Signetics

74LS112, **S112** Flip-Flops

Dual J-K Edge-Triggered Flip-Flop Product Specification

Logic Products

DESCRIPTION

The '112 is a dual J-K negative edge-triggered flip-flop featuring individual J, K, Clock, Set and Reset inputs. The Set (\overline{S}_D) and Reset (\overline{R}_D) inputs, when LOW, set or reset the outputs as shown in the Function Table regardless of the levels at the other inputs.

A HIGH level on the Clock (\overline{CP}) input enables the J and K inputs and data will be accepted. The logic levels at the J and K inputs may be allowed to change while the \overline{CP} is HIGH and the flip-flop will perform according to the Function Table as long as minimum setup and hold times are observed. Output state changes are initiated by the HIGH-to-LOW transition of \overline{CP} .

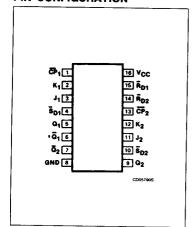
TYPE	TYPICAL f _{MAX}	TYPICAL SUPPLY CURRENT (TOTAL)
74LS112	45MHz	4mA
74S112	125MHz	15mA

ORDERING CODE

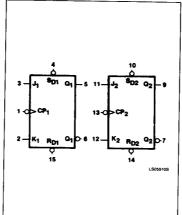
PACKAGES	COMMERCIAL RANGE V _{CC} = 5V ±5%; T _A = 0°C to +70°C
Plastic DIP	N74S112N, N74LS112N
Plastic SO	N74LS112D, N74S112D

NOTE:

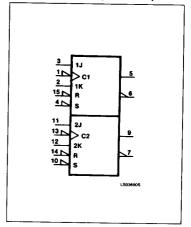
For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.


INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74\$	74LS
CP	Clock input	2Sul	4LSul
R _D , S _D	Reset and set inputs	3.5Sul	3LSul
J, K	Data inputs	1Sul	1LSul
Q, Q	Outputs	10Sul	10LSul

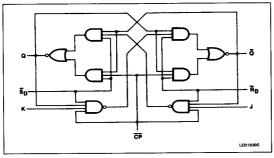

NOTE:

A 74 unit load (ul) is 50μ A IIH and -2.0mA IIL, and a 74LS unit load (LSul) is 20μ A IIH and -0.4mA IIL.


PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)



December 4, 1985

5-178

853-0452 81502

LOGIC DIAGRAM

FUNCTION TABLE

		INF	OUTPUTS				
OPERATING MODE	SD	R _D	CP	J	ĸ	Q	ā
Asynchronous set	L	Н	х	х	x	Н	L
Asynchronous reset (clear)	н	L	X	X	X	L	н
Undetermined	L	L	X	X	X	H	H
Toggle	Н	Н	1	h	h	١ā	q
Load "0" (reset)	Н	н	1	1	h	L	Н
Load "1" (set)	Н	н	↓	h	1	Н	L
Hold "no change"	Н	н	1	1	ı	q	q

- H = HIGH voltage level steady state.
- h = HIGH voltage level one set-up time prior to the HIGH-to-LOW Clock transition.
- _ = LOW voltage level steady state.
- I = LOW voltage level one set-up time prior to the HIGH-to-LOW Clock transition.
 - = Lower case letters indicate the state of the referenced output one set-up time prior to the HIGH-to-LOW Clock transition.
 - X = Don't care.
 - ↓ = HIGH-to-LOW Clock transition.

NOTE:

Both outputs will be HIGH while both \overline{S}_D and \overline{R}_D are LOW, but the output states are unpredictable if \overline{S}_D and \overline{R}_D go HIGH simultaneously.

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

-	PARAMETER	74LS	74S	UNIT
V _{CC}	Supply voltage	7.0	7.0	٧
V _{IN}	Input voltage	-0.5 to -7.0	-0.5 to +5.5	٧
In	Input current	-30 to +1	-30 to +5	mA
V _{OUT}	Voltage applied to output in HIGH output state	-0.5 to +V _{CC}	-0.5 to +V _{CC}	٧
TA	Operating free-air temperature range	0 to	0 to 70	

RECOMMENDED OPERATING CONDITIONS

PARAMETER			74LS			74S			
		Min	Nom	Max	Min	Nom	Max	UNIT	
Vcc	Supply voltage	4.75	5.0	5.25	4.75	5.0	5.25	٧	
ViH	HIGH-level input voltage	2.0			2.0			٧	
VIL	LOW-level input voltage			+0.8			+0.8	V	
l _{IK}	Input clamp current			-18			-18	mA	
Юн	HIGH-level output current			-400			-1000	μΑ	
loL	LOW-level output current			8			20	mA	
T _A	Operating free-air temperature	0		70	0		70	°C	

74LS112, S112

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

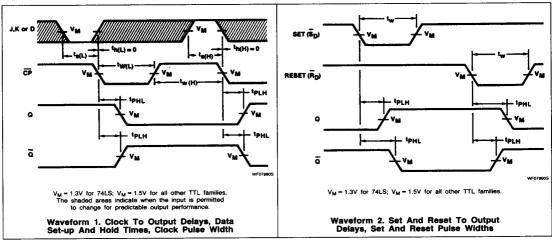
	PARAMETER	TE	TEST CONDITIONS ¹		74LS112			74S112			
	, Adams (Ell		TEST CONDITIONS			Typ ²	Max	Min	Typ ²	Max	UNI
V _{OH}	HIGH-level output voltage	V _{CC} = MIN, I _{OH} = MAX	V _{IH} = MI	N, V _{IL} = MAX,	2.7	3.4		2.7	3.4		V
V _{OL}	LOW-level output voltage	V _{CC} = MIN, V _{IH} = MIN,		_{DL} = MAX		0.35	0.5			0.5	V
		VIL = MAX		OL = 4mA (74LS)		0.25	0.4				V
VIK	Input clamp voltage	V _{CC} = MIN,	$I_1 = I_{1K}$				-1.5	T —		-1.2	V
			V ₁ = 5.5	v						1.0	mA
l _l	Input current at maximum	V MAY		J, K Inputs			0.1				mA
-1	input voltage	V _{CC} = MAX	$V_1 = 7.0V$	V Ā _D , Ā _D Inputs			0.3				mA
				CP Inputs			0.4				m/
			V _{CC} = MAX V ₁ = 2.7V	J, K Inputs			20			50	μΑ
ł _{ІН}	HIGH-level input current	V _{CC} = MAX		$V = \overline{R}_D$, \overline{S}_D Inputs			60			100	μA
				CP Inputs			80			100	μΑ
			V _I = 0.4V	J, K Inputs			-0.4				mA
				√ R _D , S _D Inputs			-0.8				mA
I _{IL}	LOW-level input current	V _{CC} = MAX		CP Inputs			-0.8				mA
	•		ĺ	J, K Inputs						-1.6	mΑ
			V _I = 0.5∨	\overline{R}_D , \overline{S}_D Inputs						-7	mΑ
				CP Inputs						-4	mA
los_	Short-circuit output current ³	V _{CC} = MAX			-20		-100	-40		-100	mΑ
lcc	Supply current ⁴ (total)	V _{CC} = MAX				4	8		15	50	mA

- 1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
- 2. All typical values are at $V_{CC} = 5V$, $T_A = 25$ °C.
- 3. los is tested with V_{OUT} = +0.5V and V_{CC} = V_{CC} MAX + 0.5V. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
- 4. With the Clock input grounded and all outputs open, I_{CC} is measured with the Q and \overline{Q} outputs HIGH in turn.

AC ELECTRICAL CHARACTERISTICS TA = 25°C, VCC = 5.0V

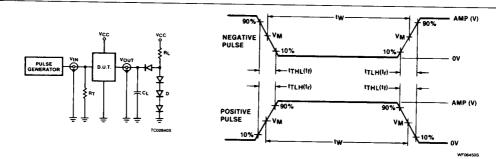
PARAMETER			74LS $\mathbf{C_L} = \mathbf{15pF}, \ \mathbf{R_L} = \mathbf{2k}\Omega$		74 S		
		TEST CONDITIONS			C _L = 15pF,	UNIT	
			Min	Max	Min	Max	
f _{MAX}	Maximum clock frequency	Waveform 1	30		80		MHz
t _{PLH} t _{PHL}	Propagation delay Clock to output	Waveform 1		20 30		7.0 7.0	ns
t _{PLH} t _{PHL}	Propagation delay \$\overline{S}_D\$ or \$\overline{R}_D\$ to output	Waveform 2		20 30		7.0 7.0	ns

NOTE:


Per industry convention, f_{MAX} is the worst case value of the maximum device operating frequency with no constraints on t_r, t_f, pulse width or duty cycle.

74LS112, S112

AC SET-UP REQUIREMENTS TA = 25°C, VCC = 5.0V


			74LS		7-		
	PARAMETER	TEST CONDITIONS	Min	Max	Min	Max	UNIT
t _W (H)	Clock pulse width (HIGH)	Waveform 1	20		6.0		ns
t _W (L)	Clock pulse width (LOW)	Waveform 1	13		6.5		ns
t _W (L)	Set or reset pulse width (LOW)	Waveform 2	25		8.0		ns
ts	Set-up time J or K to clock	Waveform 1	20		3.0		ns
th	Hold time J or K to clock	Waveform 1	0		0		ns

AC WAVEFORMS

74LS112, S112

TEST CIRCUITS AND WAVEFORMS

Test Circuit For 74 Totem-Pole Outputs

$V_M = 1.3V$ for 74LS; $V_M = 1.5V$ for all other TTL families. Input Pulse Definition

DEFINITIONS

 R_L = Load resistor to V_{CC} ; see AC CHARACTERISTICS for value. C_L = Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.

 R_T = Termination resistance should be equal to Z_{OUT} of Pulse Generators.

D = Diodes are 1N916, 1N3064, or equivalent.

t_{TLH}, t_{THL} Values should be less than or equal to the table entries.

FAMILY	INPUT PULSE REQUIREMENTS								
ramic 1	Amplitude	Rep. Rate	Pulse Width	tTLH	t _{THL}				
74	3.0V	1MHz	500ns	7ns	7ns				
74LS	3.0V	1MHz	500ns	15ns	6ns				
74S	3.0V	1MHz	500ns	2.5ns	2.5ns				