HEX          | DECIMAL        | K factor                      |  |
| 00           | 0              | 0                             |  |
| 01           | 1              | 1/16                          |  |
| 02           | 2              | <sup>2</sup> / <sub>16</sub>  |  |
| 03           | 3              | <sup>3</sup> / <sub>16</sub>  |  |
| 04           | 4              | 4/16                          |  |
| 05           | 5              | <sup>5</sup> / <sub>16</sub>  |  |
| 06           | 6              | <sup>6</sup> / <sub>16</sub>  |  |
| 07           | 7              | <sup>7</sup> / <sub>16</sub>  |  |
| 08           | 8              | 8/16                          |  |
| 09           | 9              | <sup>9</sup> / <sub>16</sub>  |  |
| 0A           | 10             | <sup>10</sup> ⁄ <sub>16</sub> |  |
| 0B           | 11             | <sup>11</sup> / <sub>16</sub> |  |
| 0C           | 12             | <sup>12</sup> / <sub>16</sub> |  |
| 0D           | 13             | <sup>13</sup> ⁄ <sub>16</sub> |  |
| 0E           | 14             | <sup>14</sup> / <sub>16</sub> |  |
| 0F           | 15             | <sup>16</sup> / <sub>16</sub> |  |

# Sample rate converter with embedded high quality dynamic noise reduction and expansion port

**SAA4979H** 

Table 7 Write register at 2f<sub>H</sub>

| HOST<br>ADDRESS<br>(HEX) | BIT                                          | NAME              | DESCRIPTION                                                                                                          |  |  |  |
|--------------------------|----------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------|--|--|--|
| Host addres              | Host address 0222H to 023FH (system control) |                   |                                                                                                                      |  |  |  |
| 0222                     | 0 to 7                                       | vd_vstart         | vertical deflection pulse start (lower 8 of 11 bits)                                                                 |  |  |  |
| 0223                     | 0 to 7                                       | vd_vstop          | vertical deflection pulse stop (lower 8 of 11 bits)                                                                  |  |  |  |
| 0224                     | 0 to 7                                       | reo_vstart        | read enable output window vertical start (lower 8 of 10 bits)                                                        |  |  |  |
| 0225                     | 0 to 7                                       | reo_vstop         | read enable output window vertical stop (lower 8 of 10 bits)                                                         |  |  |  |
| 0226                     | 0 to 3                                       | dspflds           | number of display fields minus 1                                                                                     |  |  |  |
|                          | 4 to 7                                       | _                 | reserved                                                                                                             |  |  |  |
| 0227                     | 0 to 1                                       | reo_vstart (MSBs) | read enable output window vertical start (higher 2 of 10 bits)                                                       |  |  |  |
|                          | 2 to 3                                       | reo_vstop (MSBs)  | read enable output window vertical stop (higher 2 of 10 bits)                                                        |  |  |  |
|                          | 4 to 7                                       | _                 | reserved                                                                                                             |  |  |  |
| 0228                     | 0 to 2                                       | vd_vstart (MSBs)  | vertical deflection pulse start (higher 3 of 11 bits)                                                                |  |  |  |
|                          | 3 to 4                                       | vd_vstop (MSBs)   | vertical deflection pulse start (higher 3 of 11 bits)                                                                |  |  |  |
|                          | 6 to 7                                       | _                 | reserved                                                                                                             |  |  |  |
| 0229                     | 0 to 7                                       | ads_hstart        | auxiliary display signal horizontal start (lower 8 of 10 bits)                                                       |  |  |  |
| 022A                     | 0 to 7                                       | ads_hstop         | auxiliary display signal horizontal stop (lower 8 of 10 bits)                                                        |  |  |  |
| 022B                     | 0                                            | vres_dis          | internal vertical reset; 0 = enable; 1 = disable                                                                     |  |  |  |
|                          | 1                                            | crn_direct        | direct vertical frame synchronization; 0 = disable; 1 = enable                                                       |  |  |  |
|                          | 2                                            | dr_aabb           | display raster mode; 0 = standard VD synchronization; 1 = AABB synchronization; VD delayed for the first 50 Hz field |  |  |  |
|                          | 3                                            | _                 | reserved                                                                                                             |  |  |  |
|                          | 4                                            | gen_mode          | generator mode; 0 = off; 1 = on                                                                                      |  |  |  |
|                          | 5                                            | ie_fm2            | input enable signal (output IE)                                                                                      |  |  |  |
|                          | 6                                            | smooth_lock       | smooth lock synchronization mode; 0 = off; 1 = on                                                                    |  |  |  |
|                          | 7                                            | _                 | reserved                                                                                                             |  |  |  |
| 022C                     | 0 to 7                                       | ads_vstart        | auxiliary display signal vertical start (lower 8 of 10 bits)                                                         |  |  |  |
| 022D                     | 0 to 7                                       | ads_vstop         | auxiliary display signal vertical stop (lower 8 of 10 bits)                                                          |  |  |  |
| 022E                     | 0 to 1                                       | ads_hstart (MSBs) | auxiliary display signal horizontal start (higher 2 of 10 bits)                                                      |  |  |  |
|                          | 2 to 3                                       | ads_hstop (MSBs)  | auxiliary display signal horizontal stop (higher 2 of 10 bits)                                                       |  |  |  |
|                          | 4 to 5                                       | ads_vstart (MSBs) | auxiliary display signal vertical start (higher 2 of 10 bits)                                                        |  |  |  |
|                          | 6 to 7                                       | ads_vstop (MSBs)  | auxiliary display signal vertical stop (higher 2 of 10 bits)                                                         |  |  |  |
| 0230                     | 0 to 7                                       | hd_hstart         | horizontal deflection pulse start; 4 pixels resolution                                                               |  |  |  |
| 0231                     | 0 to 7                                       | hd_hstop          | horizontal deflection pulse stop; 4 pixels resolution                                                                |  |  |  |
| 0234                     | 0 to 7                                       | reo_hstart        | read enable output window horizontal start (lower 8 of 10 bits)                                                      |  |  |  |
| 0235                     | 0 to 7                                       | reo_hstop         | read enable output window horizontal stop (lower 8 of 10 bits)                                                       |  |  |  |
| 0238                     | 0 to 1                                       | reo_hstart (MSBs) | read enable output window horizontal start (higher 2 of 10 bits)                                                     |  |  |  |
|                          | 2 to 3                                       | reo_hstop (MSBs)  | read enable output window horizontal stop (higher 2 of 10 bits)                                                      |  |  |  |
|                          | 4 to 7                                       | _                 | reserved                                                                                                             |  |  |  |
| 023A                     | 0 to 7                                       | fl                | display field length (lower 8 of 11 bits)                                                                            |  |  |  |

# Sample rate converter with embedded high quality dynamic noise reduction and expansion port

**SAA4979H** 

| HOST<br>ADDRESS<br>(HEX) | BIT     | NAME                    | DESCRIPTION                                                            |
|--------------------------|---------|-------------------------|------------------------------------------------------------------------|
| 023B                     | 0 to 2  | fl (MSBs)               | display field length (higher 3 of 11 bits)                             |
|                          | 3 to 7  | -                       | reserved                                                               |
| 023C                     | 0 to 7  | hp1                     | frame synchronization pulse position; 4 pixels resolution              |
| 023D                     | 0 to 7  | dsplock_vstart          | display locking window vertical start (lower 8 of 10 bits)             |
| 023E                     | 0 to 7  | dsplock_vstop           | display locking window vertical stop (lower 8 of 10 bits)              |
| 023F                     | 0 to 1  | dsplock_vstart (MSBs)   | display locking window vertical start (higher 2 of 10 bits)            |
|                          | 2 to 3  | dsplock_vstop (MSBs)    | display locking window vertical stop (higher 2 of 10 bits)             |
|                          | 4 to 7  | _                       | reserved                                                               |
| Host addres              | s 0287H | to 028DH (panoramic zoo | om)                                                                    |
| 0287                     | 0 to 7  | c2                      | compression or expansion non-linearity value                           |
| 0288                     | 0 to 7  | c0                      | linear compression or expansion value (lower 8 of 9 bits)              |
| 0289                     | 0 to 7  | hshift (LSBs)           | horizontal pixel shift (lower 8 of 16 bits)                            |
| 028A                     | 0 to 7  | hshift (MSBs)           | horizontal pixel shift (higher 8 of 16 bits)                           |
| 028B                     | 0 to 7  | nrln                    | number of lines per field (lower 8 of 10 bits)                         |
| 028C                     | 0 to 7  | nrpx_div4               | number of pixels per line divided-by-4                                 |
| 028D                     | 0       | transparent_mode        | bypass panoramic zoom: 0 = panoramic zoom active, 1 = bypass           |
|                          | 1       | c0 (MSB)                | linear compression or expansion value (MSB)                            |
|                          | 2 to 3  | nrln (MSBs)             | number of lines per field (higher 2 of 10 bits)                        |
|                          | 4 to 7  | _                       | reserved                                                               |
| Host addres              | s 0280H | to 0284H and 0290H (mid | l-end control)                                                         |
| 0280                     | 0 to 7  | mid_hstart              | bandwidth detection window horizontal start (lower 8 of 10 bits)       |
| 0281                     | 0 to 7  | bw_hstop                | bandwidth detection window horizontal stop (lower 8 of 10 bits)        |
| 0282                     | 0 to 7  | bw_hstart               | bandwidth detection window vertical start (lower 8 of 10 bits)         |
| 0283                     | 0 to 7  | bw_hstop                | bandwidth detection window vertical stop (lower 8 of 10 bits)          |
| 0284                     | 0 to 1  | bw_hstart (MSBs)        | bandwidth detection window horizontal start (higher 2 of 10 bits)      |
|                          | 2 to 3  | bw_hstop (MSBs)         | bandwidth detection window horizontal stop (higher 2 of 10 bits)       |
|                          | 4 to 5  | bw_hstart (MSBs)        | bandwidth detection window vertical start (higher 2 of 10 bits)        |
|                          | 6 to 7  | bw_hstop (MSBs)         | bandwidth detection window vertical stop (higher 2 of 10 bits)         |
| 0290                     | 0       | bypass_downsampling     | bypass downsampling: 0 = downsampling active, 1 = bypass               |
|                          | 1       | mid_uv_inv              | inverts UVO output signals: 0 = no inversion, 1 = inversion            |
|                          | 2       | bypass_FSRC             | bypass Fixed Sample Rate Converter (FSRC): 0 = FSRC active, 1 = bypass |
|                          | 3 to 7  | _                       | reserved                                                               |
| Host addres              | s 0298H | to 029FH (back-end cont | rol)                                                                   |
| 0298                     | 0 to 7  | be_hstart               | back-end window horizontal start (lower 8 of 10 bits)                  |
| 0299                     | 0 to 7  | be_hstop                | back-end window horizontal stop (lower 8 of 10 bits)                   |
| 029A                     | 0 to 7  | be_hstart               | back-end window vertical start (lower 8 of 10 bits)                    |
| 029B                     | 0 to 7  | be_hstop                | back-end window vertical stop (lower 8 of 10 bits)                     |

# Sample rate converter with embedded high quality dynamic noise reduction and expansion port

**SAA4979H** 

| HOST<br>ADDRESS<br>(HEX) | BIT     | NAME                  | DESCRIPTION                                                                                                                                                                                                |
|--------------------------|---------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 029C                     | 0 to 1  | be_hstart (MSBs)      | back-end window horizontal start (higher 2 of 10 bits)                                                                                                                                                     |
|                          | 2 to 3  | be_hstop (MSBs)       | back-end window horizontal stop (higher 2 of 10 bits)                                                                                                                                                      |
|                          | 4 to 5  | be_hstart (MSBs)      | back-end window vertical start (higher 2 of 10 bits)                                                                                                                                                       |
|                          | 6 to 7  | be_hstop (MSBs)       | back-end window vertical stop (higher 2 of 10 bits)                                                                                                                                                        |
| 029D                     | 0 to 7  | exp_hstart            | expansion port input window: horizontal start (lower 8 of 10 bits)                                                                                                                                         |
| 029E                     | 0 to 1  | exp_hstart (MSBs)     | expansion port input window: horizontal start (higher 2 of 10 bits)                                                                                                                                        |
|                          | 2 to 7  | _                     | reserved                                                                                                                                                                                                   |
| 029F                     | 0       | bypass_upsampling     | bypass upsampling: 0 = upsampling active, 1 = bypass                                                                                                                                                       |
|                          | 1       | extern_device         | external device multiplexer: 0 = internal, 1 = data from external device                                                                                                                                   |
|                          | 2 to 7  | _                     | reserved                                                                                                                                                                                                   |
| Host addres              | s 02A0H | to 02A6H (dynamic hor | izontal smart peaking)                                                                                                                                                                                     |
| 02A0                     | 0 to 7  | steepness_vstart      | steepness detection window vertical start; 4 lines resolution                                                                                                                                              |
| 02A1                     | 0 to 7  | steepness_vstop       | steepness detection window vertical stop; 4 lines resolution                                                                                                                                               |
| 02A2                     | 0 to 7  | steepness_hstart      | steepness detection window horizontal start; 4 pixels resolution                                                                                                                                           |
| 02A3                     | 0 to 7  | steepness_hstop       | steepness detection window horizontal stop; 4 pixels resolution                                                                                                                                            |
| 02A4                     | 0 to 2  | pk_alpha              | peaking α: ½ <sub>16</sub> (0, 1, 2, 3, 4, 5, 6, 8)                                                                                                                                                        |
|                          | 3 to 5  | pk_beta               | peaking β: ½16 (0, 1, 2, 3, 4, 5, 6, 8)                                                                                                                                                                    |
|                          | 6 and 7 | _                     | reserved                                                                                                                                                                                                   |
| 02A5                     | 0 to 2  | pk_tau                | peaking τ: ½16 (0, 1, 2, 3, 4, 5, 6, 8)                                                                                                                                                                    |
|                          | 3 and 4 | pk_delta              | peaking amplitude dependent attenuation: ½ (0, 1, 2, 4)                                                                                                                                                    |
|                          | 5 and 6 | pk_neggain            | peaking attenuation of undershoots: 1/4 (0, 1, 2, 4)                                                                                                                                                       |
|                          | 7       | _                     | reserved                                                                                                                                                                                                   |
| 02A6                     | 0 to 3  | pk_corthr             | peaking coring threshold: 0, ±4, ±8 , ±12 , ±16 to ±60 LSB                                                                                                                                                 |
|                          | 4       | output_range          | output range: output range = 0: 9 bits for the nominal output signal, black level: 288 and white level: 727; output range = 1: 10 bits for the nominal output signal, black level: 64 and white level: 940 |
|                          | 5 to 7  | _                     | reserved                                                                                                                                                                                                   |
| Host addres              | s 02A8H | and 02A9H (DCTI)      |                                                                                                                                                                                                            |
| 02A8                     | 0 to 2  | dcti_gain             | DCTI gain: 0, 1, 2, 3, 4, 5, 6 and 7                                                                                                                                                                       |
|                          | 3 to 6  | dcti_threshold        | DCTI threshold: 0, 1 to 15                                                                                                                                                                                 |
|                          | 7       | dcti_ddx_sel          | DCTI selection of first differentiating filter; see Fig.9                                                                                                                                                  |
| 02A9                     | 0 and 1 | dcti_limit            | DCTI limit for pixel shift range: 0, 1, 2 and 3                                                                                                                                                            |
|                          | 2       | dcti_separate         | DCTI separate processing of U and V signals; 0 = off; 1 = on                                                                                                                                               |
|                          | 3       | dcti_protection       | DCTI over the hill protection; 0 = off; 1 = on                                                                                                                                                             |
|                          | 4       | dcti_filteron         | DCTI post-filter; 0 = off; 1 = on                                                                                                                                                                          |
|                          | 5       | dcti_superhill        | DCTI super hill mode; 0 = off; 1 = on                                                                                                                                                                      |
|                          | 6 and 7 | _                     | reserved                                                                                                                                                                                                   |

# Sample rate converter with embedded high quality dynamic noise reduction and expansion port

**SAA4979H** 

| HOST<br>ADDRESS<br>(HEX) | BIT     | NAME                    | DESCRIPTION                                                                                                 |
|--------------------------|---------|-------------------------|-------------------------------------------------------------------------------------------------------------|
| Host addres              | s 02B0H | to 02BBH and 02AAH (pos | st processing)                                                                                              |
| 02B0                     | 0 to 3  | sidepanel_u             | side panel colour U value (4 MSB)                                                                           |
|                          | 4 to 7  | sidepanel_v             | side panel colour V value (4 MSB)                                                                           |
| 02B1                     | 0 to 7  | sidepanel_y             | side panel luminance value (8 MSB)                                                                          |
| 02B2                     | 0 to 7  | sidepanel_hstart        | side panel start position (higher 8 of 10 bits)                                                             |
| 02B3                     | 0 to 7  | sidepanel_hstop         | side panel stop position (higher 8 of 10 bits)                                                              |
| 02B4                     | 0 to 3  | y_delay                 | Y delay relative to UV channel, in clock cycles: -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, and 7 |
|                          | 4       | uv_inv_out              | inverts UV output signals: 0 = no inversion, 1 = inversion                                                  |
|                          | 5       | y_dac_current           | gain Y digital-to-analog converter: $0 = 2 \mu A/bit$ (range 1), $1 = 4 \mu A/bit$ (range 0); see Fig.6     |
|                          | 6 to 7  | -                       | reserved                                                                                                    |
| 02B5                     | 0 to 7  | bln_hstart              | blanking window horizontal start position (lower 8 of 10 bits)                                              |
| 02B6                     | 0 to 7  | bln_hstop               | blanking window horizontal stop position (lower 8 of 10 bits)                                               |
| 02B7                     | 0 to 7  | bln_vstart              | blanking window vertical start position (lower 8 of 10 bits)                                                |
| 02B8                     | 0 to 7  | bln_vstop               | blanking window vertical stop position (lower 8 of 10 bits)                                                 |
| 02B9                     | 0 to 1  | bln_hstart (MSBs)       | blanking window horizontal start position (higher 2 of 10 bits)                                             |
|                          | 2 to 3  | bln_hstop (MSBs)        | blanking window horizontal stop position (higher 2 of 10 bits)                                              |
|                          | 4 to 5  | bln_vstart (MSBs)       | blanking window vertical start position (higher 2 of 10 bits)                                               |
|                          | 6 to 7  | bln_vstop (MSBs)        | blanking window vertical stop position (higher 2 of 10 bits)                                                |
| 02BA                     | 0 to 1  | nlp_u                   | non-linear phase filter settings μ: (0, 1/4, 1/2, 1/2)                                                      |
|                          | 2 to 3  | nlp_l                   | non-linear phase filter settings $\lambda$ : (0, $\frac{1}{8}$ , $\frac{2}{8}$ , $\frac{3}{8}$ )            |
|                          | 4 to 5  | sidepanel_hstart (LSBs) | side panel start position (lower 2 of 10 bits)                                                              |
|                          | 6 to 7  | sidepanel_hstop (LSBs)  | side panel stop position (lower 2 of 10 bits)                                                               |
| 02BB                     | 0 to 7  | PIP_frame_hstart        | PIP frame: horizontal start position (lower 8 of 10 bits)                                                   |
| 02BC                     | 0 to 7  | PIP_frame_hstop         | PIP frame: horizontal stop position (lower 8 of 10 bits)                                                    |
| 02BD                     | 0 to 7  | PIP_frame_vstart        | PIP frame: vertical start position (lower 8 of 10 bits)                                                     |
| 02BE                     | 0 to 7  | PIP_frame_vstop         | PIP frame: vertical stop position (lower 8 of 10 bits)                                                      |
| 02BF                     | 0 to 1  | PIP_frame_vstart (MSBs) | PIP frame: vertical start position (higher 2 of 10 bits)                                                    |
|                          | 2 to 3  | PIP_frame_vstop (MSBs)  | PIP frame: vertical stop position (higher 2 of 10 bits)                                                     |
|                          | 4 to 5  | PIP_frame_hstart (MSBs) | PIP frame: horizontal start position (higher 2 of 10 bits)                                                  |
|                          | 6 to 7  | PIP_frame_hstop (MSBs)  | PIP frame: horizontal stop position (higher 2 of 10 bits)                                                   |
| 02AA                     | 0 to 3  | PIP_frame_width (MSBs)  | PIP horizontal frame width (0 to 15 pixel)                                                                  |
|                          | 4 to 7  | PIP_frame_height (MSBs) | PIP vertical frame width (0 to 15 pixel)                                                                    |

# Sample rate converter with embedded high quality dynamic noise reduction and expansion port

**SAA4979H** 

| HOST<br>ADDRESS<br>(HEX) | BIT     | NAME            | DESCRIPTION                                                          |
|--------------------------|---------|-----------------|----------------------------------------------------------------------|
| Host addres              | s 0300H | to 0305H (PLL)  |                                                                      |
| 0300                     | 0 to 2  | PLL_cd_value    | damping factor                                                       |
|                          | 3 to 7  | PLL_ck_value    | time constant                                                        |
| 0301                     | 0 to 1  | -               | reserved                                                             |
|                          | 2 to 4  | PLL_idto (MSBs) | signed increment offset of DTO (MSBs)                                |
|                          | 5       | 0               | to be cleared                                                        |
|                          | 6       | PLL_off_hif     | freeze frequency                                                     |
|                          | 7       | PLL_open        | disable outer loop: 0 = outer loop closed, 1 = outer loop open       |
| 0302                     | 0 to 7  | PLL_idto2       | signed increment offset of DTO (higher byte)                         |
| 0303                     | 0 to 7  | PLL_idto1       | signed increment offset of DTO (lower byte)                          |
| 0304                     | 0       | PLL_freq_shift  | operating frequency shift: 0 = no shift, 1 = frequency shift of 8%   |
|                          | 1       | PLL_limiter_off | PLL frequency limiter of outer loop: 0 = limiter on, 1 = limiter off |
|                          | 2 to 7  | -               | reserved                                                             |
| 0305                     | 0 to 2  | PLL_cd_adapt    | damping factor in adaptive mode                                      |
|                          | 3 to 7  | PLL_ck_adapt    | time constant in adaptive mode                                       |

**Table 8** Read register at 1f<sub>H</sub>

| HOST<br>ADDRESS<br>(HEX) | BIT                                                | NAME                      | DESCRIPTION                                              |  |  |
|--------------------------|----------------------------------------------------|---------------------------|----------------------------------------------------------|--|--|
| Host addres              | ss 0142H                                           | and 0143H (system contro  | ol)                                                      |  |  |
| 0142                     | 0 to 7                                             | fieldinf                  | result of field length measurement (lower 8 of 10 bits)  |  |  |
| 0143                     | 0 to 1                                             | filedinf (MSBs)           | result of field length measurement (higher 2 of 10 bits) |  |  |
|                          | 2                                                  | frg                       | field recognition of incoming source                     |  |  |
|                          | 3 to 7                                             | _                         | reserved                                                 |  |  |
| Host addres              | ss 01C0H                                           | to 01C4H (noise estimator | r)                                                       |  |  |
| 01C0                     | 0 to 3                                             | nest                      | noise estimation result                                  |  |  |
|                          | 4 to 7                                             | _                         | reserved                                                 |  |  |
| 01C1                     | 0 to 7                                             | nest_filt                 | noise estimation value filtered                          |  |  |
| 01C2                     | 0 to 7                                             | detail_cnt_h              | output of detail counter, higher byte                    |  |  |
| 01C3                     | 0 to 7                                             | detail_cnt_l              | output of detail counter, lower byte                     |  |  |
| 01C4                     | 0 to 7                                             | grey_cnt                  | output of grey counter                                   |  |  |
| Host addres              | Host address 01CAH and 01CBH (black bar detection) |                           |                                                          |  |  |
| 01CA                     | 0 to 6                                             | bbd_1st_videoline         | line number of first video line                          |  |  |
|                          | 7                                                  | bbd_last_videoline (MSB)  | line number of last video line (MSB)                     |  |  |
| 01CB                     | 0 to 7                                             | bbd_last_videoline        | line number of last video line                           |  |  |

## Sample rate converter with embedded high quality dynamic noise reduction and expansion port

**SAA4979H** 

Table 9 Read register at 2f<sub>H</sub>

| HOST<br>ADDRESS<br>(HEX) | BIT                                  | NAME                     | DESCRIPTION                                                                |  |  |
|--------------------------|--------------------------------------|--------------------------|----------------------------------------------------------------------------|--|--|
| Host addres              | s 0242H                              | (system control)         |                                                                            |  |  |
| 0242                     | 0 to 3                               | dspflds                  | number of display fields – 1                                               |  |  |
|                          | 4                                    | dsp_unlock               | display unlock: 0 = normal operation, 1 = vertical display timing unlocked |  |  |
|                          | 5 to 7                               | _                        | reserved                                                                   |  |  |
| Host addres              | s 02C8H                              | (UV bandwidth detection) |                                                                            |  |  |
| 02C8                     | 0 to 7                               | UV_bw_detect             | result of UV bandwidth detection (unsigned value)                          |  |  |
| Host addres              | Host address 02D0H (dynamic peaking) |                          |                                                                            |  |  |
| 02D0                     | 0 to 7                               | steepness_max            | result of steepness detection (unsigned value)                             |  |  |

#### 8.2 Special Function Registers (SFRs)

#### Table 10 SNERT-bus control

| SFR<br>ADDRESS<br>(HEX) | BIT                                   | READ/WRITE      | NAME      | DESCRIPTION                                                                                                                                          |  |
|-------------------------|---------------------------------------|-----------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Special fund            | ction reg                             | ister 9AH (SNCC | N); reset | value: 00H                                                                                                                                           |  |
| 9A                      | 0                                     | read            | TRM       | SNERT transmit busy flag: TRM is set to logic 1 after SFR 9CH (SNWDA) is accessed, after a transmission TRM is set to logic 0                        |  |
|                         | 1                                     | read and write  | REC       | SNERT receive busy flag: if REC is set to logic 1 the contents of SFR 9BH (SNADD) is transmitted, after reception is completed REC is set to logic 0 |  |
|                         | 2 to 6                                | _               | _         | reserved                                                                                                                                             |  |
|                         | 7                                     | read and write  | MB2       | SNERT baud rate: 0 = 1 MHz, 1 = 2 MHz                                                                                                                |  |
| Special fun             | ction reg                             | ister 9BH (SNAD | D)        |                                                                                                                                                      |  |
| 9B                      | 0 to 7                                | write           | SNADD     | SNERT address                                                                                                                                        |  |
| Special fun             | Special function register 9CH (SNWDA) |                 |           |                                                                                                                                                      |  |
| 9C                      | 0 to 7                                | write           | SNWDA     | SNERT data to be transmitted                                                                                                                         |  |
| Special fun             | Special function register 9DH (SNRDA) |                 |           |                                                                                                                                                      |  |
| 9D                      | 0 to 7                                | read            | SNRDA     | data received from SNERT-bus                                                                                                                         |  |

### Sample rate converter with embedded high quality dynamic noise reduction and expansion port

**SAA4979H** 

Table 11 Power control

| SFR<br>ADDRESS<br>(HEX) | BIT       | READ/WRITE      | NAME        | DESCRIPTION                                                                                                                |
|-------------------------|-----------|-----------------|-------------|----------------------------------------------------------------------------------------------------------------------------|
| Special fun             | ction reg | ister 87H (PCON | ); reset va | lue: 00H                                                                                                                   |
| 87                      | 0         | read and write  | IDL         | Idle mode bit: 0 = normal operation, 1 = Idle mode operation                                                               |
|                         | 1         | read and write  | PD          | Power-down bit: 0 = normal operation, 1 = Power-down mode                                                                  |
|                         | 2 to 3    | _               | _           | reserved                                                                                                                   |
|                         | 4         | read and write  | WLE         | Watchdog load enable: 0 = loading of Watchdog timer disabled, 1 = loading of Watchdog timer enabled                        |
|                         |           |                 | EW          | enable Watchdog: 0 = Watchdog disabled, 1 = Watchdog enabled; once this bit is set only a synchronous reset can clear it   |
|                         | 5         | read and write  | RFI         | radio frequency interference bit: disables toggling of internal ALE signal during on-chip program access if set to logic 1 |
|                         | 6         | read and write  | ARD         | auxiliary RAM disable: setting this bit will force MOVX instructions to access off-chip memory instead of AUXRAM           |
|                         | 7         | _               | _           | reserved                                                                                                                   |

#### 9 LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134).

| SYMBOL               | PARAMETER                                | CONDITIONS               | MIN.  | MAX.  | UNIT |
|----------------------|------------------------------------------|--------------------------|-------|-------|------|
| V <sub>DDD</sub>     | digital supply voltage                   |                          | -0.5  | +4.0  | V    |
| V <sub>DDA</sub>     | analog supply voltage                    |                          | -0.5  | +4.0  | V    |
| V <sub>DDI</sub>     | internal I/O supply voltage              |                          | -0.5  | +4.0  | V    |
| V <sub>DDO</sub>     | I/O supply voltage                       | V <sub>DDD</sub> = 3.3 V | -0.5  | +3.8  | V    |
| V <sub>DDP</sub>     | supply voltage for protection circuits   |                          | -0.5  | +5.5  | V    |
| VI                   | input voltage for all digital input pins | V <sub>DDP</sub> = 5 V   | -0.5  | +5.5  | V    |
|                      |                                          | V <sub>DDP</sub> = 3.3 V | -0.5  | +3.8  | V    |
| VI                   | input voltage for all digital I/O pins   |                          | -0.5  | +3.8  | V    |
| I <sub>DD(tot)</sub> | total supply current                     |                          | _     | 300   | mA   |
| Io                   | short circuit output current             |                          | _     | 30    | mA   |
| P <sub>tot</sub>     | total power dissipation                  |                          | _     | 1.2   | W    |
| T <sub>stg</sub>     | storage temperature                      |                          | -25   | +150  | °C   |
| Tj                   | junction temperature                     |                          | 0     | +125  | °C   |
| T <sub>amb</sub>     | ambient temperature                      |                          | 0     | +70   | °C   |
| V <sub>es</sub>      | electrostatic handling voltage           | note 1                   | -200  | +200  | V    |
|                      |                                          | note 2                   | -2000 | +2000 | V    |

#### Notes

- 1. Machine model class B, equivalent to discharging a 200 pF capacitor through a 0  $\Omega$  series resistor (0  $\Omega$  is actually 0.75  $\mu$ H + 10  $\Omega$ ).
- 2. Human body model class B, equivalent to discharging a 100 pF capacitor through a 1500  $\Omega$  series resistor.

## Sample rate converter with embedded high quality dynamic noise reduction and expansion port

**SAA4979H** 

#### 10 THERMAL CHARACTERISTICS

| SYMBOL               | PARAMETER                                   | CONDITIONS  | VALUE | UNIT |
|----------------------|---------------------------------------------|-------------|-------|------|
| R <sub>th(j-a)</sub> | thermal resistance from junction to ambient | in free air | 45    | K/W  |

#### 11 CHARACTERISTICS

 $V_{DDD}$  = 3.0 to 3.6 V;  $V_{DDO}$  = 3.0 to 3.6 V;  $V_{DDA}$  = 3.15 to 3.45 V;  $T_{amb}$  = 0 to 70 °C; unless otherwise specified.

| SYMBOL                | PARAMETER                              | CONDITIONS                                                                                                                   | MIN.  | TYP.  | MAX.  | UNIT     |
|-----------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|----------|
| Supplies              |                                        |                                                                                                                              | 1     | -     |       | <u>'</u> |
| $V_{DDD}$             | digital supply voltage                 |                                                                                                                              | 3.0   | 3.3   | 3.6   | V        |
| $V_{DDA}$             | analog supply voltage                  |                                                                                                                              | 3.15  | 3.30  | 3.45  | V        |
| $V_{DDI}$             | internal I/O supply voltage            |                                                                                                                              | 3.0   | 3.3   | 3.6   | V        |
| $V_{DDO}$             | I/O supply voltage                     |                                                                                                                              | 3.0   | 3.3   | 3.6   | V        |
| $V_{DDP}$             | protection supply voltage              |                                                                                                                              | 3.0   | 5.0   | 5.5   | V        |
| I <sub>DDD</sub>      | digital supply current                 |                                                                                                                              | _     | 120   | 160   | mA       |
| I <sub>DDA</sub>      | analog supply current                  |                                                                                                                              | _     | 40    | 50    | mA       |
| I <sub>DDI</sub>      | internal I/O supply current            |                                                                                                                              | _     | 0     | 2     | mA       |
| I <sub>DDO</sub>      | I/O supply current                     |                                                                                                                              | _     | 10    | 40    | mA       |
| I <sub>DDP</sub>      | protection supply current              |                                                                                                                              | _     | 0     | 1     | mA       |
| Output tran           | nsfer function (sample rate 32 M       | Hz/10 bits)                                                                                                                  |       |       |       |          |
| INL                   | integral non linearity                 |                                                                                                                              | -2    | _     | +2    | LSB      |
| DNL                   | differential non linearity             |                                                                                                                              | -1    | _     | +1    | LSB      |
| Luminance             | output signal: pin YOUT                |                                                                                                                              |       |       |       |          |
| V <sub>o(p-p)</sub>   | Y output level<br>(peak-to-peak value) | output range = 0:<br>nominal amplitude digital<br>288 to 727;<br>output range = 1:<br>nominal amplitude digital<br>64 to 940 | 0.94  | 1.00  | 1.06  | V        |
| V <sub>o(black)</sub> | Y black level (voltage at 288)         | output range = 0                                                                                                             | 0.837 | 0.891 | 0.944 | V        |
|                       | Y black level (voltage at 64)          | output range = 1                                                                                                             | 0.836 | 0.889 | 0.942 | V        |
| R <sub>o</sub>        | output resistance                      |                                                                                                                              | _     | 75    | 85    | Ω        |
| C <sub>L</sub>        | capacitive load                        |                                                                                                                              | _     | _     | 25    | pF       |
| S/N                   | signal-to-noise ratio                  | nominal amplitude;<br>0 to 10 MHz                                                                                            | 46    | _     | _     | dB       |
| Colour diffe          | erence output signals: pins UOU        | IT and VOUT                                                                                                                  | 1     | -1    | 1     | '        |
| $V_{o(p-p)}$          | U output level (peak-to-peak value)    | for saturated colour bar<br>with 75% of maximum<br>amplitude                                                                 | 1.25  | 1.33  | 1.41  | V        |
|                       | V output level (peak-to-peak value)    | for saturated colour bar<br>with 75% of maximum<br>amplitude                                                                 | 0.99  | 1.05  | 1.11  | V        |

# Sample rate converter with embedded high quality dynamic noise reduction and expansion port

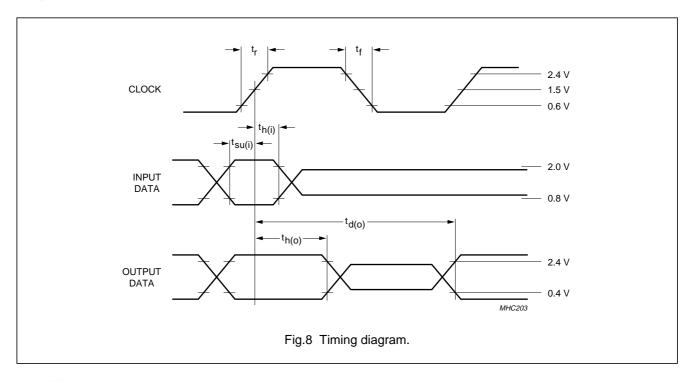
**SAA4979H** 

| SYMBOL                     | PARAMETER                           | CONDITIONS                        | MIN.        | TYP. | MAX.                   | UNIT |
|----------------------------|-------------------------------------|-----------------------------------|-------------|------|------------------------|------|
| V <sub>o(colourless)</sub> | U colourless level (voltage at 512) |                                   | 1.32        | 1.40 | 1.48                   | V    |
|                            | V colourless level (voltage at 512) |                                   | 1.32        | 1.40 | 1.48                   | V    |
| G <sub>D(U-V)</sub>        | gain matching U to V                |                                   | _           | 1    | 3                      | %    |
| R <sub>o</sub>             | output resistance                   |                                   | _           | 75   | 85                     | Ω    |
| C <sub>L</sub>             | capacitive load                     |                                   | _           | _    | 25                     | pF   |
| S/N                        | signal-to-noise ratio               | nominal amplitude;<br>0 to 10 MHz | 46          | _    | _                      | dB   |
| Digital outp               | ut signals: pins OIE2, RSTR2 and    | RE2                               |             |      | •                      |      |
| V <sub>OH</sub>            | HIGH-level output voltage           | $I_{OH} = -0.5 \text{ mA}$        | 2.4         | _    | _                      | V    |
| V <sub>OL</sub>            | LOW-level output voltage            | I <sub>OL</sub> = 0.5 mA          | _           | _    | 0.4                    | V    |
|                            | ut signals: all pins except OIE2, R | STR2 and RE2                      |             |      |                        |      |
| V <sub>OH</sub>            | HIGH-level output voltage           | I <sub>OH</sub> = -2.0 mA         | 2.4         | _    | _                      | V    |
| V <sub>OL</sub>            | LOW-level output voltage            | I <sub>OL</sub> = 2.0 mA          | _           | _    | 0.4                    | V    |
|                            | t signals: pins DI1, DI2, LLC1, LLC |                                   | CK, BCE and | TRST |                        |      |
| V <sub>IH</sub>            | HIGH-level input voltage            |                                   | 2           | _    | V <sub>DDP</sub> + 0.3 | V    |
| V <sub>IL</sub>            | LOW-level input voltage             |                                   | _           | _    | 0.8                    | V    |
| I <sub>LI</sub>            | input leakage current               |                                   | _           | _    | 10                     | μΑ   |
|                            | t signals: pins UVI, YI, REI and RS | :<br>:T                           |             |      |                        |      |
| V <sub>IH</sub>            | HIGH-level input voltage            |                                   | 2.0         | _    | 5.5                    | V    |
| V <sub>IL</sub>            | LOW-level input voltage             |                                   |             | _    | 0.8                    | V    |
| I <sub>IH</sub>            | HIGH-level input current            |                                   | _           | _    | 100                    | μΑ   |
| I <sub>IL</sub>            | LOW-level input current             |                                   | _           | _    | 10                     | μΑ   |
|                            | t signal: pin CLKEXT                |                                   |             |      |                        | 1    |
| V <sub>IH</sub>            | HIGH-level input voltage            |                                   | 2.0         | _    | 5.5                    | V    |
| V <sub>IL</sub>            | LOW-level input voltage             |                                   | _           | _    | 0.8                    | V    |
| I <sub>LI</sub>            | input leakage current               |                                   | _           | _    | 10                     | μΑ   |
| Digital inpu               | t/output signals: pins SNRST and    | P1.2 to P1.5                      | <u> </u>    |      |                        | 1.   |
| V <sub>OH</sub>            | HIGH-level output voltage           | I <sub>OH</sub> = -2.0 mA         | 2.4         | _    | _                      | V    |
| V <sub>OL</sub>            | LOW-level output voltage            | I <sub>OL</sub> = 2.0 mA          | 0           | _    | 0.4                    | V    |
| V <sub>IH</sub>            | HIGH-level input voltage            |                                   | 2.0         | _    | 3.8                    | V    |
| V <sub>IL</sub>            | LOW-level input voltage             |                                   | 0           | _    | 0.8                    | V    |
| I <sub>IH</sub>            | HIGH-level input current            |                                   | _           | _    | 10                     | μΑ   |
| I <sub>IL</sub>            | LOW-level input current             |                                   | _           | _    | 100                    | μΑ   |
|                            | t/output signal: pin SNDA           | •                                 | 1           | 1    | -                      |      |
| V <sub>OH</sub>            | HIGH-level output voltage           | I <sub>OH</sub> = -2.0 mA         | 2.4         | _    | _                      | V    |
| V <sub>OL</sub>            | LOW-level output voltage            | I <sub>OL</sub> = 2.0 mA          | 0           | _    | 0.4                    | V    |
| V <sub>IH</sub>            | HIGH-level input voltage            |                                   | 2.0         | _    | 5.5                    | V    |
| V <sub>IL</sub>            | LOW-level input voltage             |                                   | 0           | _    | 0.8                    | V    |
| I <sub>LI</sub>            | input leakage current               |                                   | _           | _    | 10                     | μΑ   |

# Sample rate converter with embedded high quality dynamic noise reduction and expansion port

**SAA4979H** 

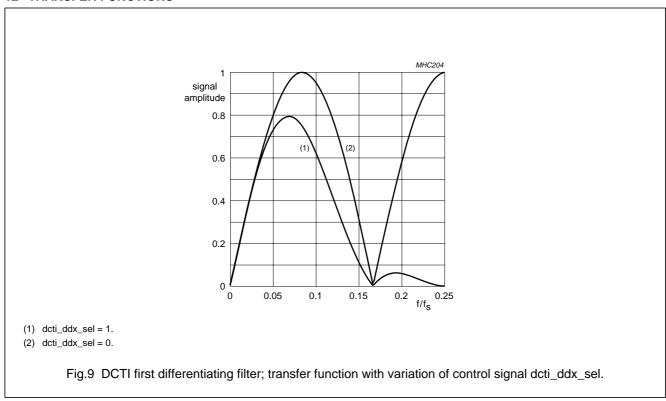
| SYMBOL                                                                                           | PARAMETER                                    | CONDITIONS                            | MIN.                | TYP.     | MAX.                | UNIT |  |
|--------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------|---------------------|----------|---------------------|------|--|
| Data output timing: pins OIE2, RSTR2 and RE2 (C <sub>L</sub> = 15 pF); timing referenced to LLC1 |                                              |                                       |                     |          |                     |      |  |
| t <sub>d(o)</sub>                                                                                | output delay time                            | see Fig.8                             | _                   | _        | 26                  | ns   |  |
| t <sub>h(o)</sub>                                                                                | output hold time                             | see Fig.8                             | 4                   | _        | _                   | ns   |  |
| Data output                                                                                      | timing: pins YO, UVO, IE, REO, Al            | DS, HD and VD ( $C_L = 15 \text{ pl}$ | F); timing r        | eference | d to CLK32          |      |  |
| t <sub>d(o)</sub>                                                                                | output delay time                            | see Fig.8                             | _                   | _        | 20                  | ns   |  |
| t <sub>h(o)</sub>                                                                                | output hold time                             | see Fig.8                             | 3                   | _        | _                   | ns   |  |
| Data input t                                                                                     | iming: pins RSTW2, DI1 and DI2; t            | timing referenced to LLC1             |                     |          |                     |      |  |
| t <sub>su(i)</sub>                                                                               | input set-up time                            | see Fig.8                             | 4                   | _        | _                   | ns   |  |
| t <sub>h(i)</sub>                                                                                | input hold time                              | see Fig.8                             | 3                   | _        | _                   | ns   |  |
| Data input t                                                                                     | iming: pins YI, UVI and REI; timin           | g referenced to CLK32                 |                     |          |                     |      |  |
| t <sub>su(i)</sub>                                                                               | input set-up time                            | see Fig.8                             | 4                   | _        | _                   | ns   |  |
| t <sub>h(i)</sub>                                                                                | input hold time                              | see Fig.8                             | 3                   | _        | _                   | ns   |  |
|                                                                                                  | timing: pins LLC1 and LLC2                   |                                       | '                   |          | '                   | •    |  |
| T <sub>cy</sub>                                                                                  | cycle time                                   |                                       | 34                  | 37       | 40                  | ns   |  |
| $\delta_{clk}$                                                                                   | clock duty factor                            |                                       | 40                  | 50       | 60                  | %    |  |
| t <sub>r</sub>                                                                                   | clock rise time                              | see Fig.8                             | _                   | _        | 5                   | ns   |  |
| t <sub>f</sub>                                                                                   | clock fall time                              | see Fig.8                             | _                   | _        | 5                   | ns   |  |
| Clock input                                                                                      | timing: pin CLKEXT                           |                                       |                     | •        |                     | •    |  |
| T <sub>cy</sub>                                                                                  | cycle time                                   |                                       | 29.00               | 31.25    | 34.00               | ns   |  |
| $\delta_{\text{clk}}$                                                                            | clock duty factor                            |                                       | 40                  | 50       | 60                  | %    |  |
| t <sub>r</sub>                                                                                   | clock rise time                              | see Fig.8                             | _                   | _        | 5                   | ns   |  |
| t <sub>f</sub>                                                                                   | clock fall time                              | see Fig.8                             | _                   | _        | 5                   | ns   |  |
| Clock outpu                                                                                      | t timing: pin CLK32 (C <sub>L</sub> = 25 pF) |                                       |                     |          |                     |      |  |
| T <sub>cy</sub>                                                                                  | cycle time                                   |                                       | 26.00               | 31.25    | 38.00               | ns   |  |
| $\delta_{clk}$                                                                                   | clock duty factor                            |                                       | 45                  | 50       | 55                  | %    |  |
| t <sub>r</sub>                                                                                   | output rise time                             | see Fig.8                             | _                   | _        | 4                   | ns   |  |
| t <sub>f</sub>                                                                                   | output fall time                             | see Fig.8                             | _                   | _        | 4                   | ns   |  |
| PLL functio                                                                                      | n (base frequency 32 MHz)                    |                                       | •                   | •        | •                   |      |  |
| σ <sub>line-line</sub>                                                                           | sigma value of line-to-line jitter           | locked to stable H signal             | _                   | 0.4      | 1.0                 | ns   |  |
| I <sup>2</sup> C-bus sigr                                                                        | nals: pins SDA and SCL; note 1               |                                       |                     |          |                     |      |  |
| V <sub>IH</sub>                                                                                  | HIGH-level input voltage                     |                                       | 0.7V <sub>DDO</sub> | _        | 5.5                 | V    |  |
| V <sub>IL</sub>                                                                                  | LOW-level input voltage                      |                                       | _                   | _        | 0.3V <sub>DDO</sub> | V    |  |
| V <sub>hys</sub>                                                                                 | hysteresis voltage                           |                                       | $0.05V_{DDO}$       | _        | _                   | V    |  |
| V <sub>OL</sub>                                                                                  | LOW-level output voltage                     | I <sub>OL</sub> = 3.0 mA              | _                   | _        | 0.4                 | V    |  |
| I <sub>LI</sub>                                                                                  | input leakage current                        |                                       | -                   | _        | 10                  | μΑ   |  |
| f <sub>SCL</sub>                                                                                 | SCL clock frequency                          |                                       | _                   | _        | 400                 | kHz  |  |
| t <sub>r</sub>                                                                                   | rise time of SDA and SCL                     |                                       | _                   | _        | 0.3                 | μs   |  |
| t <sub>f</sub>                                                                                   | fall time of SDA and SCL                     |                                       | _                   | _        | 0.3                 | μs   |  |

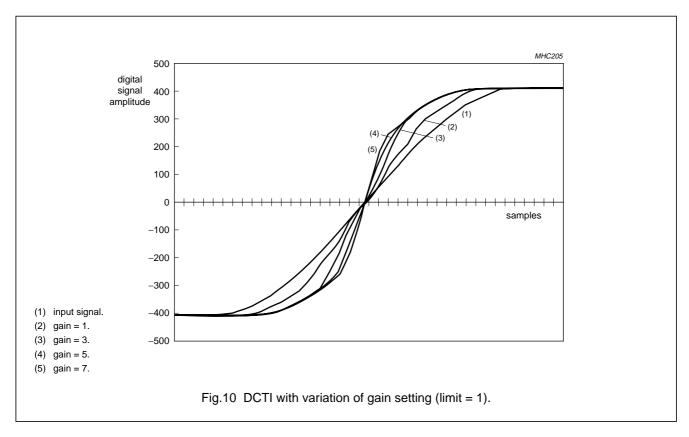

### Sample rate converter with embedded high quality dynamic noise reduction and expansion port

**SAA4979H** 

| SYMBOL                    | PARAMETER                                        | CONDITIONS             | MIN.      | TYP. | MAX. | UNIT |
|---------------------------|--------------------------------------------------|------------------------|-----------|------|------|------|
| t <sub>HD;STA</sub>       | hold time START condition                        |                        | 0.6       | _    | _    | μs   |
| t <sub>HD;DAT</sub>       | data hold time                                   |                        | 0         | _    | 0.9  | μs   |
| t <sub>LOW</sub>          | SCL LOW time                                     |                        | 1.3       | _    | _    | μs   |
| t <sub>HIGH</sub>         | SCL HIGH time                                    |                        | 0.6       | _    | _    | μs   |
| t <sub>SU;DAT</sub>       | data set-up time                                 |                        | 100       | _    | _    | ns   |
| t <sub>SU;STA</sub>       | set-up time repeated START                       |                        | 0.6       | _    | _    | μs   |
| t <sub>SU;STO</sub>       | set-up time STOP condition                       |                        | 0.6       | _    | _    | μs   |
| t <sub>BUF</sub>          | bus free time between a STOP and START condition |                        | 1.3       | _    | _    | μs   |
| SNERT-bus                 | timing (valid for both 1 and 2 Mba               | ud): pins SNDA and SNC | L; note 2 | •    |      |      |
| t <sub>su(i)</sub>        | input set-up time                                |                        | 80        | _    | _    | ns   |
| t <sub>h(i)</sub>         | input hold time                                  |                        | 0         | _    | _    | ns   |
| t <sub>h(o)</sub>         | output hold time                                 |                        | 50        | _    | _    | ns   |
| t <sub>su(o)</sub>        | output set-up time                               |                        | 260       | _    | _    | ns   |
| t <sub>cy(SNCL)</sub>     | SNCL cycle time                                  |                        | 500       | _    | 1000 | ns   |
| t <sub>SNRSTH</sub>       | SNRST pulse HIGH time                            |                        | 500       | _    | _    | ns   |
| t <sub>d(SNRST-DAT)</sub> | delay SNRST pulse to data                        |                        | 200       | _    | _    | ns   |

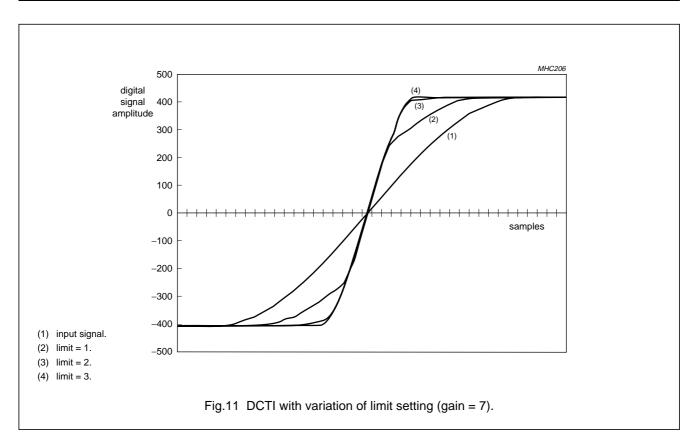
#### **Notes**

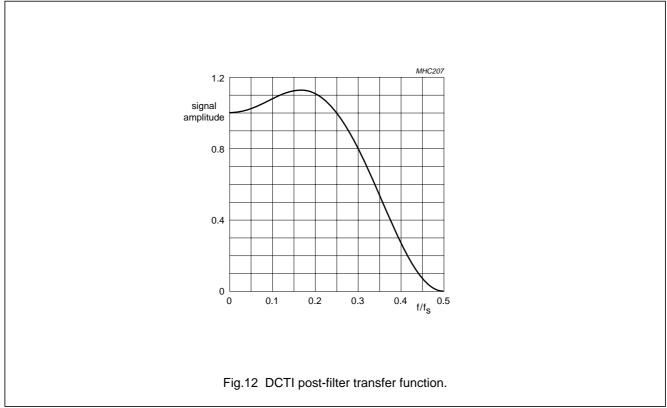

- 1. The AC characteristics are in accordance with the I<sup>2</sup>C-bus specification for fast mode (clock frequency maximum 400 kHz). Information about the I<sup>2</sup>C-bus can be found in the brochure "I<sup>2</sup>C-bus and how to use it" (order number 9398 393 40011).
- 2. More information about the SNERT-bus protocol can be found in Application Note "The SNERT-bus specification" (AN95127).




## Sample rate converter with embedded high quality dynamic noise reduction and expansion port

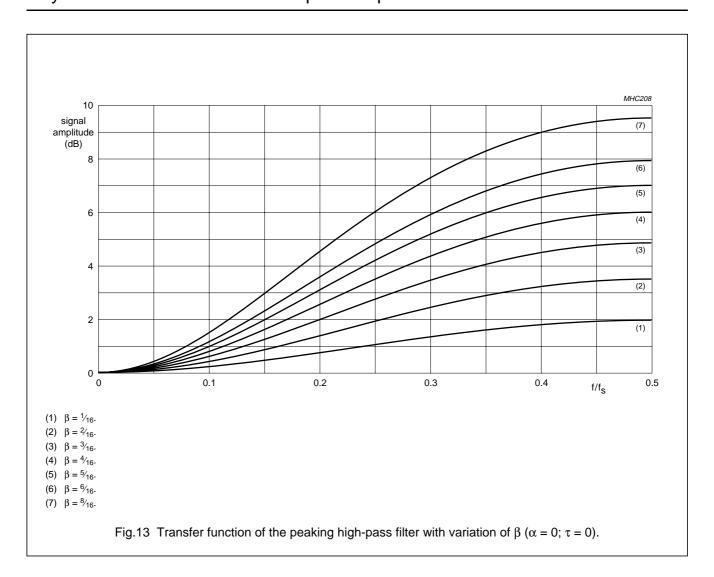
**SAA4979H** 


#### 12 TRANSFER FUNCTIONS



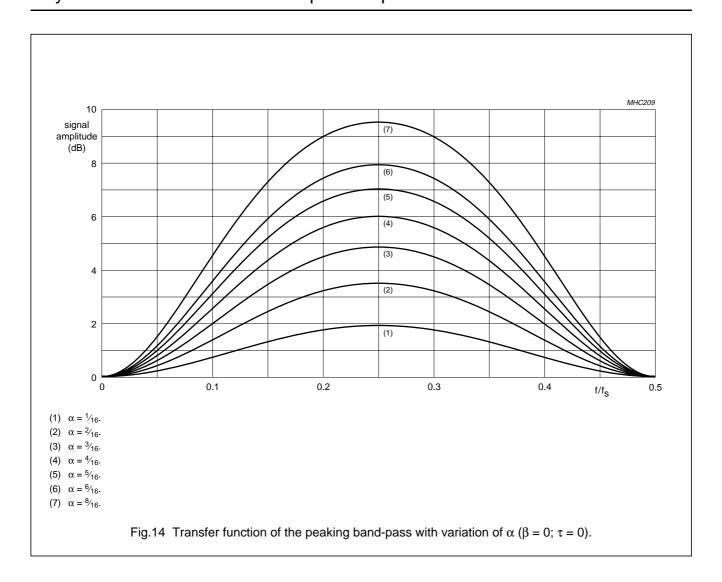



# Sample rate converter with embedded high quality dynamic noise reduction and expansion port


**SAA4979H** 



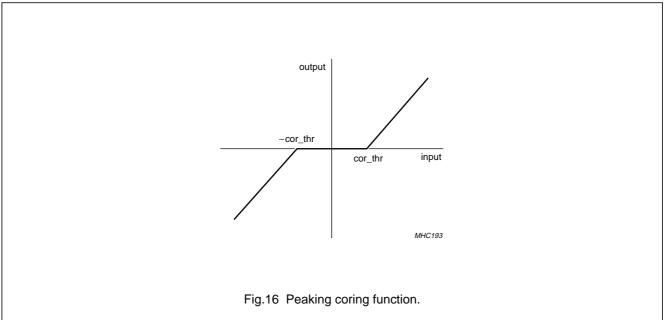



# Sample rate converter with embedded high quality dynamic noise reduction and expansion port

**SAA4979H** 



# Sample rate converter with embedded high quality dynamic noise reduction and expansion port


**SAA4979H** 



# Sample rate converter with embedded high quality dynamic noise reduction and expansion port

**SAA4979H** 

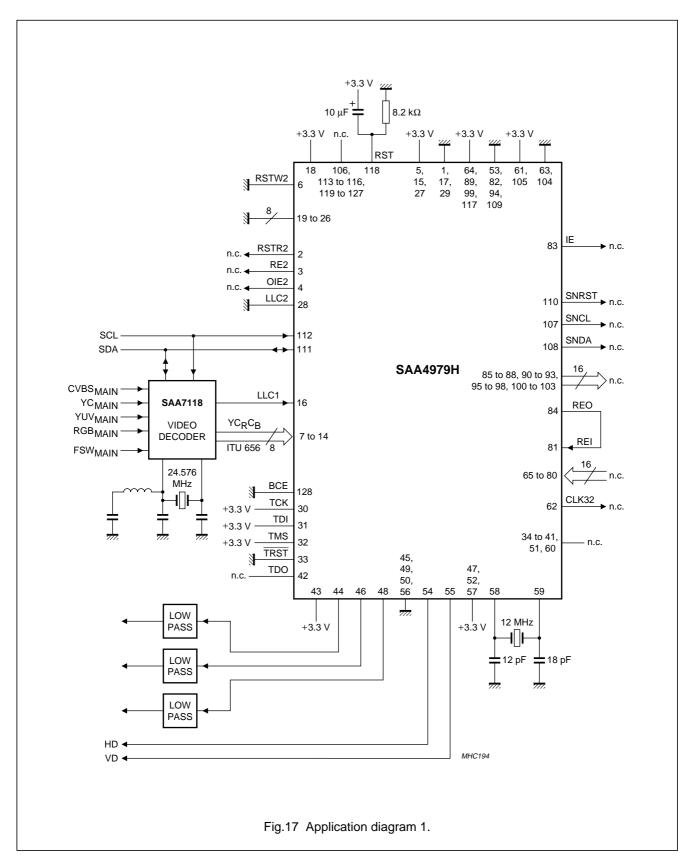




### Sample rate converter with embedded high quality dynamic noise reduction and expansion port

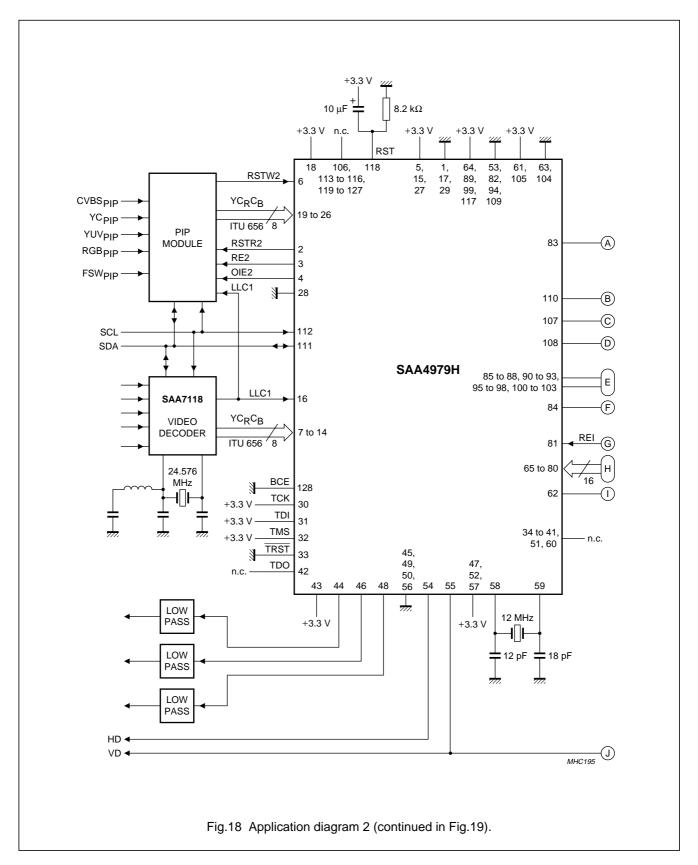
**SAA4979H** 

### 13 APPLICATION INFORMATION


The SAA4979H supports different scan-rate upconversion concepts. The simple one is illustrated in Fig.17. In this application no further components are needed for a 100 Hz conversion based on a field repetition algorithm (AABB mode).

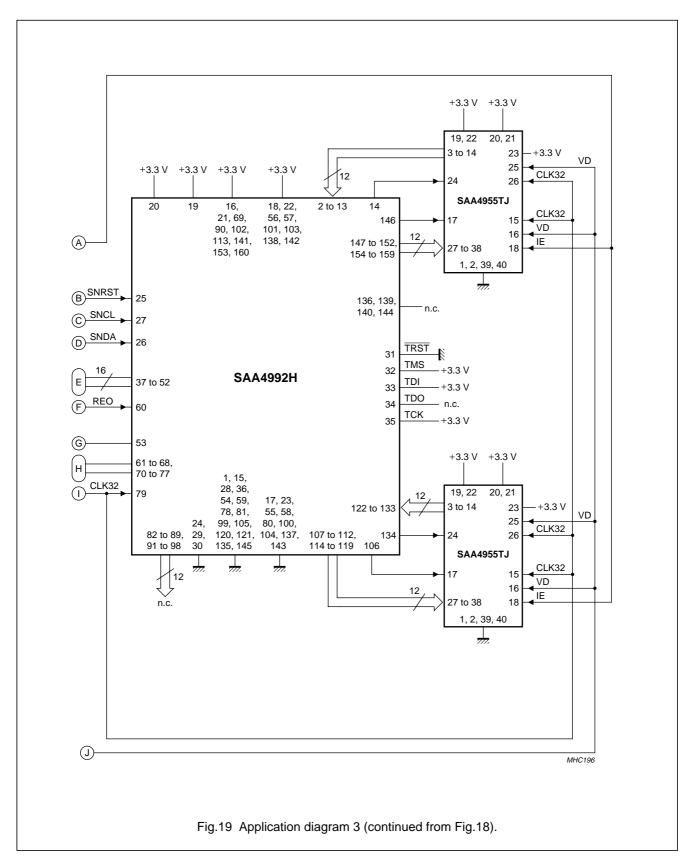
The system can be upgraded by a vector based motion estimation and compensation function. In this case the SAA4992H together with two field memories (SAA4955) are needed (see Figs 18 and 19 respectively).

In addition the SAA4979H supports field based and frame based picture-in-picture applications. To realize the full performance frame based PIP function a second video decoder (SAA7118) and two additional field memories are required (see Fig.20).

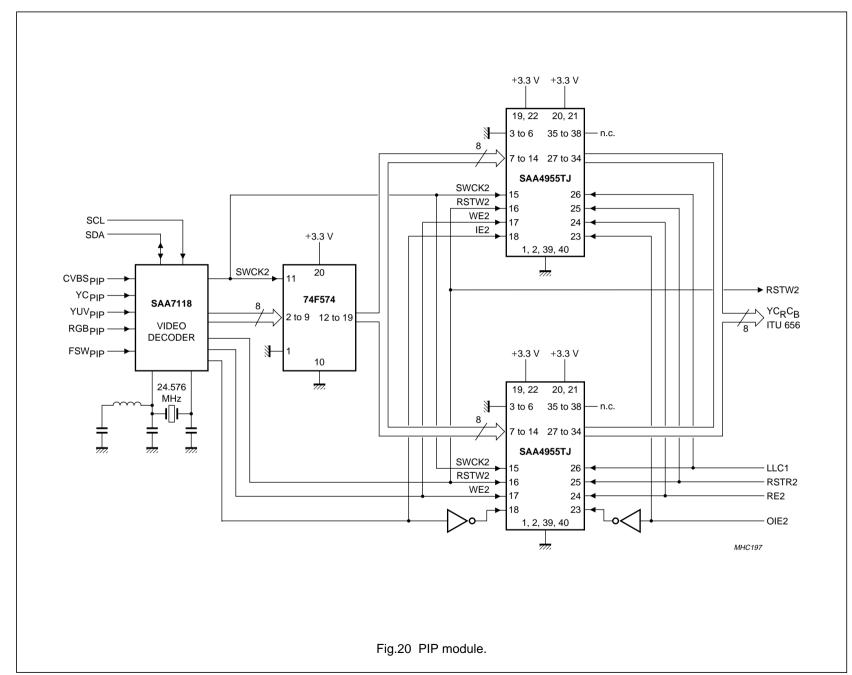

## Sample rate converter with embedded high quality dynamic noise reduction and expansion port

**SAA4979H** 



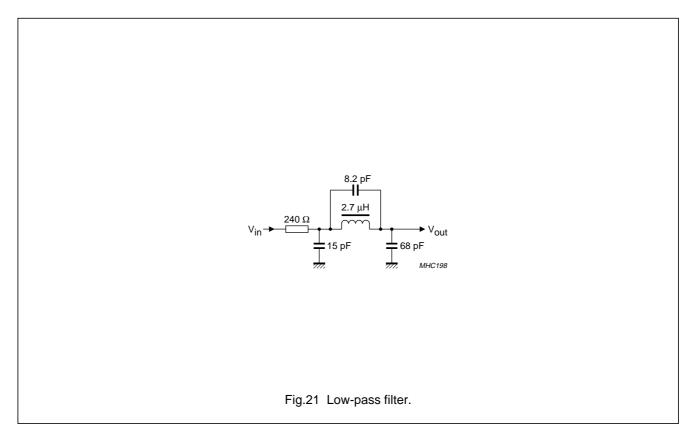

# Sample rate converter with embedded high quality dynamic noise reduction and expansion port

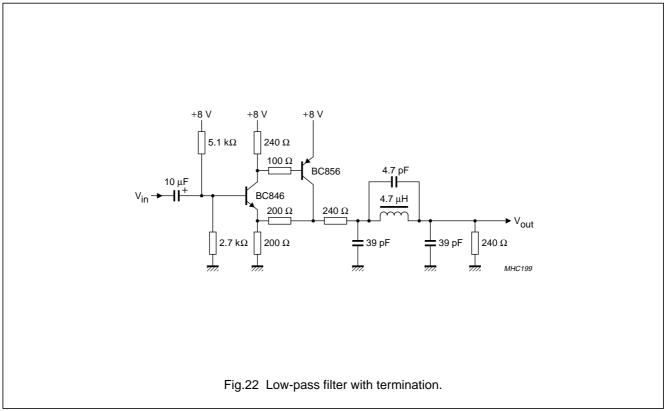
**SAA4979H** 




### Sample rate converter with embedded high quality dynamic noise reduction and expansion port

**SAA4979H** 





Product specification

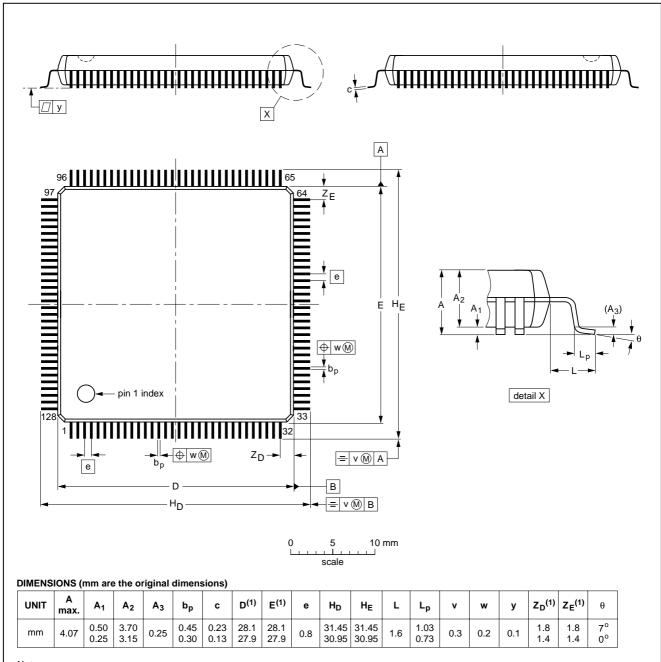


# Sample rate converter with embedded high quality dynamic noise reduction and expansion port

**SAA4979H** 






# Sample rate converter with embedded high quality dynamic noise reduction and expansion port

**SAA4979H** 

### 14 PACKAGE OUTLINE

QFP128: plastic quad flat package; 128 leads (lead length 1.6 mm); body 28 x 28 x 3.4 mm; high stand-off height

SOT320-2



#### Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

| OUTLINE<br>VERSION | REFERENCES |        |      |  | EUROPEAN   | ISSUE DATE                      |
|--------------------|------------|--------|------|--|------------|---------------------------------|
|                    | IEC        | JEDEC  | EIAJ |  | PROJECTION | ISSUE DATE                      |
| SOT320-2           | 134E13     | MS-022 |      |  |            | <del>99-12-27</del><br>00-01-19 |

### Sample rate converter with embedded high quality dynamic noise reduction and expansion port

**SAA4979H** 

#### 15 SOLDERING

### 15.1 Introduction to soldering surface mount packages

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "Data Handbook IC26; Integrated Circuit Packages" (document order number 9398 652 90011).

There is no soldering method that is ideal for all surface mount IC packages. Wave soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch SMDs. In these situations reflow soldering is recommended.

### 15.2 Reflow soldering

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several methods exist for reflowing; for example, convection or convection/infrared heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method.

Typical reflow peak temperatures range from 215 to 250 °C. The top-surface temperature of the packages should preferable be kept below 220 °C for thick/large packages, and below 235 °C for small/thin packages.

### 15.3 Wave soldering

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.

To overcome these problems the double-wave soldering method was specifically developed.

If wave soldering is used the following conditions must be observed for optimal results:

- Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
- For packages with leads on two sides and a pitch (e):
  - larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board;
  - smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board.

The footprint must incorporate solder thieves at the downstream end.

 For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Typical dwell time is 4 seconds at 250 °C. A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

### 15.4 Manual soldering

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to  $300\ ^{\circ}$ C.

When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C.

### Sample rate converter with embedded high quality dynamic noise reduction and expansion port

**SAA4979H** 

### 15.5 Suitability of surface mount IC packages for wave and reflow soldering methods

| PACKAGE <sup>(1)</sup>                                           | SOLDERING METHOD                  |                       |  |
|------------------------------------------------------------------|-----------------------------------|-----------------------|--|
| PACKAGE                                                          | WAVE                              | REFLOW <sup>(2)</sup> |  |
| BGA, LBGA, LFBGA, SQFP, TFBGA, VFBGA                             | not suitable                      | suitable              |  |
| HBCC, HBGA, HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, HVQFN, HVSON, SMS | not suitable <sup>(3)</sup>       | suitable              |  |
| PLCC <sup>(4)</sup> , SO, SOJ                                    | suitable                          | suitable              |  |
| LQFP, QFP, TQFP                                                  | not recommended <sup>(4)(5)</sup> | suitable              |  |
| SSOP, TSSOP, VSO                                                 | not recommended <sup>(6)</sup>    | suitable              |  |

#### **Notes**

- 1. For more detailed information on the BGA packages refer to the "(LF)BGA Application Note" (AN01026); order a copy from your Philips Semiconductors sales office.
- 2. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the "Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods".
- 3. These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the solder cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink on the top side, the solder might be deposited on the heatsink surface.
- 4. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
- 5. Wave soldering is suitable for LQFP, TQFP and QFP packages with a pitch (e) larger than 0.8 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.
- Wave soldering is suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.

## Sample rate converter with embedded high quality dynamic noise reduction and expansion port

**SAA4979H** 

#### 16 DATA SHEET STATUS

| DATA SHEET STATUS(1) | PRODUCT<br>STATUS <sup>(2)</sup> | DEFINITIONS                                                                                                                                                                                                                                                                                                            |
|----------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Objective data       | Development                      | This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.                                                                                                                            |
| Preliminary data     | Qualification                    | This data sheet contains data from the preliminary specification.  Supplementary data will be published at a later date. Philips  Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.                                   |
| Product data         | Production                       | This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A. |

#### **Notes**

- 1. Please consult the most recently issued data sheet before initiating or completing a design.
- 2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

### 17 DEFINITIONS

**Short-form specification** — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

### 18 DISCLAIMERS

Life support applications — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

# Sample rate converter with embedded high quality dynamic noise reduction and expansion port

**SAA4979H** 

### 19 PURCHASE OF PHILIPS I<sup>2</sup>C COMPONENTS



Purchase of Philips  $I^2C$  components conveys a license under the Philips'  $I^2C$  patent to use the components in the  $I^2C$  system provided the system conforms to the  $I^2C$  specification defined by Philips. This specification can be ordered using the code 9398 393 40011.

### Philips Semiconductors – a worldwide company

#### **Contact information**

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 40 27 24825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.

© Koninklijke Philips Electronics N.V. 2002

SCA74

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

753504/01/pp52

Date of release: 2002 May 28

Document order number: 9397 750 09561

Let's make things better.

Philips Semiconductors



