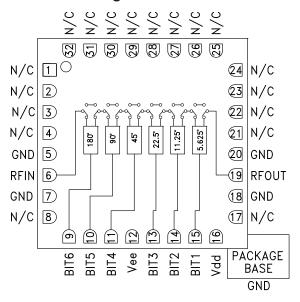


HMC642ALC5

00 0415


GaAs MMIC 6-BIT DIGITAL PHASE SHIFTER, 9 - 12.5 GHz

Typical Applications

The HMC642ALC5 is ideal for:

- EW Receivers
- Weather & Military Radar
- Satellite Communications
- Beamforming Modules
- Phase Cancellation

Functional Diagram

Features

Low RMS Phase Error: 4.5°
Low Insertion Loss: 7 dB
High Linearity: +35 dBm
Positive Control Logic

360° Coverage, LSB = 5.625°

32 Lead 5x5mm SMT Package: 25mm²

General Description

The HMC642ALC5 is a 6-bit digital phase shifter which is rated from 9 to 12.5 GHz, providing 360 degrees of phase coverage, with a LSB of 5.625 degrees. The HMC642ALC5 features very low RMS phase error of 4.5 degrees and extremely low insertion loss variation of ±0.4 dB across all phase states. This high accuracy phase shifter is controlled with positive control logic of 0/+5V. The HMC642ALC5 is housed in a compact 5x5 mm ceramic leadless SMT package and is internally matched to 50 Ohms with no external components.

Electrical Specifications

 T_{A} = +25° C, Vss= -5V, Vdd= +5V , control Voltage = 0/ +5V, 50 Ohm System

A				
Parameter	Min.	Тур.	Max.	Units
Frequency Range	9		12.5	GHz
Insertion Loss*		7	10	dB
Input Return Loss*		14		dB
Output Return Loss*		11		dB
Phase Error*		±10	+18/-10	deg
RMS Phase Error		4.5		deg
Insertion Loss Variation*		±0.4		dB
Input Power for 1 dB Compression		30		dBm
Input Third Order Intercept		35		dBm
Control Voltage Current		<250		μA
Bias Control Current		<12		mA

*Note: Major States Shown

HMC642A* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS 🖵

View a parametric search of comparable parts.

EVALUATION KITS

• HMC642A Evaluation Board

DOCUMENTATION

Data Sheet

 HMC642ALC5: GaAs MMIC 6-Bit Digital Phase Shifter, 9-12.5 GHz Data Sheet

DESIGN RESOURCES 🖳

- HMC642A Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- · Symbols and Footprints

DISCUSSIONS

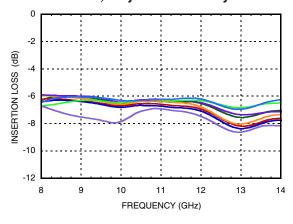
View all HMC642A EngineerZone Discussions.

SAMPLE AND BUY 🖳

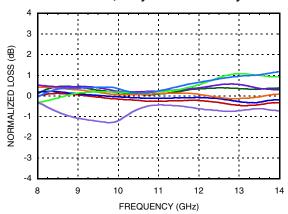
Visit the product page to see pricing options.

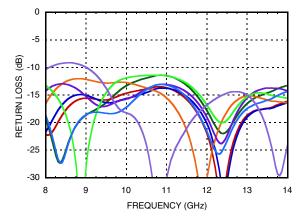
TECHNICAL SUPPORT 🖳

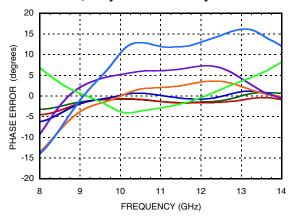
Submit a technical question or find your regional support number.

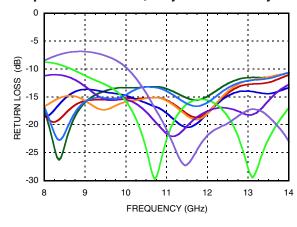

DOCUMENT FEEDBACK 🖳

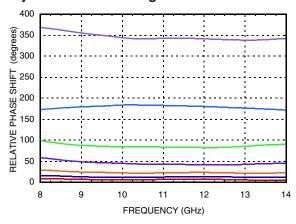
Submit feedback for this data sheet.



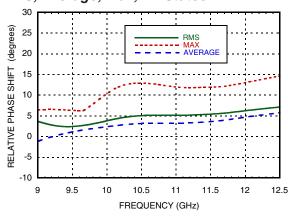

Insertion Loss, Major States Only

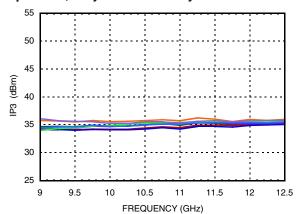

Normalized Loss, Major States Only

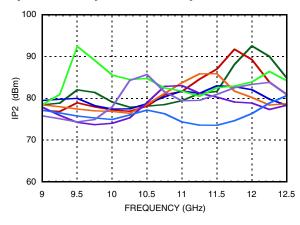

Input Return Loss, Major States Only

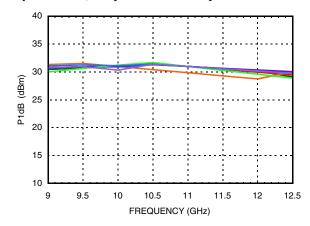

Phase Error, Major States Only

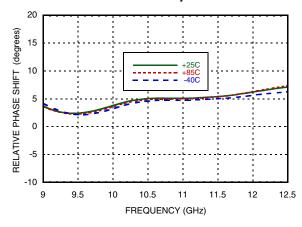
Output Return Loss, Major States Only

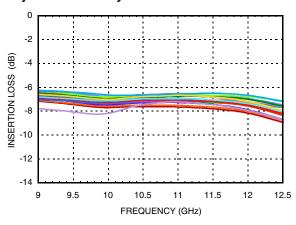

Relative Phase Shift Major States Including All Bits



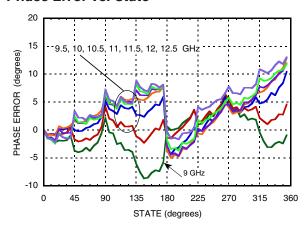

Relative Phase Shift, RMS, Average, Max, All States


Input IP3, Major States Only


Input IP2, Major States Only


Input P1dB, Major States Only

RMS Phase Error vs. Temperature


Insertion Loss vs. Temperature, Major States Only

Phase Error vs. State

Bias Voltage & Current

Vdd	ldd
5.0	5.6mA
Vss	Iss
-5.0	5.6mA

Control Voltage

State	Bias Condition	
Low (0)	0 to 0.2 Vdc	
High (1)	High (1) Vdd ±0.2 Vdc @ 35 μA Typ.	

Absolute Maximum Ratings

Input Power (RFIN)	29 dBm (T= +85 °C)	
Bias Voltage Range (Vdd)	-0.2 to +12.5V	
Bias Voltage Range (Vss) +0.2 to -12V		
Channel Temperature (Tc)	150 °C	
Thermal Resistance (channel to ground paddle)	190 °C/W	
Storage Temperature	-65 to +150 °C	
Operating Temperature -40 to +85 °C		
ESD Sensitivity (HBM)	Class1A Passed 250V	

Truth Table

Control Voltage Input					Phase Shift (Degrees)		
Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	RFIN - RFOUT	
0	0	0	0	0	0	Reference*	
1	0	0	0	0	0	5.625	
0	1	0	0	0	0	11.25	
0	0	1	0	0	0	22.5	
0	0	0	1	0	0	45.0	
0	0	0	0	1	0	90.0	
0	0	0	0	0	1	180.0	
1	1	1	1	1	1	354.375	

Any combination of the above states will provide a phase shift approximately equal to the sum of the bits selected. *Reference corresponds to monotonic setting

Outline Drawing

BOTTOM VIEW 0.197±.005 PIN 32 .014 \[0.36 \] .009 \[0.24 \] [5.00±.13] .013 [0.32] 32 25 PIN 1 \Box 24 \Box H642A 0.197±.005 [5.00±.13] \Box \square XXXX \Box .022 [0.56] [.017 [0.44] \Box \Box 17 16 .138 [3.50] EXPOSED LOT NUMBER SQUARE **GROUND** 0.044 [1.12] .161 [4.10] **PADDLE** 1. PACKAGE BODY MATERIAL: ALUMINA SEATING PLANE 2. LEAD AND GROUND PADDLE PLATING: 30-80 MICROINCHES GOLD OVER 50 MICROINCHES MINIMUM NICKEL. -c-3. DIMENSIONS ARE IN INCHES [MILLIMETERS]. 4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE

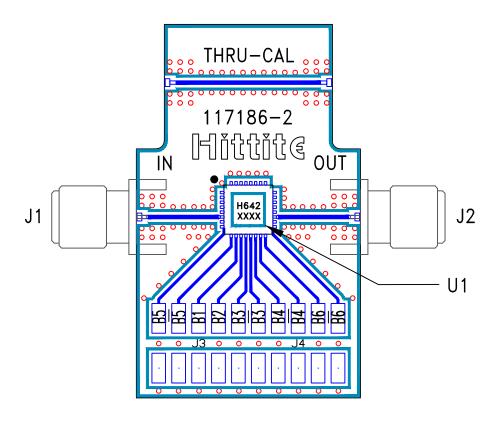
Package Information

- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm DATUM -C-
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 7. CLASSIFIED AS MOISTURE SENSITIVITY LEVEL (MSL) 1.

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [2]
HMC642ALC5	Alumina White	Gold over Nickel	MSL3 ^[1]	H642A XXXX

^[1] Max peak reflow temperature of 260 °C

Pin Descriptions


Pin Number	Function	Description	Interface Schematic
1 - 4, 8,17 21 - 32	N/C	No connection required. These pins may be connected to RF/DC ground without affecting performance.	
5, 7, 18, 20	GND	These pins and exposed ground paddle must be connected to RF/DC ground.	GND
6	RFIN	This port is DC coupled and matched to 50 Ohms.	RFIN O
9 - 11, 13 - 15	BIT6, BIT5, BIT4, BIT3, BIT2, BIT1	Control Input. See truth table and control voltage tables.	
12	Vss	Voltage supply.	
16	Vdd	Voltage supply.	
19	RFOUT	This port is DC coupled and matched to 50 Ohms.	○ RFOUT

^{[2] 4-}Digit lot number XXXX

Evaluation PCB

List of Materials for Evaluation PCB EV1HMC642ALC5 [1][3]

Item	Description	
J1 - J2	PCB Mount SMA RF Connector	
J3 - J4	Molex Header 2mm	
U1	HMC642ALC5 6-Bit Digital Phase Shifter	
PCB [2]	117186 Evaluation PCB	

- [1] Reference this number when ordering complete evaluation PCB
- [2] Circuit Board Material: Rogers 4350
- [3] Please refer to part's pin description and functional diagram for pin out assignments on evaluation board.

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.