Regarding the change of names mentioned in the document, such as Mitsubishi Electric and Mitsubishi XX, to Renesas Technology Corp.

The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself.

Note: Mitsubishi Electric will continue the business operations of high frequency & optical devices and power devices.

Renesas Technology Corp. Customer Support Dept. April 1, 2003

MITSUBISHI MICROCOMPUTERS

M37207MF-XXXSP/FP, M37207M8-XXXSP M37207EFSP/FP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

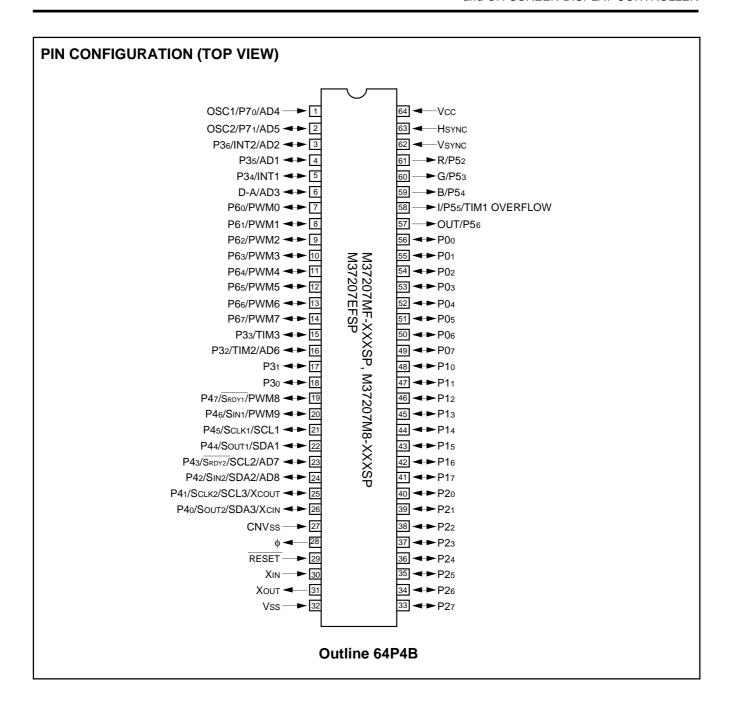
DESCRIPTION

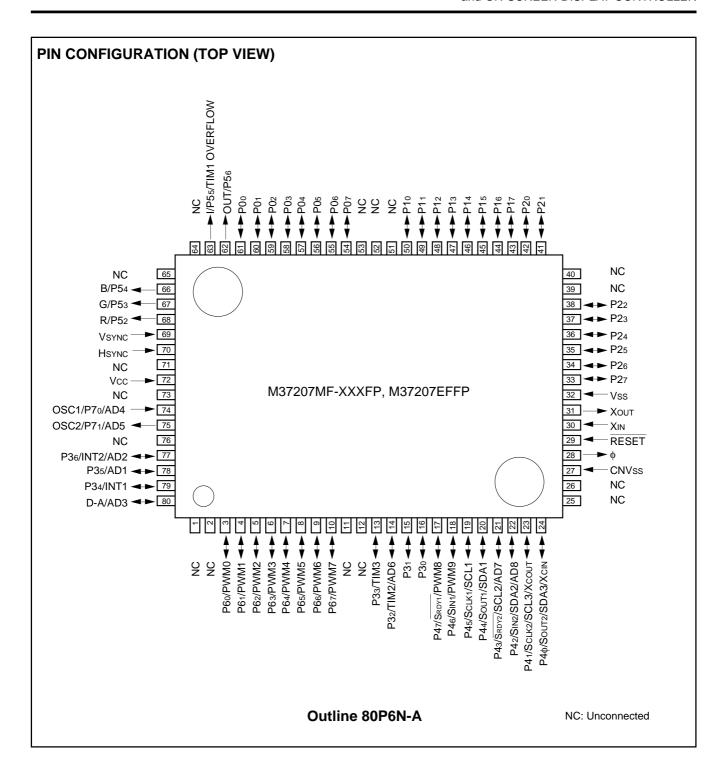
The M37207MF-XXXSP/FP and M37207M8-XXXSP are single-chip microcomputers designed with CMOS silicon gate technology. It is housed in a 64-pin shrink plastic molded DIP or a 80-pin plastic molded QFP.

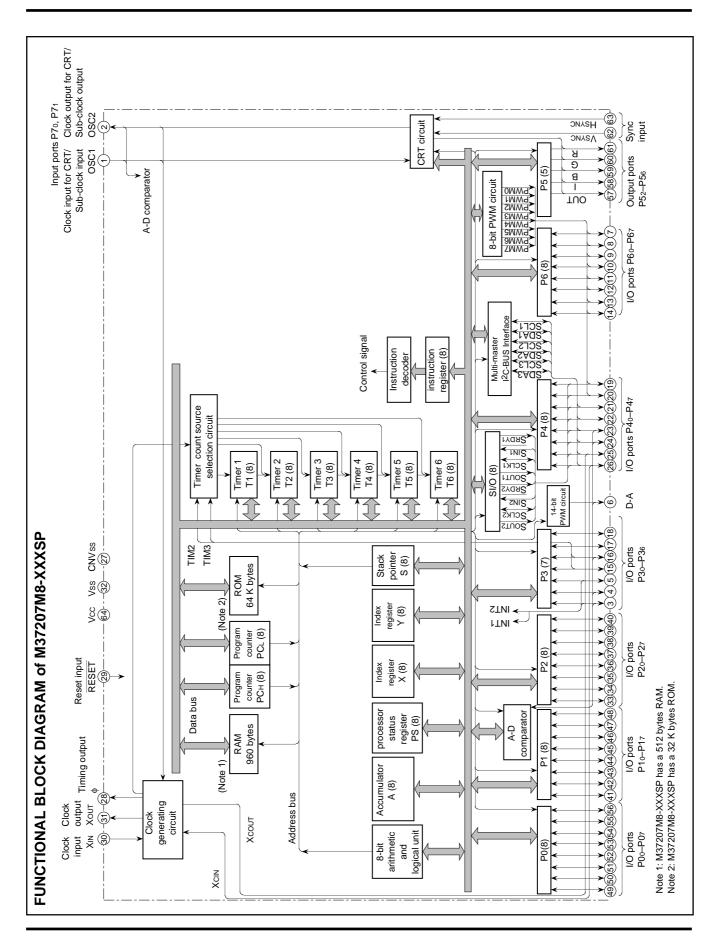
In addition to their simple instruction sets, the ROM, RAM and I/O addresses are placed on the same memory map to enable easy programming.

The M37207MF-XXXSP/FP has a PWM function and an OSD function, so it is useful for a channel selection system for TV. The features of the M37207EFSP/FP are similar to those of the M37207MF-XXXSP/FP except that these chips have a built-in PROM which can be written electrically. The difference between M37207MF-XXXSP/FP and M37207M8-XXXSP are the ROM size, RAM size, ROM size for display and kinds of character. Accordingly, the following descriptions will be for the M37207MF-XXXSP/FP unless otherwise noted.

FEATURES


	ns71
•	32K bytes (M37207M8-XXXSP)
	62K bytes (M37207MF-XXXSP/FP,
	M37207EFSP/FP)
RAM	512 bytes (M37207M8-XXXSP)
	960 bytes (M37207MF-XXXSP/FP,
	M37207EFSP/FP)
ROM correction	on memory64 bytes
ROM for displ	ay 8K bytes (M37207M8-XXXSP)
	12K bytes (M37207MF-XXXSP/FP,
	M37207EFSP/FP)
	ay144 bytes
Minimum instruction execut	
	0.5 μ s (at 8 MHz oscillation frequency)
	5 V ± 10 %
	15 types, 14 vectors
	6
Programmable I/O ports (Ports PO P1 P2 P2 P2)	s, P4, P6) 47
)
	56) 5
	4
•	


Multi-master I ² C-BUS interface1 (3 systems) Power dissipation
In high-speed mode
(at VCC = 5.5 V, 32 kHz oscillation frequency)
• A-D comparator (6-bit resolution) 8 channels
• PWM output circuit
Interrupt interval determination circuit
• ROM correction function
CRT display function
Number of display characters 24 characters X 3 lines
(16 lines maximum)
Kinds of characters 256 kinds (M37207M8-XXXSP)
384 kinds (M37207MF-XXXSP/FP,
M37207EFSP/FP)
Character display area12 X 16 dots
Kinds of character sizes4 kinds
Kinds of character colors (It can be specified by the character) maximum 15 kinds (R, G, B, I)
Kinds of character background colors (It can be specified by the character) maximum 7 kinds (R, G, B)
1/2-character unit color specification is possible.
Kinds of raster colors (maximum 15 kinds)
Display position
Horizontal 64 levels
Vertical
Bordering (horizontal and vertical)
Wipe function
Scanning line double count mode display is possible.
3


APPLICATION

ΤV

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

FUNCTIONS

	Parameter			Functions
Number of basic instruction	ons			71
Instruction execution time	•			$0.5\;\mathrm{ms}$ (the minimum instruction execution time, at 8 MHz oscillation frequency)
Clock frequency				8 MHz (maximum)
Memory size	ROM	M3720	7M8-XXXSP	32 K bytes
			MF-XXXSP/FP, 7EFSP/FP	64 K bytes
	RAM	M3720	7M8-XXXSP	512 bytes
			MF-XXXSP/FP, 7EFSP/FP	960 bytes
	ROM cor	rection i	memory	64 bytes
	CRT ROM	M3720	7M8-XXXSP	8K bytes
			MF-XXXSP/FP, 7EFSP/FP	12K bytes
	CRT RAM			144 bytes
Input/Output ports	P00-P07		I/O	8-bit X 1 (CMOS input/output structure)
	P10-P17		I/O	8-bit X 1 (CMOS input/output structure)
	P20-P27		I/O	8-bit X 1 (CMOS input/output structure)
	P30, P31		I/O	2-bit X 1 (CMOS input/output structure)
	P32-P36		I/O	5-bit X 1 (N-channel open-drain output structure, can be used as external clock input pins, A-D input pins, INT input pins)
	P40-P47		I/O	8-bit X1 (N-channel open-drain output structure, can be used as serial I/O pins, A-D input pins, PWM output pins, multi-master I ² C-BUS interface, sub-clock I/O pins)
	P52-P56		Output	5-bit X 1 (CMOS output structure, can be used as CRT output pins, an external clock output pin)
	P60-P67		I/O	8-bit X 1 (N-channel open-drain output structure, can be used as PWM output)
	P70, P70		Input	2-bit X1 (can be used as CRT display clock I/O pins, analog input pins)
Serial I/O				8-bit X1 (2 systems)
Multi-master I ² C-BUS inte	erface			1 (3 systems)
A-D comparator				8 channels (6-bit resolution)
PWM output circuit				14-bit X1, 8-bit X10
Timers				8-bit timer X 6
ROM correction function				32 bytes X 2
Subroutine nesting				128 levels (maximum)
Interrupt interval determin	nation circuit			1
Interrupt				External interrupt X2, Internal timer interrupt X6, Serial I/O interrupt X1, CRT interrupt X1, Multi-master I ² C-BUS interface interrupt X1, f(XIN)/4096 interrupt X1, VSYNC interrupt X1, BRK interrupt X1
Clock generating circuit				2 built-in circuits (externally connected to a ceramic resonator or a quartz- crystal oscillator)

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

FUNCTIONS (continued)

	Paramet	ter	Functions				
Power source volta	ige		5 V ± 10 %				
Power dissipation	In high-speed	CRT ON	165 mW typ. (at oscillation frequency f(XIN) = 8 MHz, fosc = 8 MHz)				
	mode	CRT OFF	82.5 mW typ. (at oscillation frequency f(XIN) = 8 MHz)				
	In low-speed mode	CRT OFF	0.33 mW typ. (at oscillation frequency fCLK = 32 kHz, f(XIN) = stopped)				
	In stop mode		1.1 mW (maximum)				
Operating tempera	ture range		-10 °C to 70 °C				
Device structure			CMOS silicon gate process				
Package	M37207MF-XX	XSP, M37207M8-XXXSP	64-pin shrink plastic molded DIP				
	M37207EFSP						
	M37207MF-XX	XFP, M37207EFFP	80-pin plastic molded QFP				
	Number of dis	play characters	24 characters X3 lines (maximum 16 lines by software)				
CRT display	Character disp	olay area	12 X16 dots				
function	Kinds of	M37207M8-XXXSP	256 Kinds				
	characters	M37207MF-XXXSP/FP, M37207EFSP/FP	384 Kinds				
	Kinds of chara	cter sizes	4 kinds				
	Kinds of chara	cter colors	Maximum 15 kinds (R, G, B, I); can be specified by the character				
	Display position (h	norizontal, vertical)	64 levels (horizontal) X 128 levels (vertical)				

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

PIN DESCRIPTION

Pin	Name	Input/ Output	Functions
Vcc, Vss	Power source		Apply voltage of 5 V \pm 10 % (typical) to Vcc and AVcc, and 0 V to Vss.
CNVss	CNVss		Connected to Vss.
RESET	Reset input	Input	To enter the reset state, the reset input pin must be kept at a "L" for 2 ms or more (under normal Vcc conditions). If more time is needed for the quartz-crystal oscillator to stabilize, this "L" condition should be maintained for the required time.
XIN	Clock input	Input	This chip has an internal clock generating circuit. To control generating frequency, an external ceramic resonator or a quartz-crystal oscillator is connected between pins XIN and
Хоит	Clock output	Output	XOUT. If an external clock is used, the clock source should be connected to the XIN pin and the XOUT pin should be left open.
P00-P07	I/O port P0	I/O	Port P0 is an 8-bit I/O port with direction register allowing each I/O bit to be individually programmed as input or output. At reset, this port is set to input mode. The output structure is CMOS output. See notes at end of table for full details of port P0 functions.
P10-P17	I/O port P1	I/O	Port P1 is an 8-bit I/O port and has basically the same functions as port P0. The output structure is CMOS output.
P20-P27	I/O port P2	I/O	Port P2 is an 8-bit I/O port and has basically the same functions as port P0. The output structure is CMOS output.
P30, P31	I/O port P3	I/O	Ports P30, P31 are 2-bit I/O ports and have basically the same functions as port P0. The output structure is CMOS output.
P32/TIM2/ AD6,	I/O port P3	I/O	Ports P32–P36 are 5-bit I/O ports and have basically the same functions as port P0. The output structure is N-channel open-drain output.
P33/TIM3,	Analog input	Input	Pins P32, P35, P36 are also used as analog input pins AD6, AD1 and AD2 respectively.
P34/INT1, P35/AD1,	External clock input	Input	Pins P32, P33 are also used as external clock input pins TIM2, TIM3 respectively.
P36/INT2/ AD2	External interrupt input	Input	Pins P34, P36 are also used as external interrupt input pins INT1, INT2.
P40/SOUT2/ SDA3/XCIN,	I/O port P4	I/O	Port P4 is an 8-bit I/O port and has basically the same functions as port P0. The output structure is N-channel open-drain output.
P41/SCLK2/ SCL3/	Serial I/O data input/output	I/O	Pins P40, P42, P44, P46 are also used as serial I/O data input/output pins Sout2, SIN2, Sout1, SiN1 respectively. The output structure is N-channel open-drain output.
XCOUT, P42/ SIN2/SDA2/ AD8,	Serial I/O synchro- nous clock input/ output	I/O	Pins P41, P45 are also used as serial I/O synchronous clock input/output pins Sclk2, Sclk1 respectively.
P43/SRDY2/ SCL2/AD7,	Serial I/O receive enable signal output	Output	Pins P43, P47 are also used as serial I/O receive enable signal output pins SRDY2, SRDY1 respectively. The output structure is N-channel open-drain output.
P44/SOUT1/ SDA1, P45/SCLK1/	Multi-master I ² C- BUS interface	I/O	Pins P40–P45 are also used as SDA3, SCL3, SDA2, SCL2, SDA1, SCL1 respectively when multi-master I ² C-BUS interface is used. The output structure is N-channel opendrain output.
SCL1,	Sub-clock input	Input	Pin P40 is also used as sub-clock input pin Xcin.
P46/SIN1/ PWM9,	Sub-clock output	Output	Pin P4₁ is also used as sub-clock output pin Xcout. The output structure is N-channel open-drain output.
P47/SRDY1/	Analog input	Input	Pins P42, P43 are also used as analog input pins AD8, AD7 respectively.
PWM8	PWM output	Output	Pins P46, P47 are also used as PWM output pins PWM9, PWM8 respectively. The output structure is N-channel open-drain output.

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

PIN DESCRIPTION (continued)

Pin	Name	Input/ Output	Functions
R/P52, G/P53,	Output port P5	Output	Ports P52–P56 are 5-bit output ports. The output structure is CMOS output.
B/P54, I/P55/TIM1	CRT output	Output	Pins P52–P56 are also used as CRT output pins R, G, B, I, OUT respectively. The output structure is CMOS output.
OVERFLOW, OUT/P56	Timer 1 overflow signal output	Output	Pin P55 is also used as timer 1 overflow signal output pin TIM1 OVERFLOW. The output structure is CMOS output.
P60/PWM- P67/PWM7	I/O port P6	I/O	Port P6 is an 8-bit I/O port and has basically the same functions as port P0. The output structure is N-channel open-drain output.
	PWM output	Output	Pins P60–P67 are also used as PWM output pins PWM0–PWM7. The output structure is CMOS output.
OSC1/P70/	Input port P7	Input	Ports P70, P71 are 2-bit input port.
AD4, OSC2/P71/ AD5	Clock input for CRT display	Input	Pin P7 ₀ is also used as CRT display clock input pin OSC1.
	Clock output for CRT display	Output	Pin P71 is also used as CRT display clock output pin OSC2. The output structure is CMOS output.
	Analog input	Input	Pins P70, P71 are also used as analog input pins AD4, AD5 respectively.
HSYNC	HSYNC input	Input	This is a horizontal synchronous signal input for CRT display.
VSYNC	VSYNC input	Input	This is a vertical synchronous signal input for CRT display.
f	Timing output	Output	This is a timing output pin. This pin has reset-out output function. The output structure is CMOS output.
D-A/AD3	DA output	Output	This is an output pin for 14-bit PWM.
	Analog input	Input	The D-A pin is also used as analog input pin AD3.

Note: As shown in the memory map (Figure 5), port P0 is accessed as a memory at address 00C016 of zero page. Port P0 has the port P0 direction register (address 00C116 of zero page) which can be used to program each bit as an input ("0") or an output ("1"). The pins programmed as "1" in the direction register are output pins. When pins are programmed as "0," they are input pins. When pins are programmed as output pins, the output data are written into the port latch and then output. When data is read from the output pins, the output pin level is not read but the data of the port latch is read. This allows a previously-output value to be read correctly even if the output "L" voltage has risen, for example, because a light emitting diode was directly driven. The input pins float, so the values of the pins can be read. When data is written into the input pin, it is written only into the port latch, while the pin remains in the floating state.

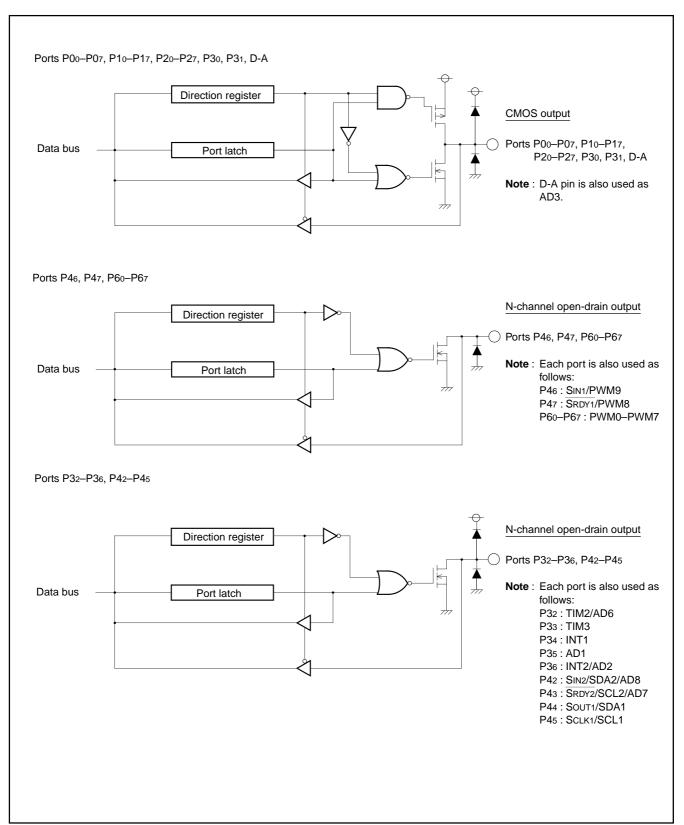


Fig. 1. I/O Pin Block Diagram (1)

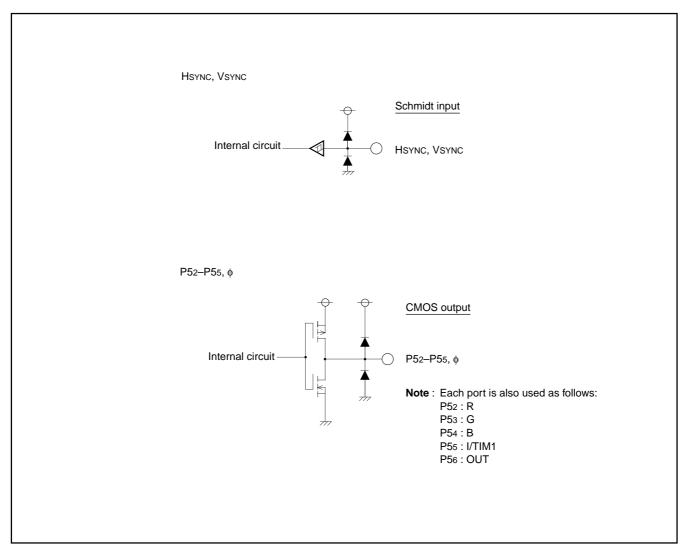


Fig. 2. I/O Pin Block Diagram (2)

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

FUNCTIONAL DESCRIPTION Central Processing Unit (CPU)

This microcomputer uses the standard 740 Family instruction set. Refer to the table of 740 Family addressing modes and machine instructions or the SERIES 740 <Software> User's Manual for details on the instruction set.

Machine-resident 740 Family instructions are as follows:

The FST, SLW instruction cannot be used.

The MUL, DIV, WIT and STP instructions can be used.

CPU Mode Register

The CPU mode register contains the stack page selection bit and internal system clock selection bit. The CPU mode register is allocated at address 00FB₁₆.

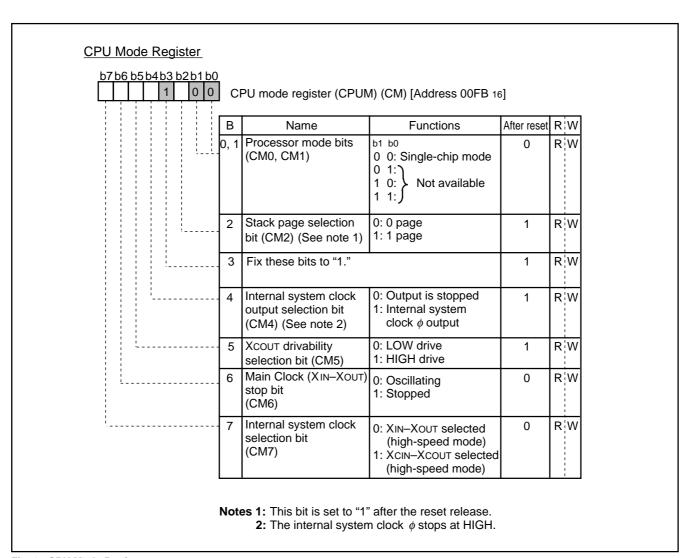


Fig. 3. CPU Mode Register

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

MEMORY

Special Function Register (SFR) Area

The special function register (SFR) area in the zero page contains control registers such as I/O ports and timers.

RAM

RAM is used for data storage and for stack area of subroutine calls and interrupts.

ROM

ROM is used for storing user programs as well as the interrupt vector area.

RAM for Display

RAM for display is used for specifying the character codes and colors to display.

ROM for Display

ROM for display is used for storing character data.

Interrupt Vector Area

The interrupt vector area contains reset and interrupt vectors.

Zero Page

The 256 bytes from addresses 000016 to 00FF16 are called the zero page area. The internal RAM and the special function registers (SFR) are allocated to this area.

The zero page addressing mode can be used to specify memory and register addresses in the zero page area. Access to this area with only 2 bytes is possible in the zero page addressing mode.

Special Page

The 256 bytes from addresses FF0016 to FFFF16 are called the special page area. The special page addressing mode can be used to specify memory addresses in the special page area. Access to this area with only 2 bytes is possible in the special page addressing mode.

ROM Correction Memory (RAM)

This is used as the program area for ROM correction.

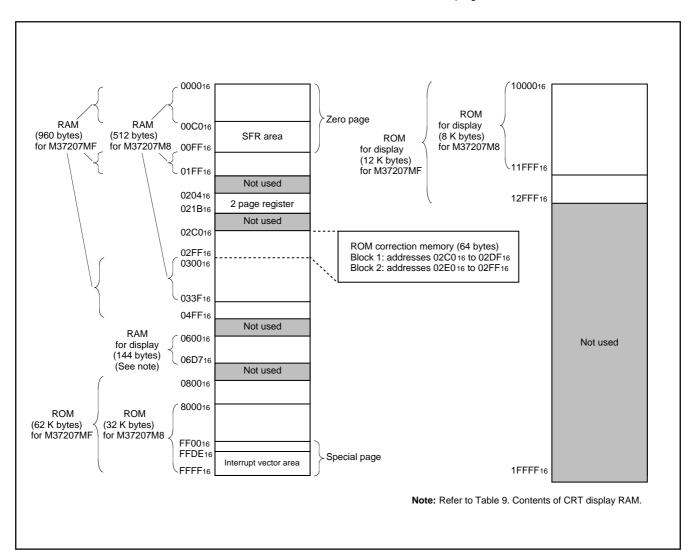


Fig. 4. Memory Map

■SFR Area (addresses C0 ₁₆ t	o DF16)	
· ·	< Bit allocation >	<state after="" immediately="" reset=""></state>
	□: _{>}	0 : "0" immediately after reset
	Function bit	
		1 : "1" immediately after reset
	: No function bit	? : Undefined immediately
	0 : Fix this bit to "0" (do not write "1")	after reset
	1 : Fix this bit to "1"	
	(do not write "0")	
Address Register	Bit allocation	State immediately after reset b0
C0 ₁₆ Port P0 (P0)	b7 b0	?
C1 ₁₆ Port P0 direction register (D0)		0016
C2 ₁₆ Port P1 (P1)		?
C3 ₁₆ Port P1 direction register (D1)		0016
C4 ₁₆ Port P2 (P2)		?
C5 ₁₆ Port P2 direction register (D2)		0016
C6 ₁₆ Port P3 (P3)		0 ? ? ? ? ? ? ?
		0016
C716 Port P3 direction register (D3)		?
C8 ₁₆ Port P4 (P4) C9 ₁₆ Port P4 direction register (D4)		?
CA ₁₆ Port P5 (P5)		0 7 7 7 7 7 7 7
CB ₁₆ Port P5 control register (D5)		0016
CC16 Port P6 (P6)		?
		0016
CD ₁₆ Port P6 direction register (D6)		?
CE ₁₆ DA-H register (DA-H)		
CF ₁₆ DA-L register (DA-L)		?
D0 ₁₆ PWM0 register (PWM0)		?
D1 ₁₆ PWM1 register (PWM1)		?
D2 ₁₆ PWM2 register (PWM2)		?
D3 ₁₆ PWM3 register (PWM3)		?
D416 PWM4 register (PWM4)	PW7 PW6 PW5 PW4 PW3 PW2 PW1 PW0	
D5 ₁₆ PWM output control register 1 (PW)	PN4 PN3 PN2 PN1 PN0	
D6 ₁₆ PWM output control register 2 (PN)	FIN4 FIN3 FIN2 FIN1 FIN0	0016
D716 Interrupt interval determination register (??)	RE5 RE4 RE3 RE2 RE1 RE0	· · · · · · · · · · · · · · · · · · ·
D816 Interrupt interval determination control register (RE)	D7 D6 D5 D4 D3 D2 D1 D0	0016
D916 I ² C data shift register (S0)	SAD6 SAD5 SAD4 SAD3 SAD2 SAD1 SAD0 RBW	0016
DA ₁₆ I ² C address register (S0D)	MST TRX BB PIN AL AAS ADO LRB	
DB16 I ² C status register (S1)	PSELA PSELO 10BIT AL S. ESO PG3 PG4 PG9	0 0 0 1 0 0 7
DC16 I ² C control register (S1D)	ACK ACK FAST MODE CCR4 CCR3 CCR2 CCR1 CCR0	0016
DD16 I ² C clock control register (S2)		0016
DE16 Serial I/O mode register (SM)	SM6 SM5 0 SM3 SM2 SM1 SM0	7
DF ₁₆ Serial I/O regsiter (SIO)		!

Fig. 5. Memory Map of Special Function Register (SFR)

■ SFR Area (addresses	E0 ₁₆ to FF ₁₆)	
	<bit allocation=""> < State immediate</bit>	ely after reset >
	:)	tely after reset
	Function bit	tely after reset
	: No function bit	mmediately
	0 : Fix this bit to "0" after reset	,
	(do not write "1")	
	1 : Fix this bit to "1" (do not write "0")	
Address Register	Bit allocation State immedi	ately after reset
E0 ₁₆ Horizontal register (HR)		0016
E1 ₁₆ Vertical register 1 (CV1)	CV16 CV15 CV14 CV13 CV12 CV11 CV10 0 ? ? ?	
E2 ₁₆ Vertical register 2 (CV2)	CV26 CV25 CV24 CV23 CV22 CV21 CV20 0 ? ? ?	
E3 ₁₆ Vertical register 3 (CV3)	CV36 CV35 CV34 CV33 CV32 CV31 CV30 0 ? ? ?	
E4 ₁₆ Character size register (CS)	CS7	
E516 Border selection register (MD)	MD31 MD30 MD21 MD20 MD11 MD10 0 0 ? ?	? ? ? ?
E616 Color register 0 (CO0)	C007 C006 C005 C004 C003 C002 C001 C000 (0016
E7 ₁₆ Color register 1 (CO1)	CO17 CO16 CO15 CO14 CO13 CO12 CO11 CO11 (0016
E8 ₁₆ Color register 2 (CO2)	CO27 CO26 CO25 CO24 CO23 CO22 CO21 CO22 (0016
E9 ₁₆ Color register 3 (CO3)	CO37 CO36 CO35 CO34 CO33 CO32 CO31 CO33 (0016
EA ₁₆ CRT control register 1 (CC)	0 CC6 CC5 CC4 CC3 CC2 CC1 CC0	0016
EB ₁₆ Display block counter (CBC)		0016
EC ₁₆ CRT port control register (CRTP)	B G R I R/G/B VSYC HSYC (0016
ED ₁₆ Wipe mode register (SL)	SL6 SL5 SL4 SL3 SL2 SL1 SL0 (0016
EE ₁₆ Wipe start register (??)		0016
EF ₁₆ A-D control register 1 (ADM)	ADM4 ADM2ADM1ADM0 0 0 0 ?	0 0 0 0
F0 ₁₆ Timer 1 (TM1)	F	F ₁₆
F1 ₁₆ Timer 2 (TM2))7 16
F2 ₁₆ Timer 3 (TM3)	F	FF16
F3 ₁₆ Timer 4 (TM4)		0716
F4 ₁₆ Timer mode register 1 (TMR1)		0016
F5 ₁₆ Timer mode register 2 (TMR2)	TMR27 TMR26 TMR25 TMR24 TMR23 TMR22 TMR21 TMR20	0016
F6 ₁₆ PWM5 register (PWM5)		?
F7 ₁₆ PWM6 register (PWM6)		?
F8 ₁₆ PWM7 register (PWM7)		?
F9 ₁₆ PWM8 register (PWM8)		?
FA ₁₆ PWM9 register (PWM9)		?
FB ₁₆ CPU mode register (CPUM)	CM7 CM6 CM5 1 1 CM2 0 0 0 0 1 1	1 1 0 0
FC ₁₆ Interrupt request register 1 (IREQ1)		0016
FD ₁₆ Interrupt request register 2 (IREQ2)		0016
FE ₁₆ Interrupt control register 1 (ICON1)		0016
FF16 Interrupt control register 2 (ICON2)	TM56C 0 TM56E MSE 0 SIE IT2E IT1E	0016

Fig. 6. Memory Map of Special Function Register (SFR)

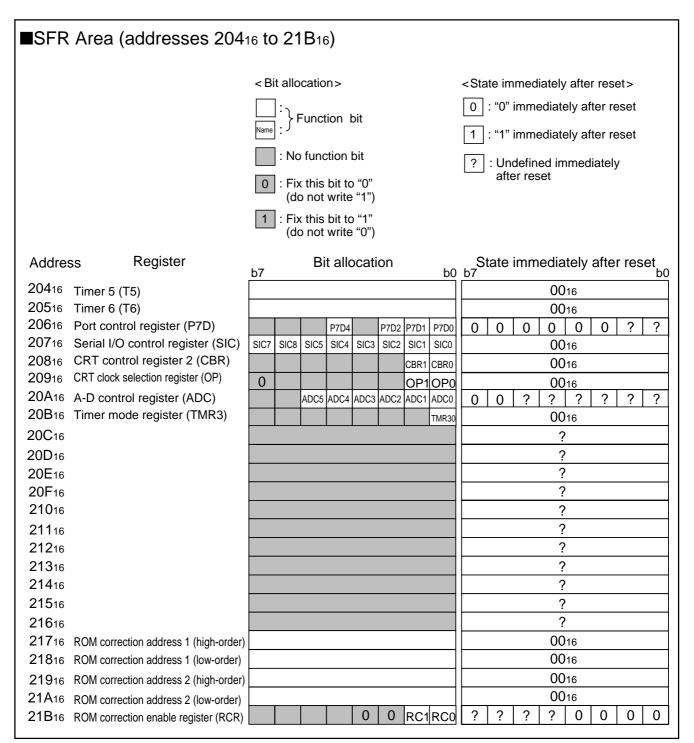


Fig. 7. Memory Map of 2 Page Register

	<bit allocation=""></bit>	<state after="" immediately="" reset=""></state>					
	:) Formation his	0 : "0" immediately after reset					
	Name : Function bit	1 : "1" immediately after reset					
	: No function bit	? : Undefined immediately					
	0 : Fix this bit to "0" (do not write "1")	after reset					
	1 : Fix this bit to "1" (do not write "0")						
Register	Bit allocation	State immediately after reset					
Processor status register (PS) Program counter (PCH)	N V T B D I Z C	? ? ? ? ? 1 ? ? Contents of address FFFF ₁₆					
Program counter (PCL)		Contents of address FFFE ₁₆					

Fig. 8. Internal State of Processor Status Register and Program Counter at Reset

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

INTERRUPTS

Interrupts can be caused by 15 different sources consisting of 3 external, 10 internal, 1 software, and reset. Interrupts are vectored interrupts with priorities as shown in Table 1. Reset is also included in the table because its operation is similar to an interrupt.

When an interrupt is accepted,

- (1) The contents of the program counter and processor status register are automatically stored into the stack.
- (2) The interrupt disable flag I is set to "1" and the corresponding interrupt request bit is set to "0."
- (3) The jump destination address stored in the vector address enters the program counter.

Other interrupts are disabled when the interrupt disable flag is set to "1."

All interrupts except the BRK instruction interrupt have an interrupt request bit and an interrupt enable bit. The interrupt request bits are in interrupt request registers 1 and 2 and the interrupt enable bits are in interrupt control registers 1 and 2. Figures 10 to 13 show the interrupt-related registers.

Interrupts other than the BRK instruction interrupt and reset are accepted when the interrupt enable bit is "1," interrupt request bit is "1," and the interrupt disable flag is "0." The interrupt request bit can be set to "0" by a program, but not set to "1." The interrupt enable bit can be set to "0" and "1" by a program.

Reset is treated as a non-maskable interrupt with the highest priority. Figure 9 shows interrupt control.

Interrupt Causes

(1) VSYNC and CRT interrupts

The VSYNC interrupt is an interrupt request synchronized with the vertical sync signal.

The CRT interrupt occurs after character block display to the CRT is completed.

(2) INT1, INT2 interrupts

With an external interrupt input, the system detects that the level of a pin changes from "L" to "H" or from "H" to "L," and generates an interrupt request. The input active edge can be selected by bits 3 and 4 of the interrupt interval determination control register (address 00D816): when this bit is "0," a change from "L" to "H" is detected; when it is "1," a change from "H" to "L" is detected. Note that all bits are cleared to "0" at reset.

- (3) Timer 1, 2, 3 and 4 interrupts

 An interrupt is generated by an overflow of timer 1, 2, 3 or 4.
- (4) Serial I/O interrupt This is an interrupt request from the clock synchronous serial I/O function.

Table 1. Interrupt Vector Addresses and Priority

Interrupt Source	Priority	Vector Addresses	Remarks
Reset	1	FFFF16, FFFE16	Non-maskable
CRT interrupt	2	FFFD16, FFFC16	
INT1 interrupt	3	FFFB16, FFFA16	Active edge selectable
INT2 interrupt	4	FFF916, FFF816	Active edge selectable
Timer 4 interrupt	5	FFF716, FFF616	
f(XIN)/4096 interrupt	6	FFF516, FFF416	
VSYNC interrupt	7	FFF316, FFF216	Active edge selectable
Timer 3 interrupt	8	FFF116, FFF016	
Timer 2 interrupt	9	FFEF16, FFEE16	
Timer 1 interrupt	10	FFED16, FFEC16	
Serial I/O interrupt	11	FFEB16, FFEA16	
Multi-master I ² C-BUS interface interrupt	12	FFE716, FFE616	
Timer 5 · 6 interrupt	13	FFE316, FFE216	Source switch by software (See note)
BRK instruction interrupt	14	FFDF16, FFDE16	Non-maskable (software interrupt)

Note: Switching a source during a program causes an unnecessary interrupt. Therefore, set a source at initializing of program.

- (5) f(XIN)/4096 interrupt
 - This interrupt occurs regularly with a f(XIN)/4096 period. Set bit 0 of the PWM output control register 1 to "0."
- (6) Multi-master I²C-BUS interface interrupt This is an interrupt request related to the multi-master I²C-BUS interface.
- (7) Timer 5 · 6 interrupt
 An interrupt is generated by an overflow of timer 5 or 6. Their priorities are same, and can be switched by software.
- (8) BRK instruction interrupt This software interrupt has the least significant priority. It does not have a corresponding interrupt enable bit, and it is not affected by the interrupt disable flag I (non-maskable).

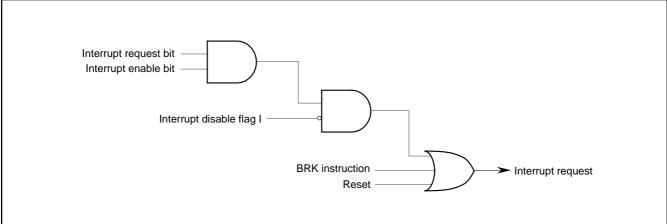


Fig. 9. Interrupt Control

b7b6b5b4b3b2b1b0	1					
] In	terrupt request register 1	(IREQ1) [Address 00FC 16]			
	В	Name	Functions	After reset	R	W
	0	Timer 1 interrupt request bit (TM1R)	0 : No interrupt request issued 1 : Interrupt request issued	0	R	*
	1	Timer 2 interrupt request bit (TM2R)	0 : No interrupt request issued 1 : Interrupt request issued	0	R	*
	2	Timer 3 interrupt request bit (TM3R)	0 : No interrupt request issued 1 : Interrupt request issued	0	R	*
	3	Timer 4 interrupt request bit (TM4R)	0 : No interrupt request issued 1 : Interrupt request issued	0	R	*
	4	CRT interrupt request bit (CRTR)	0 : No interrupt request issued 1 : Interrupt request issued	0	R	*
	5	VSYNC interrupt request bit (VSCR)	0 : No interrupt request issued 1 : Interrupt request issued	0	R	*
	6	Multi-master I ² C-BUS interface interrupt request bit (IICR)	0 : No interrupt request issued 1 : Interrupt request issued	0	R	*
l	7	Nothing is assigned. Th When this bit is read ou	s bit is a write disable bit.	0	R	

Fig. 10. Interrupt Request Register 1

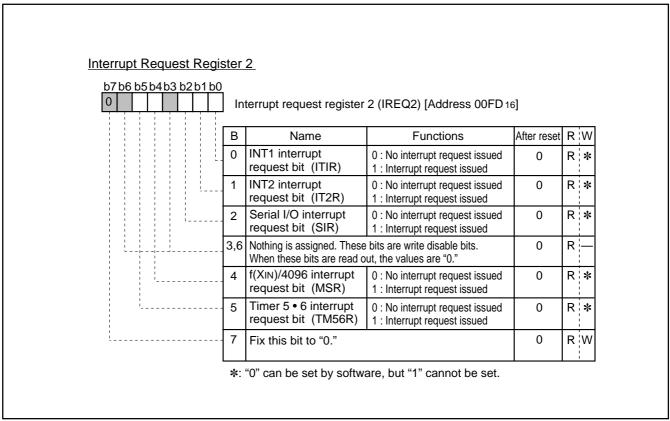


Fig. 11. Interrupt Request Register 2

Interrupt Control Regist	er 1	<u>L</u>			
b7 b6 b5 b4 b3 b2 b1 b0	ı	terrupt control register 1 (l	CON1) [Address 00FE	[16]	
	В	Name	Functions	After reset	RW
	0	Timer 1 interrupt enable bit (TM1E)	0 : Interrupt disabled 1 : Interrupt enabled	0	RW
	1	Timer 2 interrupt enable bit (TM2E)	0 : Interrupt disabled 1 : Interrupt enabled	0	RW
	2	Timer 3 interrupt enable bit (TM3E)	0 : Interrupt disabled 1 : Interrupt enabled	0	RW
	3	Timer 4 interrupt enable bit (TM4E)	0 : Interrupt disabled 1 : Interrupt enabled	0	R¦W
	4	CRT interrupt enable bit (CRTE)	0 : Interrupt disabled 1 : Interrupt enabled	0	RW
	5	VSYNC interrupt enable bit (VSCE)	0 : Interrupt disabled 1 : Interrupt enabled	0	RW
İ	6	Multi-master I ² C-BUS interface interrupt enable bit (IICE)	0 : Interrupt disabled 1 : Interrupt enabled	0	RW
\ <u></u>	7	Nothing is assigned. This bit. When this bit is read		0	R —

Fig. 12. Interrupt Control Register 1

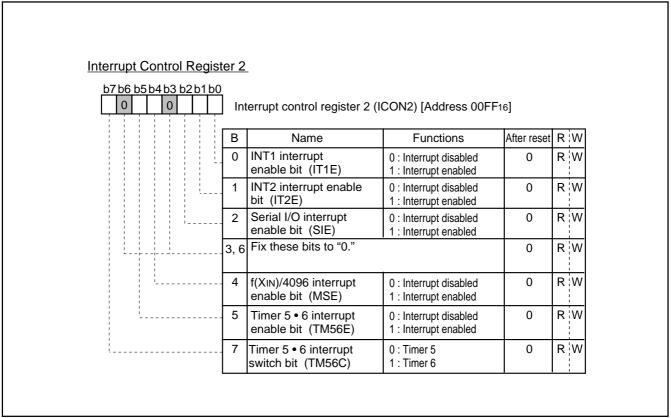


Fig. 13. Interrupt Control Register 2

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

TIMERS

The M37267M6-XXXSP has 6 timers: timer 1, timer 2, timer 3, timer 4, timer 5 and timer 6. All timers are 8-bit timers with the 8-bit timer latch. The timer block diagram is shown in Figure 17.

0.

All of the timers count down and their divide ratio is 1/(n+1), where n is the value of timer latch. By writing a count value to the corresponding timer latch (addresses 00F016 to 00F316: timers 1 to 4, addresses 020C16 and 020D16: timers 5 and 6), the value is also set to a timer, simultaneously.

The count value is decremented by 1. The timer interrupt request bit is set to "1" by a timer overflow at the next count pulse after the count value reaches "0016."

(1) Timer 1

Timer 1 can select one of the following count sources:

- f(XIN)/16 or f(XCIN)/16
- f(XIN)/4096 or f(XCIN)/4096
- f(XCIN)
- External clock from the TIM2 pin

The count source of timer 1 is selected by setting bits 5 and 0 of timer mode register 1 (address 00F416). Either f(XIN) or f(XCIN) is selected by bit 7 of the CPU mode register.

Timer 1 interrupt request occurs at timer 1 overflow.

(2) Timer 2

Timer 2 can select one of the following count sources:

- f(XIN)/16 or f(XCIN)/16
- Timer 1 overflow signal
- External clock from the TIM2 pin

The count source of timer 2 is selected by setting bits 4 and 1 of timer mode register 1 (address 00F416). Either f(XIN) or f(XCIN) is selected by bit 7 of the CPU mode register. When timer 1 overflow signal is a count source for timer 2, timer 1 functions as an 8-bit prescalar.

Timer 2 interrupt request occurs at timer 2 overflow.

(3) Timer 3

Timer 3 can select one of the following count sources:

- f(XIN)/16 or f(XCIN)/16
- External clock from the TIM3 pin

The count source of timer 3 is selected by setting bit 0 of timer mode register 2 (address 00F516). Either f(XIN) or f(XCIN) is selected by bit 7 of the CPU mode register.

Timer 3 interrupt request occurs at timer 3 overflow.

(4) Timer 4

Timer 4 can select one of the following count sources:

- f(XIN)/16 or f(XCIN)/16
- f(XIN)/2 or f(XCIN)/2
- Timer 3 overflow signal

The count source of timer 3 is selected by setting bits 1 and 4 of timer mode register 2 (address 00F516). Either f(XIN) or f(XCIN) is selected by bit 7 of the CPU mode register. When timer 3 overflow signal is a count source for timer 4, the timer 3 functions as an 8-bit prescaler.

Timer 4 interrupt request occurs at timer 4 overflow.

(5) Timer 5

Timer 5 can select one of the following count sources:

- f(XIN)/16 or f(XCIN)/16
- f(XCIN)
- Timer 4 overflow signal

The count source of timer 3 is selected by setting bit 6 of timer mode register 1 (address 00F416) and bit 7 of timer mode register 2 (address 00F516). Either f(XIN) or f(XCIN) is selected by bit 7 of the CPU mode register.

Timer 5 interrupt request occurs at timer 5 overflow.

(6) Timer 6

Timer 6 can select one of the following count sources:

- f(XIN)/16 or f(XCIN)/16
- Timer 5 overflow signal

The count source of timer 6 is selected by setting bit 7 of timer mode register 1 (address 00F416). Either f(XIN) or f(XCIN) is selected by bit 7 of the CPU mode register. When timer 5 overflow signal is a count source for timer 6, timer 5 functions as an 8-bit prescaler.

Timer 6 interrupt request occurs at timer 6 overflow.

At reset, timers 3 and 4 are connected by hardware and "FF16" is automatically set in timer 3; "0716" in timer 4. The f(XIN)*/16 is selected as the timer 3 count source. The internal reset is released by timer 4 overflow in this state and the internal clock is connected. At execution of the STP instruction, timers 3 and 4 are connected by hardware and "FF16" is automatically set in timer 3; "0716" in timer 4. However, the f(XIN)*/16 is not selected as the timer 3 count source. So set bit 0 of timer mode register 2 (address 00F516) to "0" before execution of the STP instruction (f(XIN)*/16 is selected as timer 3 count source). The internal STP state is released by timer 4 overflow in this state and the internal clock is connected.

As a result of the above procedure, the program can start under a stable clock.

*: When bit 7 of the CPU mode register (CM7) is "1," f(XIN) becomes f(XCIN).

The timer-related registers is shown in Figures 14 to 16.

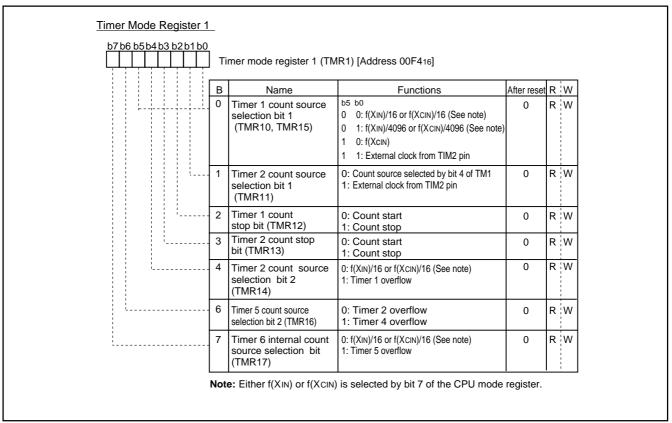


Fig. 14. Timer Mode Register 1

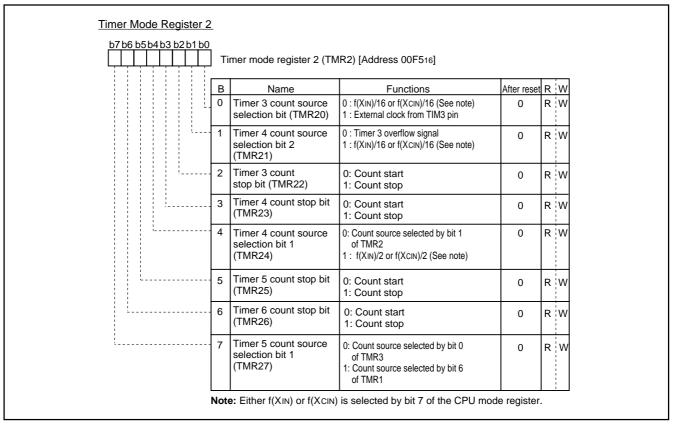


Fig. 15. Timer Mode Register 2

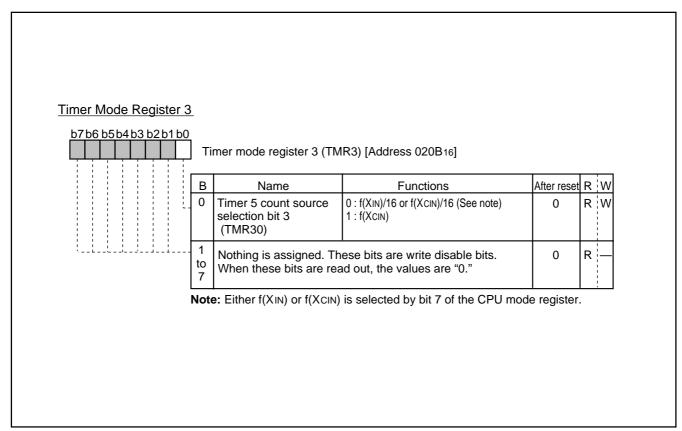


Fig. 16. Timer Mode Register 3

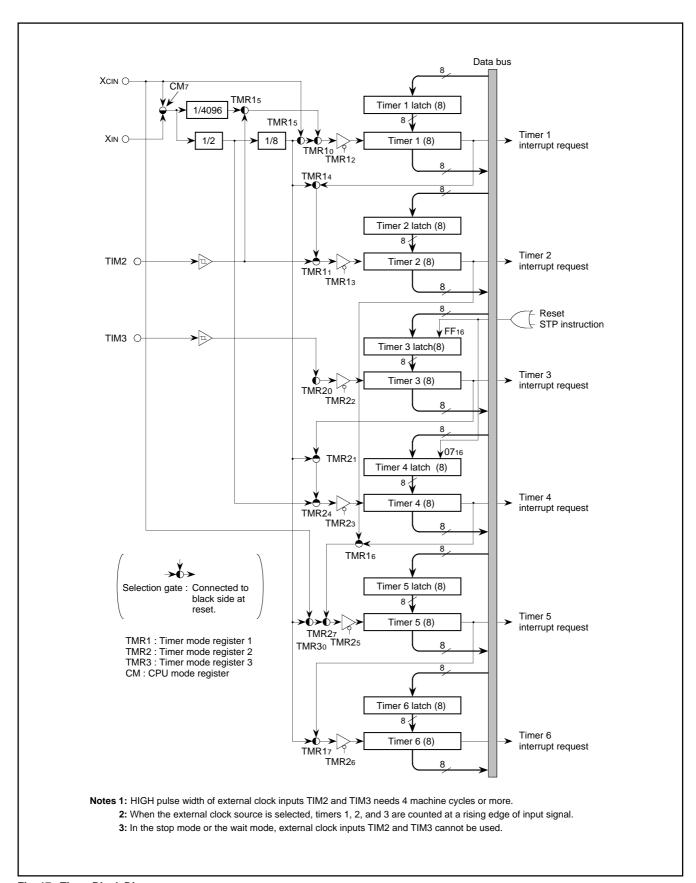


Fig. 17. Timer Block Diagram

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

SERIAL I/O

This microcomputer has a built-in serial I/O which can either transmit or receive 8-bit data serially in clock synchronous mode.

The serial I/O block diagram is shown in Figure 18. The synchronous clock I/O pin (Sclk), and data I/O pins (Sout, Sin), receive enable signal output pin (Srdy) also function as port P4.

Bit 2 of the serial I/O mode register (address 00DE16) selects whether the synchronous clock is supplied internally or externally (from the pins SCLK1, SCLK2). When an internal clock is selected, bits 1 and 0 select whether f(XIN) or f(XCIN) is divided by 8, 16, 32, or 64. To use pins for serial I/O, set the corresponding bits of the port P4 direction register (address 00C916) to "0."

The operation of the serial I/O is described below. The operation differs depending on the clock source; external clock or internal clock.

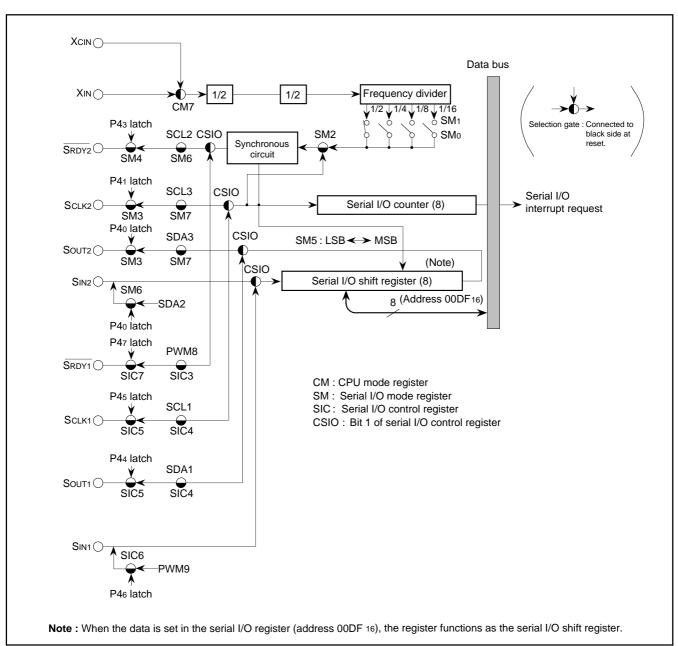


Fig. 18. Serial I/O Block Diagram

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

Internal clock: The $\overline{S_{RDY}}$ signal goes to HIGH during the write cycle by writing data into the serial I/O register (address 00DD16). After the write cycle, the $\overline{S_{RDY}}$ signal goes to "L" (receive enable state). The $\overline{S_{RDY}}$ signal goes to "H" at the next falling edge of the transfer clock for the serial I/O register.

The serial I/O counter is set to "7" during write cycle into the serial I/O register (address 00DD16), and transfer clock goes HIGH forcibly. At each falling edge of the transfer clock after the write cycle, serial data is output from the Sout pin. Transfer direction can be selected by bit 5 of the serial I/O mode register. At each rising edge of the transfer clock, data is input from the SIN pin and data in the serial I/O register is shifted 1 bit.

After the transfer clock has counted 8 times, the serial I/O counter becomes "0" and the transfer clock stops at HIGH. At this time the interrupt request bit is set to "1."

External clock: When an external clock is selected as the clock source, the interrupt request is set to "1" after the transfer clock has counted 8 counts. However, transfer operation does not stop, so the clock should be controlled externally. Use the external clock of 1 MHz or less with a duty cycle of 50%.

The serial I/O timing is shown in Figure 19. When using an external clock for transfer, the external clock must be held at "H" for initializing the serial I/O counter. When switching between an internal clock and an external clock, do not switch during transfer. Also, be sure to initialize the serial I/O counter after switching.

- **Notes 1:** On programming, note that the serial I/O counter is set by writing to the serial I/O register with the bit managing instructions such as SEB and CLB.
 - 2: When an external clock is used as the synchronous clock, write transmit data to the serial I/O register when the transfer clock input level is HIGH.

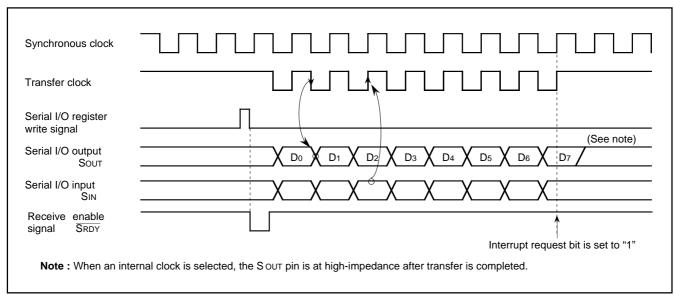


Fig. 19. Serial I/O Timing (for LSB first)

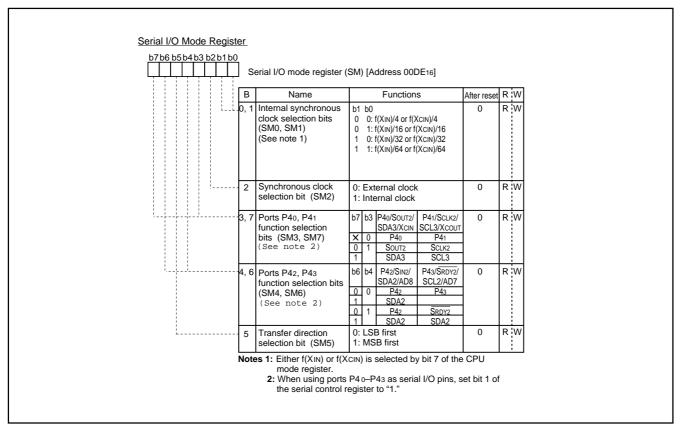


Fig. 20. Serial I/O Mode Register

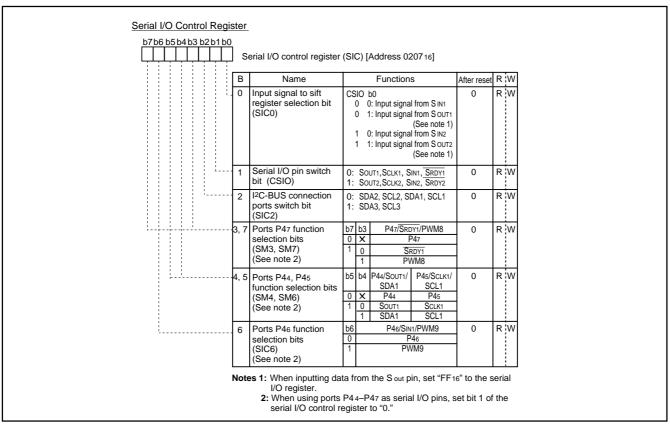


Fig. 21. Serial I/O Control Register

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

Serial I/O Common Transmission/Reception Mode

By writing "1" to bit 0 of the serial I/O control register, signals SIN and SOUT are switched internally to be able to transmit or receive the serial data

Figure 22 shows signals on serial I/O common transmission/reception mode.

Note: When receiving the serial data after writing "FF16" to the serial I/O register.

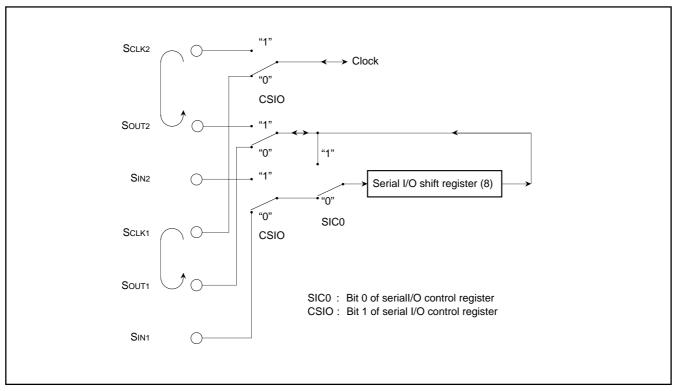


Fig. 22. Signals on Serial I/O Common Transmission/Reception Mode

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

MULTI-MASTER I²C-BUS INTERFACE

The multi-master I²C-BUS interface is a serial communications circuit, conforming to the Philips I²C-BUS data transfer format. This interface, offering both arbitration lost detection and a synchronous functions, is useful for the multi-master serial communications. Figure 23 shows a block diagram of the multi-master I²C-BUS interface and Table 2 shows multi-master I²C-BUS interface functions. This multi-master I²C-BUS interface consists of the I²C address register, the I²C data shift register, the I²C clock control register, the I²C control register, the I²C status register and other control circuits.

Table 2. Multi-master I²C-BUS Interface Functions

Item	Function
Format	In conformity with Philips I ² C-BUS standard: 10-bit addressing format 7-bit addressing format High-speed clock mode Standard clock mode
Communication mode	In conformity with Philips I ² C-BUS standard: Master transmission Master reception Slave transmission Slave reception
SCL clock frequency	16.1 kHz to 400 kHz (at φ = 4 MHz)

 ϕ : System clock = f(XIN)/2

Note: We are not responsible for any third party's infringement of patent rights or other rights attributable to the use of the control function (bits 6 and 7 of the I²C control register at address 00F916) for connections between the I²C-BUS interface and ports (SCL1, SCL2, SDA1, SDA2).

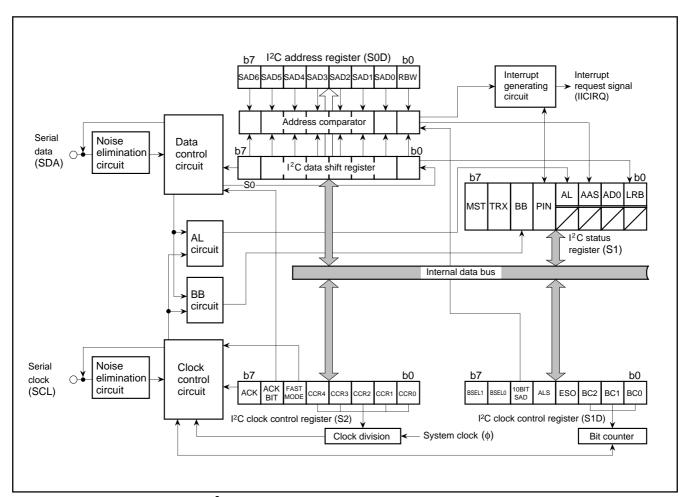


Fig. 23. Block Diagram of Multi-master I²C-BUS Interface

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

(1) I²C Data Shift Register

The I²C data shift register (S0: address 00D916) is an 8-bit shift register to store receive data and write transmit data.

When transmit data is written into this register, it is transferred to the outside from bit 7 in synchronization with the SCL clock, and each time one-bit data is output, the data of this register are shifted one bit to the left. When data is received, it is input to this register from bit 0 in synchronization with the SCL clock, and each time one-bit data is input, the data of this register are shifted one bit to the left.

The I^2C data shift register is in a write enable status only when the ESO bit of the I^2C control register (address 00DC16) is "1." The bit counter is reset by a write instruction to the I^2C data shift register. When both the ESO bit and the MST bit of the I^2C status register (address 00F816) are "1," the SCL is output by a write instruction to the I^2C data shift register. Reading data from the I^2C data shift register is always enabled regardless of the ESO bit value.

Note: To write data into the I²C data shift register after setting the MST bit to "0" (slave mode), keep an interval of 8 machine cycles or more.

(2) I²C Address Register

The I²C address register (address 00DA16) consists of a 7-bit slave address and a read/write bit. In the addressing mode, the slave address written in this register is compared with the address data to be received immediately after the START condition are detected.

■Bit 0: Read/Write Bit (RBW)

Not used when comparing addresses, in the 7-bit addressing mode. In the 10-bit addressing mode, the first address data to be received is compared with the contents (SAD6 to SAD0 + RBW) of the I²C address register.

The RBW bit is cleared to "0" automatically when the stop condition is detected

■Bits 1 to 7: Slave Address (SAD0-SAD6)

These bits store slave addresses. Regardless of the 7-bit addressing mode and the 10-bit addressing mode, the address data transmitted from the master is compared with the contents of these bits.

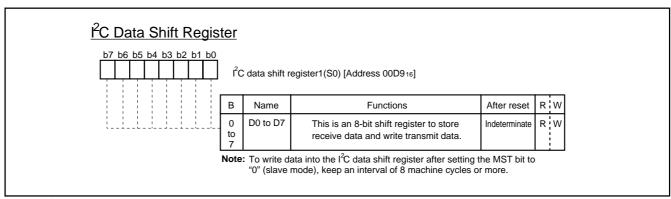


Fig. 24. I²C Data Shift Register

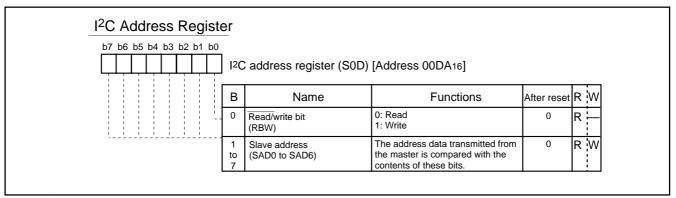


Fig. 25. I²C Address Register

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

(3) I²C Clock Control Register

The I²C clock control register (address 00DD16) is used to set ACK control, SCL mode and SCL frequency.

■Bits 0 to 4: SCL Frequency Control Bits (CCR0-CCR4)

These bits control the SCL frequency. Refer to Figure 26.

■Bit 5: SCL Mode Specification Bit (FAST MODE)

This bit specifies the SCL mode. When this bit is set to "0," the standard clock mode is set. When the bit is set to "1," the high-speed clock mode is set.

■Bit 6: ACK Bit (ACK BIT)

This bit sets the SDA status when an ACK clock*is generated. When this bit is set to "0," the ACK return mode is set and SDA goes to LOW at the occurrence of an ACK clock. When the bit is set to "1," the ACK non-return mode is set. The SDA is held in the HIGH status at the occurrence of an ACK clock.

However, when the slave address matches the address data in the reception of address data at ACK BIT = "0," the SDA is automatically made LOW (ACK is returned). If there is a mismatch between the slave address and the address data, the SDA is automatically made HIGH (ACK is not returned).

*ACK clock: Clock for acknowledgement

■Bit 7: ACK Clock Bit (ACK)

This bit specifies a mode of acknowledgment which is an acknowledgment response of data transmission. When this bit is set to "0," the no ACK clock mode is set. In this case, no ACK clock occurs after data transmission. When the bit is set to "1," the ACK clock mode is set and the master generates an ACK clock upon completion of each 1-byte data transmission. The device for transmitting address data and control data releases the SDA at the occurrence of an ACK clock (make SDA HIGH) and receives the ACK bit generated by the data receiving device.

Note: Do not write data into the I²C clock control register during transmission. If data is written during transmission, the I²C clock generator is reset, so that data cannot be transmitted normally.

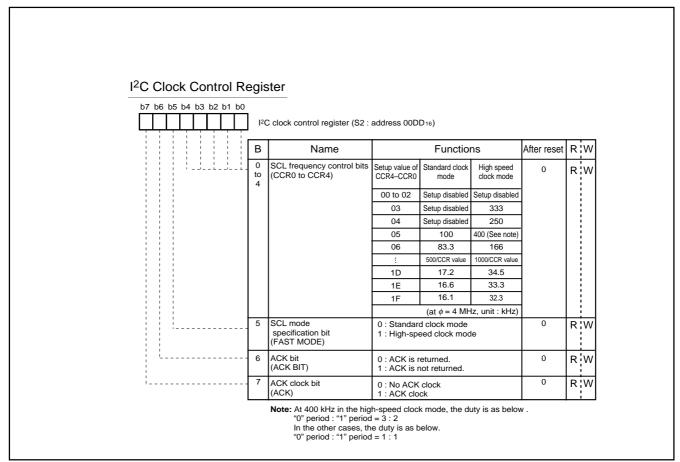


Fig. 26. I²C Clock Control Register

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

(4) I²C Control Register

The I²C control register (address 00DC16) controls the data communication format.

■Bits 0 to 2: Bit Counter (BC0–BC2)

These bits decide the number of bits for the next 1-byte data to be transmitted. An interrupt request signal occurs immediately after the number of bits specified with these bits are transmitted.

When a START condition is received, these bits become "0002" and the address data is always transmitted and received in 8 bits.

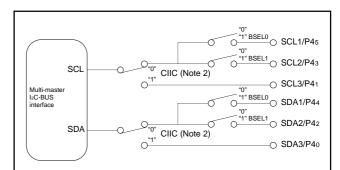
■Bit 3: I²C Interface Use Enable Bit (ESO)

This bit enables usage of the multimaster I²C BUS interface. When this bit is set to "0," the use disable status is provided, so the SDA and the SCL become high-impedance. When the bit is set to "1," use of the interface is enabled.

When ESO = "0," the following is performed.

- PIN = "1," BB = "0" and AL = "0" are set (they are bits of the I²C status register at address 00F816).
- Writing data to the I²C data shift register (address 00F616) is disabled.

■Bit 4: Data Format Selection Bit (ALS)


This bit decides whether or not to recognize slave addresses. When this bit is set to "0," the addressing format is selected, so that address data is recognized. When a match is found between a slave address and address data as a result of comparison or when a general call (refer to "(5) I²C Status Register," bit 1) is received, transmission processing can be performed. When this bit is set to "1," the free data format is selected, so that slave addresses are not recognized.

■Bit 5: Addressing Format Selection Bit (10BIT SAD)

This bit selects a slave address specification format. When this bit is set to "0," the 7-bit addressing format is selected. In this case, only the high-order 7 bits (slave address) of the I²C address register (address 00F716) are compared with address data. When this bit is set to "1," the 10-bit addressing format is selected, all the bits of the I²C address register are compared with address data.

■Bits 6 and 7: Connection Control Bits between I²C-BUS Interface and Ports (BSEL0, BSEL1)

These bits controls the connection between SCL and ports or SDA and ports (refer to Figure 28).

Notes 1: When using multi-master I²C-BUS interface, set bits 3 to 7 of the serial I/O mode register (address 00DE₁₆) to "1."

2: CIIC is bit 2 of the serial I/O control register (address 020716) (refer to Figure 21).

Fig. 27. Connection Port Control by BSEL0 and BSEL1

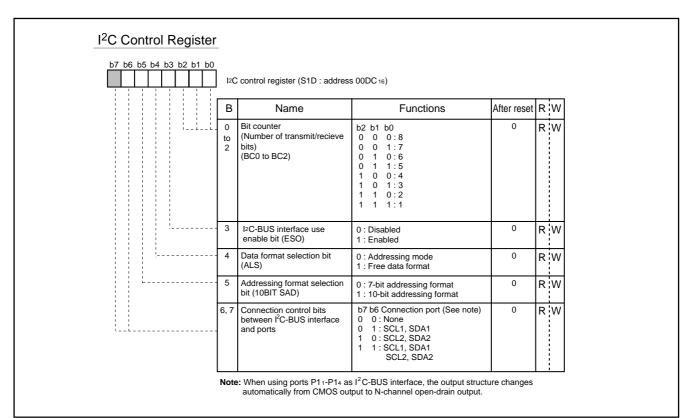


Fig. 28. I²C Control Register

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

(5) I²C Status Register

The I²C status register (address 00DB₁₆) controls the I²C-BUS interface status. The low-order 4 bits are read-only bits and the high-order 4 bits can be read out and written to.

■Bit 0: Last Receive Bit (LRB)

This bit stores the last bit value of received data and can also be used for ACK receive confirmation. If ACK is returned when an ACK clock occurs, the LRB bit is set to "0." If ACK is not returned, this bit is set to "1." Except in the ACK mode, the last bit value of received data is input. The state of this bit is changed from "1" to "0" by executing a write instruction to the I²C data shift register (address 00D916).

■Bit 1: General Call Detecting Flag (AD0)

This bit is set to "1" when a general call*whose address data is all "0" is received in the slave mode. By a general call of the master device, every slave device receives control data after the general call. The AD0 bit is set to "0" by detecting the STOP condition or START condition.

*General call: The master transmits the general call address "0016" to all slaves.

■Bit 2: Slave Address Comparison Flag (AAS)

This flag indicates a comparison result of address data.

- ① In the slave receive mode, when the 7-bit addressing format is selected, this bit is set to "1" in one of the following conditions.
 - •The address data immediately after occurrence of a START condition matches the slave address stored in the high-order 7 bits of the I²C address register (address 00DA16).
 - •A general call is received.
- ② In the slave reception mode, when the 10-bit addressing format is selected, this bit is set to "1" with the following condition.
 - •When the address data is compared with the I²C address register (8 bits consists of slave address and RBW), the first bytes match.
- The state of this bit is changed from "1" to "0" by executing a write instruction to the I²C data shift register (address 00D916).

■Bit 3: Arbitration Lost*Detecting Flag (AL)

In the master transmission mode, when a device other than the microcomputer sets the SDA to "L,", arbitration is judged to have been lost, so that this bit is set to "1." At the same time, the TRX bit is set to "0," so that immediately after transmission of the byte whose arbitration was lost is completed, the MST bit is set to "0." When arbitration is lost during slave address transmission, the TRX bit is set to "0" and the reception mode is set. Consequently, it becomes possible to receive and recognize its own slave address transmitted by another master device.

*Arbitration lost: The status in which communication as a master is disabled.

■Bit 4: I²C-BUS Interface Interrupt Request Bit (PIN)

This bit generates an interrupt request signal. Each time 1-byte data is transmitted, the state of the PIN bit changes from "1" to "0." At the same time, an interrupt request signal is sent to the CPU. The PIN bit is set to "0" in synchronization with a falling edge of the last clock (including the ACK clock) of an internal clock and an interrupt request signal occurs in synchronization with a falling edge of the PIN bit. When the PIN bit is "0," the SCL is kept in the "0" state and clock generation is disabled. Figure 30 shows an interrupt request signal generating timing chart.

The PIN bit is set to "1" in any one of the following conditions.

- Executing a write instruction to the I²C data shift register (address 00F616).
- When the ESO bit is "0"
- At reset

The conditions in which the PIN bit is set to "0" are shown below:

- Immediately after completion of 1-byte data transmission (including when arbitration lost is detected)
- Immediately after completion of 1-byte data reception
- In the slave reception mode, with ALS = "0" and immediately after completion of slave address or general call address reception
- In the slave reception mode, with ALS = "1" and immediately after completion of address data reception

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

■Bit 5: Bus Busy Flag (BB)

This bit indicates the status of use of the bus system. When this bit is set to "0," this bus system is not busy and a START condition can be generated. When this bit is set to "1," this bus system is busy and the occurrence of a START condition is disabled by the START condition duplication prevention function (Note).

This flag can be written by software only in the master transmission mode. In the other modes, this bit is set to "1" by detecting a START condition and set to "0" by detecting a STOP condition. When the ESO bit of the I^2C control register (address 00DC16) is "0" and at reset, the BB flag is kept in the "0" state.

■Bit 6: Communication Mode Specification Bit (transfer direction specification bit: TRX)

This bit decides the direction of transfer for data communication. When this bit is "0," the reception mode is selected and the data of a transmitting device is received. When the bit is "1," the transmission mode is selected and address data and control data are output into the SDA in synchronization with the clock generated on the SCL.

When the ALS bit of the I^2C control register (address 00DC16) is "0" in the slave reception mode is selected, the TRX bit is set to "1" (transmit) if the least significant bit ($R\overline{/W}$ bit) of the address data transmitted by the master is "1." When the ALS bit is "0" and the $R\overline{/W}$ bit is "0," the TRX bit is cleared to "0" (receive).

The TRX bit is cleared to "0" in one of the following conditions.

- When arbitration lost is detected.
- When a STOP condition is detected.
- When occurrence of a START condition is disabled by the START condition duplication prevention function (Note).
- With MST = "0" and when a START condition is detected.
- With MST = "0" and when ACK non-return is detected.
- At reset

■Bit 7: Communication Mode Specification Bit (master/slave specification bit: MST)

This bit is used for master/slave specification for data communication. When this bit is "0," the slave is specified, so that a START condition and a STOP condition generated by the master are received, and data communication is performed in synchronization with the clock generated by the master. When this bit is "1," the master is specified and a START condition and a STOP condition are generated, and also the clocks required for data communication are generated on the SCI

The MST bit is cleared to "0" in one of the following conditions.

- Immediately after completion of 1-byte data transmission when arbitration lost is detected
- When a STOP condition is detected.
- When occurrence of a START condition is disabled by the START condition duplication preventing function (Note).
- At reset

Note: The START condition duplication prevention function disables the START condition generation, reset of bit counter reset, and SCL output, when the following condition is satisfied:

• a START condition is set by another master device.

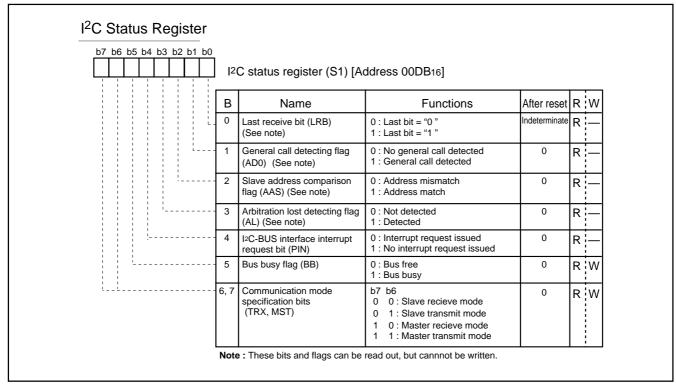


Fig. 29. I²C Status Register

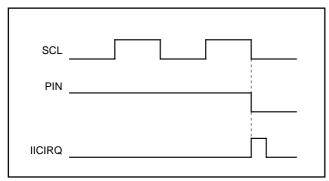


Fig. 30. Interrupt Request Signal Generation Timing

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

(6) START Condition Generation Method

When the ESO bit of the I²C control register (address 00DC16) is "1," execute a write instruction to the I²C status register (address 00DB16) to set the MST, TRX and BB bits to "1." A START condition will then be generated. After that, the bit counter becomes "0002" and an SCL for 1 byte is output. The START condition generation timing and BB bit set timing are different in the standard clock mode and the high-speed clock mode. Refer to Figure 31 for the START condition generation timing diagram, and Table 3 for the START condition/STOP condition generation timing table.

Fig. 31. START Condition Generation Timing Diagram

(7) RESTART Condition Generation Method

To generate the RESTART condition, take the following sequence:

- ① Set "2016" to the I²C status register (S1).
- ²Write a transmit data to the I²C data shift register.
- $\ensuremath{\ensuremath{\mathscrip{3}}}$ Set "F016" to the I²C status register (S1) again.

<Example of Setting of RESTART Condition>

 I^2C status register ; S1 = 2016

 I^2C data shift register; S0 = transmit data after restart

 I^2C status register ; S1 = F0₁₆

(8) STOP Condition Generation Method

When the ES0 bit of the I²C control register (address 00DC16) is "1," execute a write instruction to the I²C status register (address 00DB16) for setting the MST bit and the TRX bit to "1" and the BB bit to "0". A STOP condition will then be generated. The STOP condition generation timing and the BB flag reset timing are different in the standard clock mode and the high-speed clock mode. Refer to Figure 32 for the STOP condition generation timing diagram, and Table 3 for the START condition/STOP condition generation timing table.

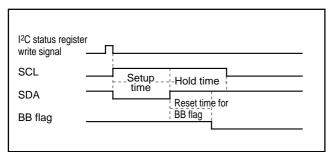


Fig. 32. STOP Condition Generation Timing Diagram

Table 3. START Condition/STOP Condition Generation Timing

Item	Standard Clock Mode	High-speed Clock Mode
Setup time	5.0 µs (20 cycles)	2.5 µs (10 cycles)
Hold time	5.0 µs (20 cycles)	2.5 µs (10 cycles)
Set/reset time for BB flag	3.0 µs (12 cycles)	1.5 µs (6 cycles)

Note: Absolute time at ϕ = 4 MHz. The value in parentheses denotes the number of ϕ cycles.

(9) START/STOP Condition Detect Conditions

The START/STOP condition detect conditions are shown in Figure 33 and Table 4. Only when the 3 conditions of Table 4 are satisfied, a START/STOP condition can be detected.

Note: When a STOP condition is detected in the slave mode (MST = 0), an interrupt request signal "IICIRQ" is generated to the CPU.

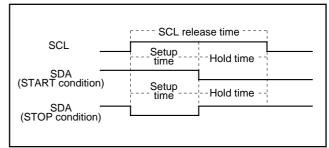


Fig. 33. START Condition/STOP Condition Detect Timing Diagram

Table 4. START Condition/STOP Condition Detect Conditions

Standard Clock Mode	High-speed Clock Mode				
6.5 µs (26 cycles) < SCL	1.0 µs (4 cycles) < SCL				
release time	release time				
3.25 µs (13 cycles) < Setup time	0.5 µs (2 cycles) < Setup time				
3.25 µs (13 cycles) < Hold time	0.5 µs (2 cycles) < Hold time				

Note: Absolute time at ϕ = 4 MHz. The value in parentheses denotes the number of ϕ cycles.

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

(10) Address Data Communication

There are two address data communication formats, namely, 7-bit addressing format and 10-bit addressing format. The respective address communication formats is described below.

107-bit addressing format

To meet the 7-bit addressing format, set the 10BIT SAD bit of the I^2C control register (address 00DC16) to "0." The first 7-bit address data transmitted from the master is compared with the high-order 7-bit slave address stored in the I^2C address register (address 00DA16). At the time of this comparison, address comparison of the RBW bit of the I^2C address register (address 00DA16) is not made. For the data transmission format when the 7-bit addressing format is selected, refer to Figure 34, (1) and (2).

210-bit addressing format

To meet the 10-bit addressing format, set the 10BIT SAD bit of the I^2C control register (address 00DC16) to "1." An address comparison is made between the first-byte address data transmitted from the master and the 7-bit slave address stored in the I^2C address register (address 00DA16). At the time of this comparison, an address comparison between the RBW bit of the I^2C address register (address 00DA16) and the $R\overline{W}$ bit which is the last bit of the address data transmitted from the master is made. In the 10-bit addressing mode, the $R\overline{W}$ bit which is the last bit of the address data not only specifies the direction of communication for control data but also is processed as an address data bit.

When the first-byte address data matches the slave address, the AAS bit of the I^2C status register (address 00DB16) is set to "1." After the second-byte address data is stored into the I^2C data shift register (address 00D916), make an address comparison between the second-byte data and the slave address by software. When the address data of the 2nd bytes matches the slave address, set the RBW bit of the I^2C address register (address 00DA16) to "1" by software. This processing can match the 7-bit slave address and R/\overline{W} data, which are received after a RESTART condition is detected, with the value of the I^2C address register (address 00DA16). For the data transmission format when the 10-bit addressing format is selected, refer to Figure 34, (3) and (4).

(11) Example of Master Transmission

An example of master transmission in the standard clock mode, at the SCL frequency of 100 kHz and in the ACK return mode is shown below.

- ① Set a slave address in the high-order 7 bits of the I²C address register (address 00DA₁₆) and "0" in the RBW bit.
- ② Set the ACK return mode and SCL = 100 kHz by setting "8516" in the I²C clock control register (address 00DD16).
- ③ Set "1016" in the I²C status register (address 00DB16) and hold the SCL at the HIGH.
- 4 Set a communication enable status by setting "4816" in the I²C control register (address 00DC16).
- Set the address data of the destination of transmission in the high-order 7 bits of the I²C data shift register (address 00D916) and set "0" in the least significant bit.
- © Set "F016" in the I²C status register (address 00DB16) to generate a START condition. At this time, an SCL for 1 byte and an ACK clock automatically occurs.

- Set transmit data in the I²C data shift register (address 00D916). At this time, an SCL and an ACK clock automatically occurs.
- When transmitting control data of more than 1 byte, repeat step
- Set "D016" in the I²C status register (address 00DB16). After this, if ACK is not returned or transmission ends, a STOP condition will be generated.

(12) Example of Slave Reception

An example of slave reception in the high-speed clock mode, at the SCL frequency of 400 kHz, in the ACK non-return mode, using the addressing format, is shown below.

- ① Set a slave address in the high-order 7 bits of the I²C address register (address 00DA₁₆) and "0" in the RBW bit.
- ② Set the no ACK clock mode and SCL = 400 kHz by setting "2516" in the I²C clock control register (address 00DD16).
- ③ Set "1016" in the I²C status register (address 00DB16) and hold the SCL at the HIGH.
- Set a communication enable status by setting "4816" in the I²C control register (address 00DC16).
- When a START condition is received, an address comparison is made.
- When all transmitted addresses are "0" (general call): AD0 of the I²C status register (address 00DB16) is set to "1" and an interrupt request signal occurs.
 - •When the transmitted addresses match the address set in ①:

 AAS of the I²C status register (address 00DB16) is set to "1" and
 an interrupt request signal occurs.
 - •In the cases other than the above :

 AD0 and AAS of the I²C status register (address 00DB16) are set to "0" and no interrupt request signal occurs.
- Set dummy data in the I²C data shift register (address 00D916).
- ® When receiving control data of more than 1 byte, repeat step ⑦.
- $\ensuremath{\mathfrak{D}}$ When a STOP condition is detected, the communication ends.

S	Slave address	R/W	Α	Data	Α	Data	a A/	ĀP								
(1) A	7 bits "0" 1 to 8 bits 1 to 8 bits 1) A master-transmitter transmits data to a slave-receiver															
S	Slave address	R/W	Α	Data	А	Data	a Ā	P								
(2) A	7 bits master-receiver r	"1" eceive		1 to 8 bits from a sla		1 to 8 l nsmitte										
S	Slave address 1st 7 bits	R/W	Α	Slave add	dress	А	Data	a A	Data	. A	/Ā	Р				
(3) A	7 bits master-transmitte	"0" er trans	mits c	8 bit lata to a sl			1 to 8 l with a		1 to 8 b dress	oits						
	Slave address 1st 7 bits	R/W	Α	Slave ad 2nd byte		А	Sr	Slave ac		R/W	Da	ıta	Α	Data	Ā	Р
S	7 bits "0" 8 bits 7 bits "1" 1 to 8 bits 1 to 8 bits (4) A master-receiver receives data from a slave-transmitter with a 10-bit address															
		eceive	s data	from a sia	ave-tra	Homilie										

Fig. 34. Address Data Communication Format

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

PWM OUTPUT FUNCTION

This microcomputer is equipped with a 14-bit PWM (DA) and ten 8-bit PWMs (PWM0–PWM9). DA has a 14-bit resolution with the minimum resolution bit width of 250 ns and a repeat period of 4096 μ s (for f(XIN) = 8 MHz). PWM0–PWM9 have the same circuit structure and an 8-bit resolution with minimum resolution bit width of 4 μ s and repeat period of 1024 μ s (for f(XIN) = 8 MHz).

Figure 35 shows the PWM block diagram. The PWM timing generating circuit applies individual control signals to PWM0–PWM9 using f(XIN) divided by 2 as a reference signal.

(1) Data Setting

When outputting DA, first set the high-order 8 bits to the DA-H register (address 00CE16), then the low-order 6 bits to the DA-L register (address 00CF16). When outputting PWM0–PWM9, set 8-bit output data to the PWMi register (i means 0 to 9; addresses 00D016 to 00D416, 00F616 to 00FA16).

(2) Transferring Data from Registers to Latches

The data written to the 8-bit PWM register is transferred to the PWM latch in each 8-bit PWM cycle period. For 14-bit PWM, the data is transferred in the next high-order 8-bit period after the write. The signals output to the PWM pins correspond to the contents of these latches. When data in each PWM register is read, data in these latches has already been read allowing the data output by the PWM to be confirmed. However, bit 7 of the DA-L register indicated the completion of the data transfer from the DA register to the DA latch. When bit 7 is "0," the transfer has been completed. When bit 7 is "1," the transfer has not yet begun.

(3) Operating of 8-bit PWM

The following explains PWM operation.

First, set the bit 0 of PWM output control register 1 (address 00D516) to "0" (at reset, bit 0 is already set to "0" automatically), so that the PWM count source is supplied.

PWM0–PWM7 are also used as pins P60–P67, PWM8, PWM9 are also used as ports pins P47, P46, respectively. For PWM0–PWM9, set the corresponding bits of the ports P4 or P6 direction register to "1" (output mode). And select each output polarity by bit 3 of PWM output control register 2(address 00D616). Then, for PWM0–PWM5, set bits 2 to 7 of PWM output control register 1 to "1" (PWM output). For PWM6 and PWM7, set bits 0 and 1 of the PWM output control register 2 to "1." For PWM8 and PWM9, set bits 3, 6 and 7 of the serial I/O control register to "1."

The PWM waveform is output from the PWM output pins by setting these registers.

Figure 36 shows the 8-bit PWM timing. One cycle (T) is composed of 256 (2⁸) segments. The 8 kinds of pulses, relative to the weight of each bit (bits 0 to 7), are output inside the circuit during 1 cycle. Refer to Figure 36 (a). The 8-bit PWM outputs waveform which is the logical sum (OR) of pulses corresponding to the contents of bits 0 to 7 of the 8-bit PWM register. Several examples are shown in

Figure 36 (b). 256 kinds of output (HIGH area: 0/256 to 255/256) are selected by changing the contents of the PWM register. A length of entirely HIGH output cannot be output, i.e. 256/256.

(4) Operating of 14-bit PWM

As with 8-bit PWM, set the bit 0 of PWM output control register 1 (address 00D516) to "0" (at reset, bit 0 is already set to "0" automatically), so that the PWM count source is supplied. Next, select the output polarity by bit 2 of PWM output control register 2 (address 00D616). Then, the 14-bit PWM outputs from the D-A output pin by setting bit 1 of PWM output control register 1 to "0" (at reset, this bit already set to "0" automatically) to select the DA output.

The output example of the 14-bit PWM is shown in Figure 37.

The 14-bit PWM divides the data of the DA latch into the low-order 6 bits and the high-order 8 bits.

The fundamental waveform is determined with the high-order 8-bit data "DH." A HIGH area with a length τ XDH (HIGH area of fundamental waveform) is output every short area of "t" = 256τ = $64~\mu s$ (τ is the minimum resolution bit width of 250 ns). The "H" level area increase interval (tm) is determined with the low-order 6-bit data "DL." The HIGH are of smaller intervals "tm" shown in Table 5 is longer by τ than that of other smaller intervals in PWM repeat period "T" = 64t. Thus, a rectangular waveform with the different HIGH width is output from the D-A pin. Accordingly, the PWM output changes by τ unit pulse width by changing the contents of the DA-H and DA-L registers. A length of entirely HIGH cannot be output, i. e. 256/256.

(5) Output after Reset

At reset, the output of ports P60–P67, P46 and P47 are in the high-impedance state, and the contents of the PWM register and the PWM circuit are undefined. Note that after reset, the PWM output is undefined until setting the PWM register.

Table 5. Relation Between the Low-order 6-bit Data and Highlevel Area Increase Interval

Low-order 6 bits of D	Area Longer by τ than That of Other tm (m = 0 to 63)
00000	Nothing
000001	m = 32
000010	m = 16, 48
000100	m = 8, 24, 40, 56
001000	m = 4, 12, 20, 28, 36, 44, 52, 60
010000	m = 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62
100000	m = 1, 3, 5, 7, 57, 59, 61, 63

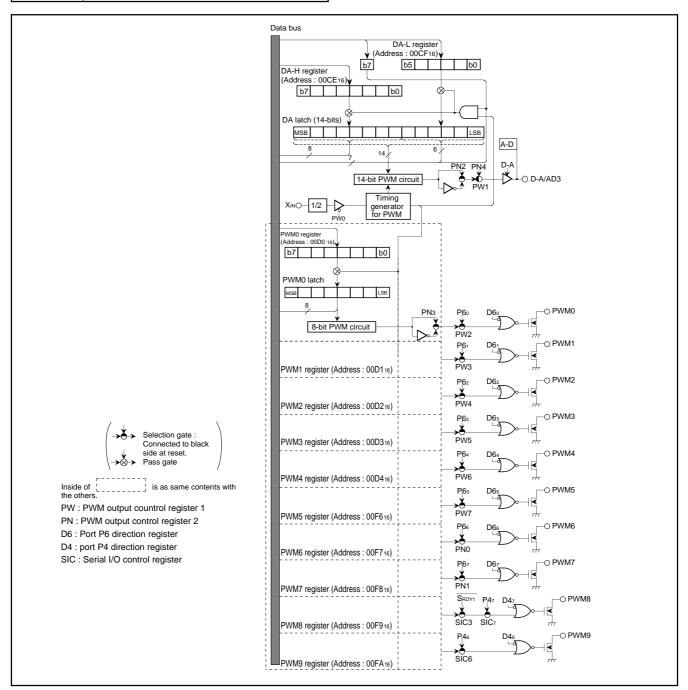


Fig. 35. PWM Block Diagram

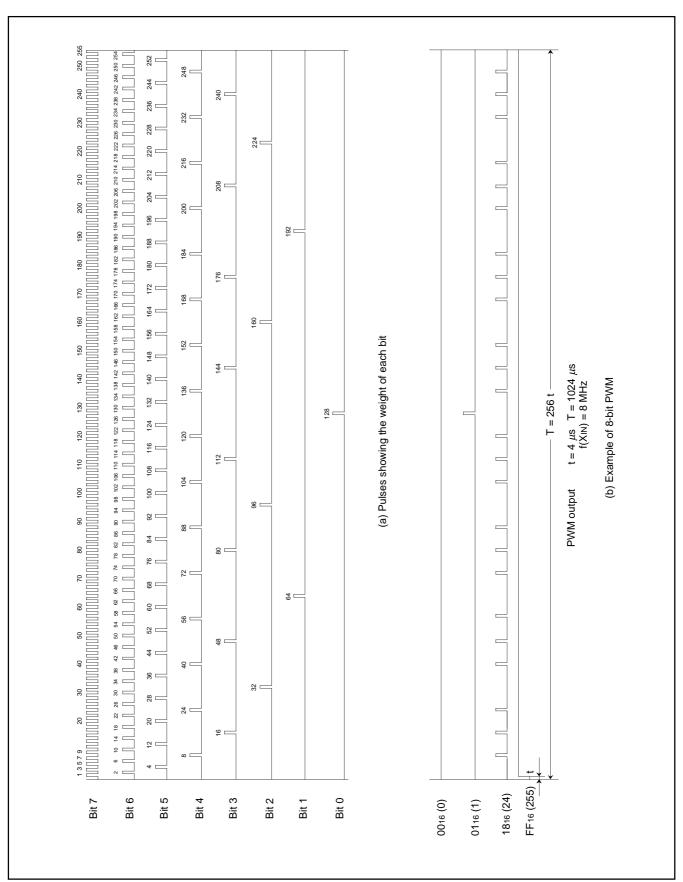


Fig. 36. 8-bit PWM Timing

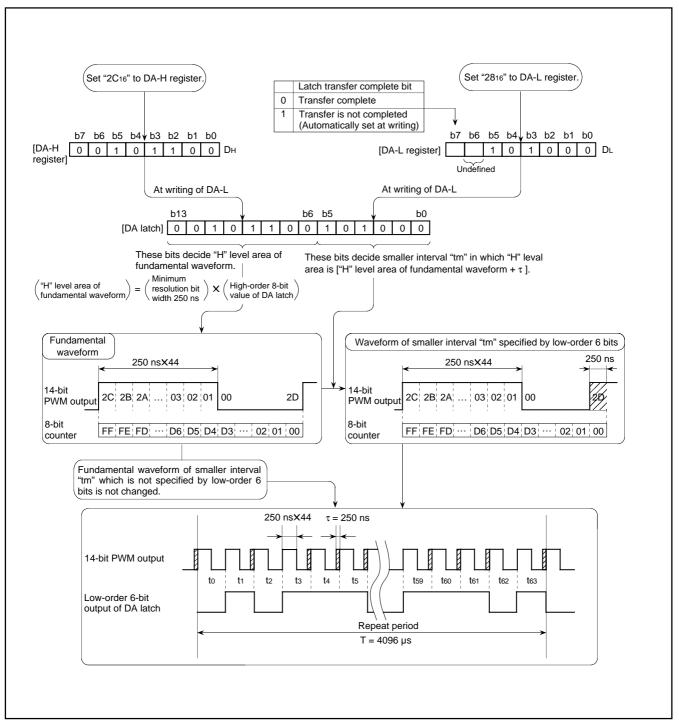


Fig. 37. 14-bit PWM (DA) Output Example (at f(XIN) = 8 MHz)

b7b6b5b4b3b2b1b0						
07 00 030403 020100	P۱	WM output control registe	er 1 (PW) [Address 00D516]			
	В	Name	Functions	After reset	R	W
	0	DA, PWM count source selection bit (PW0)	0 : Count source supply 1 : Count source stop	0	R	W
· · · · · · · · · · · · · · · · · · ·	1	DA/PN4 output selection bit (PW1)	0 : DA output 1 : PN4 output	0	R	W
	2	P60/PWM0 output selection bit (PW2)	0: P60 output 1: PWM0 output	0	R	W
	3	P61/PWM1 output selection bit (PW3)	0: P61 output 1: PWM1 output	0	R	W
	4	P62/PWM2 output selection bit (PW4)	0: P62 output 1: PWM2 output	0	R	W
	5	P63/PWM3 output selection bit (PW5)	0: P63 output 1: PWM3 output	0	R	W
	6	P64/PWM4 output selection bit (PW6)	0: P64 output 1: PWM4 output	0	R	W
<u> </u>	7	P65/PWM5 output selection bit (PW7)	0: P65 output 1: PWM5 output	0	R	V

Fig. 38. PWM Output Control Register 1

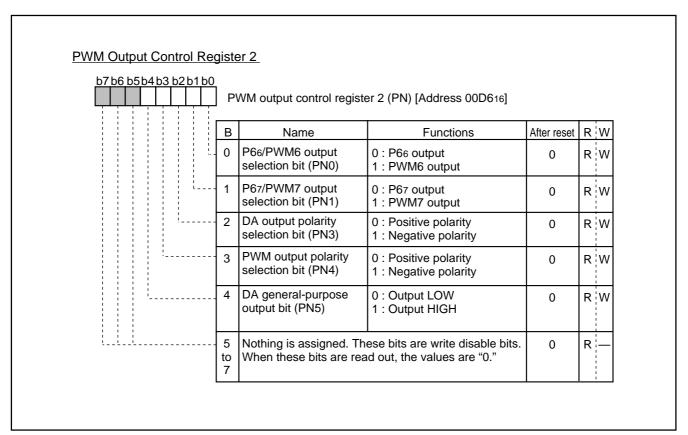


Fig. 39. PWM Output Control Register 2

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

A-D COMPARATOR

A-D comparator consists of 6-bit D-A converter and comparator. A-D comparator block diagram is shown in Figure 40.

The reference voltage " V_{ref} " for D-A conversion is set by bits 0 to 5 of the A-D control register 2 (address 020A16).

The comparison result of the analog input voltage and the reference voltage "Vref" is stored in bit 4 of the A-D control register 1 (address 00EF16).

For A-D comparison, set "0" to corresponding bits of the direction register to use ports as analog input pins. Write the data for select of analog input pins to bits 0 to 2 of the A-D control register 1 and write the digital value corresponding to Vref to be compared to the bits 0 to 5 A-D control register 2. The voltage comparison starts by writing to the A-D control register 2, and it is completed after 16 machine cycles (NOP instruction X 8).

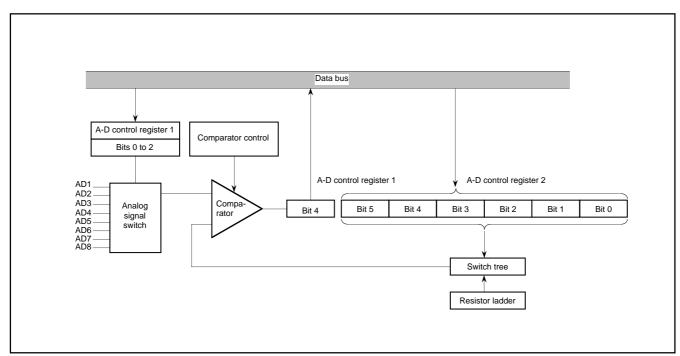


Fig. 40. A-D Comparator Block Diagram

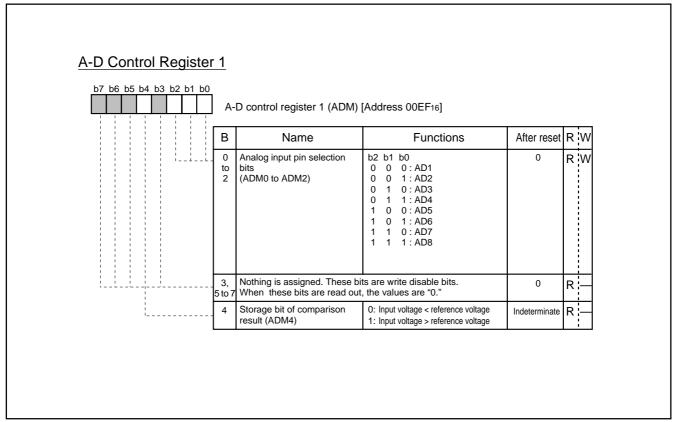


Fig. 41. A-D Control Register 1

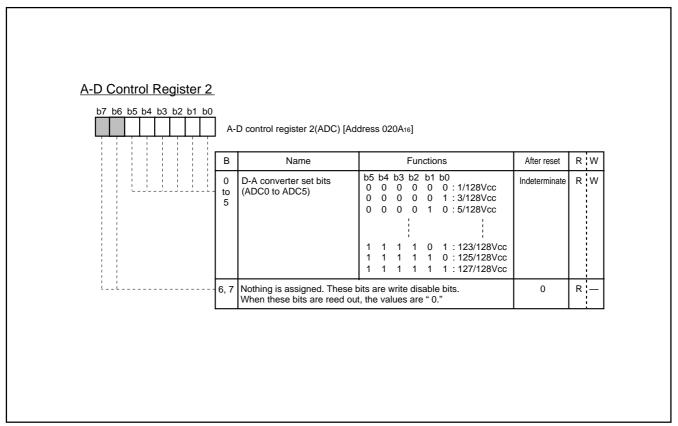


Fig. 42. A-D Control Register 2

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

CRT DISPLAY FUNCTIONS

(1) Outline of CRT Display Functions

Table 6 outlines the CRT display functions of this microcomputer. This microcomputer incorporates a CRT display circuit of 24 characters X3 lines. CRT display is controlled by the CRT control register. Up to 256 kinds of characters can be displayed. The colors can be specified for each character and up to 4 kinds of colors can be displayed on one screen. A combination of up to 15 colors can be obtained by using each output signal (R, G, B and I).

Characters are displayed in a 12 X16 dots configuration to obtain smooth character patterns (refer to Figure 43).

The following shows the procedure how to display characters on the CRT screen.

- ① Write the display character code in the display RAM.
- ② Specify the display color by using the color register.
- ③ Write the color register in which the display color is set in the display RAM.
- ④ Specify the vertical position by using the vertical position register.
- ⑤ Specify the character size by using the character size register.
- Specify the horizontal position by using the horizontal position register.
- Write the display enable bit to the designated block display flag of the CRT control register 1. When this is done, the CRT display starts according to the input of the VSYNC signal.

The CRT display circuit has an extended display mode. This mode allows multiple lines (4 lines or more) to be displayed on the screen by interrupting the display each time one line is displayed and rewriting data in the block for which display is terminated by software. Figure 44 shows the CRT display control register 1. Figure 45 shows the block diagram of the CRT display circuit.

Table 6. Outline of CRT Display Functions

Р	arameter	Functions		
Number of characters		24 characters X 3 lines		
Character	display area	12 X 16 dots (refer to Figure 43)		
Kinds of cl	naracters	256 kinds		
Kinds of cl	naracter sizes	4 kinds		
Color	Kinds of colors	1 screen : 4 kinds, maximum 15 kinds		
Coloi	Coloring unit	A character		
Display ex	pansion	Possible (multiline display)		
Raster col	oring	Possible (maximum 15 kinds)		
Character coloring	background	Possible (a character unit, 1 screen : 4 kinds, maximum 7 kinds)		

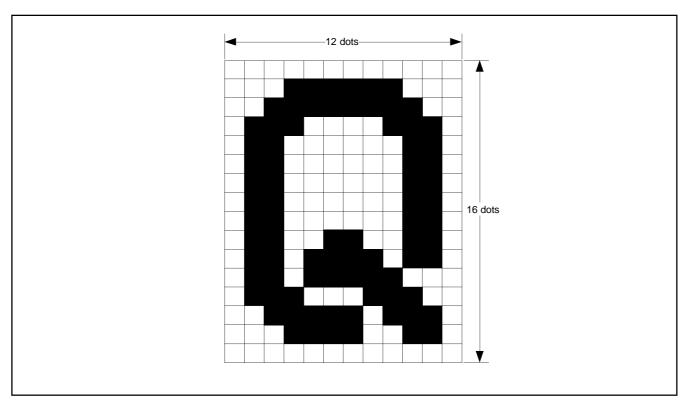


Fig. 43. CRT Display Character Configuration

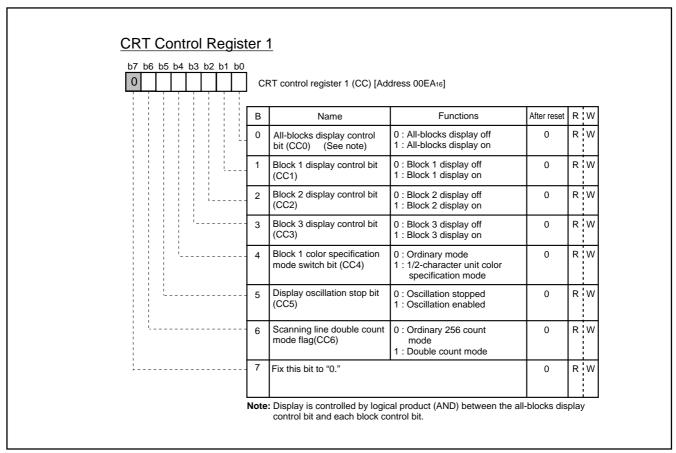


Fig. 44. CRT Control Register 1

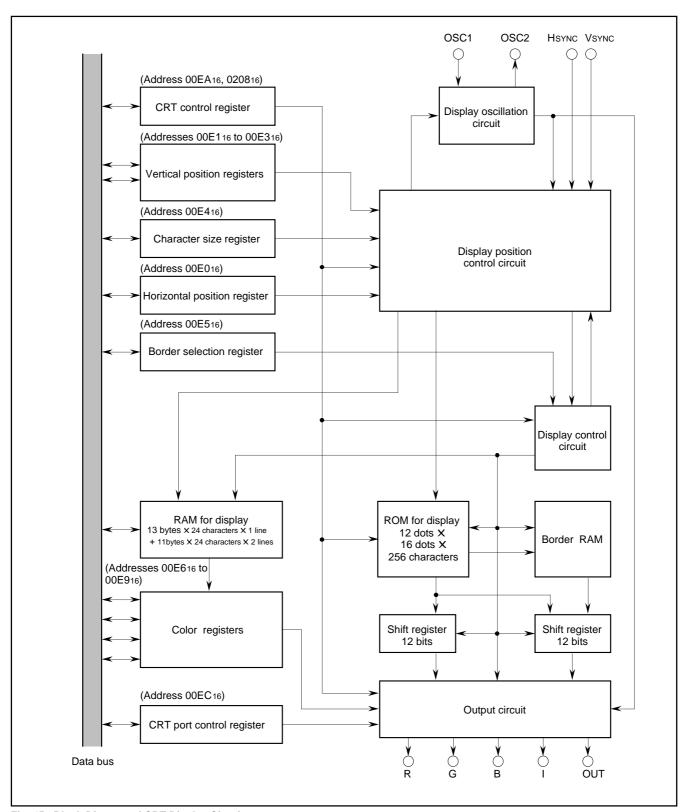


Fig. 45. Block Diagram of CRT Display Circuit

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

(2) Display Position

The display positions of characters are specified in units called a "block." There are 3 blocks, blocks 1 to 3. Up to 24 characters can be displayed in each block (refer to (4) Memory for Display).

The display position of each block can be set in both horizontal and vertical directions by software.

The display position in the horizontal direction can be selected for all blocks in common from 64-step display positions in units of 4Tc (Tc = oscillating cycle for display).

The display position in the vertical direction for each block can be selected from 128-step display positions in units of 4 scanning lines.

Block 2 is displayed after the display of block 1 is completed (refer to Figure 46 (a)). Accordingly, if the display of block 2 starts during the display of block 1, only block 1 is displayed. Similarly, when multiline display, block 1 is displayed after the display of block 2 is completed (refer to Figure 46 (b)).

The vertical position can be specified from 128-step positions (4 scanning lines per a step) for each block by setting values "0016" to "7F16" to bits 0 to 6 in the vertical position register (addresses 00E116 to 00E316). Figure 48 shows the vertical position register.

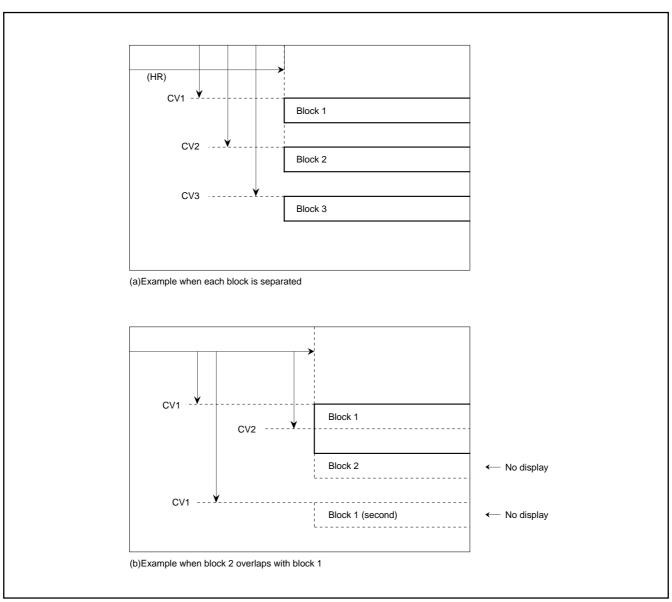


Fig. 46. Display Position

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

The display position in the vertical direction is determined by counting the horizontal sync signal (HSYNC). At this time, when VSYNC and HSYNC are positive polarity (negative polarity), it starts to count the rising edge (falling edge) of HSYNC signal from after fixed cycle of rising edge (falling edge) of VSYNC signal. So interval from rising edge (falling edge) of VSYNC signal to rising edge (falling edge) of HSYNC signal needs enough time (2 machine cycles or more) for avoiding jitter. The polarity of HSYNC and VSYNC signals can select with the CRT port control register (address 00EC16).

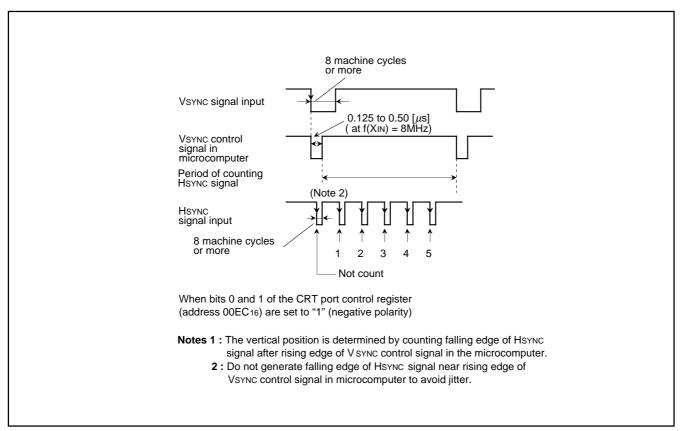


Fig. 47. Supplement Explanation for Display Position

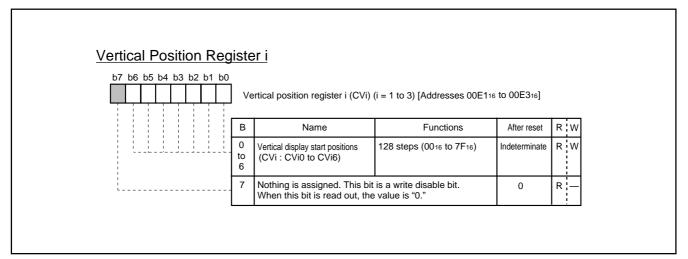


Fig. 48. Vertical Position Register i

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

The horizontal position is common to all blocks, and can be set in 64 steps (where 1 step is 4Tosc, Tosc being the display oscillation period) as values "0016" to "3F16" in bits 0 to 5 of the horizontal position register (address 00E016). The structure of the horizontal position register is shown in Figure 49.

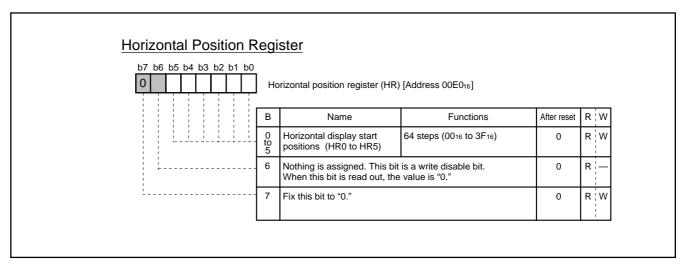


Fig. 49. Horizontal Position Register

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

(3) Character Size

The size of characters to be displayed can be from 4 sizes for each block. Use the character size register (address 00E416) to set a character size. The character size of block 1 can be specified by using bits 0 and 1 of the character size register; the character size of block 2 can be specified by using bits 2 and 3; the character size of block 3 can be specified by using bits 4 and 5. Figure 51 shows the character size register.

The character size can be selected from 4 sizes: minimum size, medium size, large size and extra large size. Each character size is determined by the number of scanning lines in the height (vertical) direction and the oscillating cycle for display (Tc) in the width (horizontal) direction. The minimum size consists of [1 scanning line] X [1Tc]; the medium size consists of [2 scanning lines] X [2Tc]; the large size consists of [3 scanning lines] X [3Tc]; and the extra large size consists of [4 scanning lines] X [4Tc]. Table 7 shows the relation between the set values in the character size register and the character sizes.

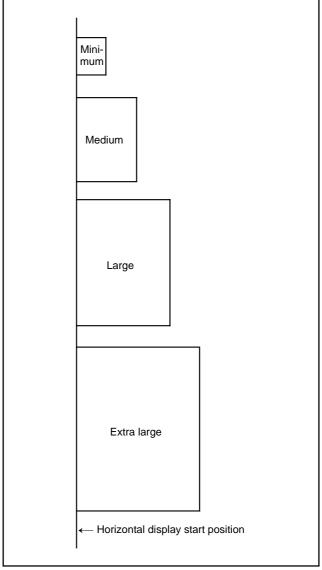


Fig. 50. Display Start Position of Each Character Size (horizontal direction)

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

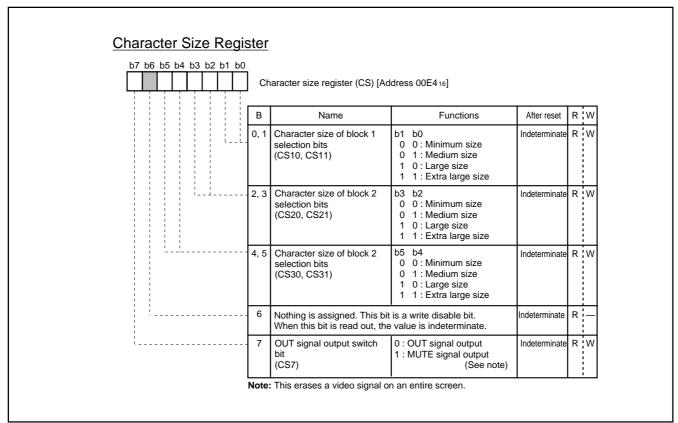


Fig. 51. Character Size Register

Table 7. Relation between Set Values in Character Size Register and Character Sizes

Set Values of Char	racter Size Register	Character	Width (horizontal) Direction	Height (Vertical) Direction
CSn0	CSn1	Size	Tc: Oscillating Cycle for Display	Scanning Lines
0	0	Minimum	1Tc	1
0	1	Medium	2Tc	2
1	0	Large	3Tc	3
1	1	Extra large	4Tc	4

Note: The display start position in the horizontal direction is not affected by the character size. In other words, the horizontal display start position is common to all blocks even when the character size varies with each block (refer to Figure 50).

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

(4) Memory for Display

There are 2 types of memory for display: CRT display ROM (addresses 1000016 to 12FFF16) used to store character dot data (masked) and CRT display RAM (addresses 060016 to 06D716) used to specify the colors and characters to be displayed. The following describes each type of display memory.

① ROM for display (addresses 1000016 to 12FFF16)

The CRT display ROM contains dot pattern data for characters to be displayed. For characters stored in this ROM to be actually displayed, it is necessary to specify them by writing the character code inherent to each character (code based on the addresses in the CRT display ROM) into the CRT display RAM. The character code list is shown in Table 8.

The CRT display ROM has a capacity of 12 K bytes. Since 32 bytes are required for 1 character data, the ROM can stores up to 384 kinds of characters.

The CRT display ROM space is broadly divided into 2 areas. The [vertical 16 dots] X [horizontal (left side) 8 dots] data of display characters are stored in addresses 1000016 to 107FF16, 1100016 to 117FF16 and 1200016 to 127FF16; the [vertical 16 dots] X [horizontal (right side) 4 dots] data of display characters are stored in addresses 1080016 to 10FFF16, 1180016 to 11FFF16 and 1280016 to 12FFF16 (refer to Figure 52). Note however that the high-order 4 bits in the data to be written to addresses 1080016 to 10FFF16, 1180016 to 11FFF16 and 1280016 to 12FFF16 must be set to "1" (by writing data "FX16").

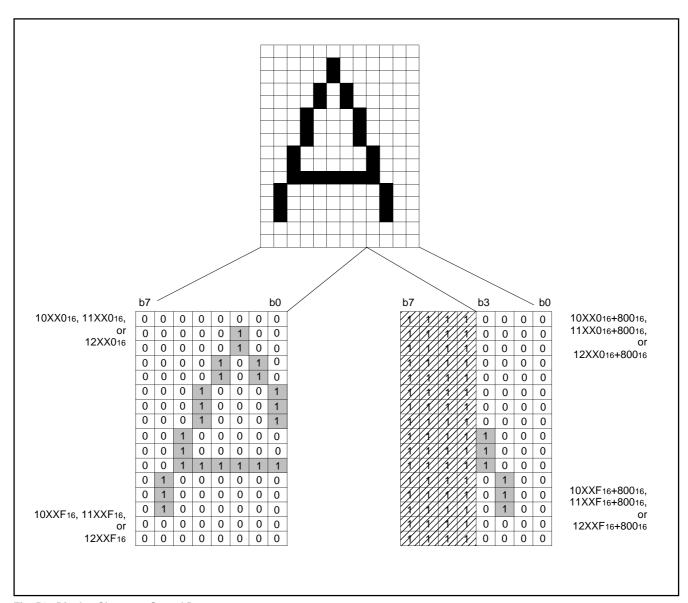


Fig. 52. Display Character Stored Data

Table 8. Character Code List (partially abbreviated)

Character and	Character data	storage address
Character code	Left 8 dots lines	Right 4 dots lines
	1000016	1080016
00016	to	to
	1000F16	1080F16
	1001016	1081016
00116	to	to
	1001F16	1081F16
	1002016	1082016
00216	to	to
	1002F16	1082F16
	1003016	1083016
00316	to	to
	1003F16	1083F16
:	:	:
	107E016	10FE016
07E16	to	to
	107EF16	10FEF16
	107F016	10FF016
07F16	to	to
	107FF16	10FFF16
	1100016	1180016
08016	to	to
	1100F16	1180F16
	1101016	1181016
08116	to	to
	1101F ₁₆	1181F16
:	:	:
	127D016	12FD016
17D16	to	to
	127DF16	12FDF16
	127E016	12FE016
17E16	to	to
	127EF16	12FEF16
	127F016	12FF016
17F16	to	to
	127FF16	12FFF16

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

2 RAM for display (addresses 060016 to 06D716)

The CRT display RAM is allocated at addresses 060016 to 06D716, and is divided into a display character code specification part and display color specification part for each block. Table 9 shows the contents of the CRT display RAM.

For example, to display 1 character position (the left edge) in block 1, write the character code in address 060016 and write the color register No. to the low-order 2 bits (bits 0 and 1) in address 068016. The color register No. to be written here is one of the 4 color registers in which the color to be displayed is set in advance. For details on color registers, refer to (5) Color Registers. The structure of the CRT display RAM is shown in Figure 53.

Table 9. Contents of CRT Display RAM

Block	Diaplay Position (from left)	Character Code	Specification	0.10
DIOCK	Display Position (from left)	Most Significant Bit	Low-order 8 bits	Color Specification
	1st character	Bit 4 at 068016	060016	068016
	2nd character	Bit 4 at 068116	060116	068116
	3rd character	Bit 4 at 068216	060216	068216
Block 1	; 22nd character	; Bit 4 at 069516	; 061516	; 069516
	23rd character	Bit 4 at 069616	061616	069616
	24th character	Bit 4 at 069716	061716	069716
	Not used	069816 to 069F16	061816 to 061F16	069816 to 069F16
	1st character	Bit 4 at 06A016	062016	06A016
	2nd character	Bit 4 at 06A116	062116	06A116
Block 2	3rd character	Bit 4 at 06A216	062216	06A216
DIOCK Z	22nd character	; Bit 4 at 06B516	; 063516	; 06B516
	23rd character	Bit 4 at 06B616	063616	06B616
	24th character	Bit 4 at 06B716	063716	06B716
	Not used	06B816 to 06BF16	063816 to 063F16	06B816 to 06BF16
	1st character	Bit 4 at 06C016	064016	06C016
	2nd character	Bit 4 at 06C116	064116	06C116
Block 2	3rd character	Bit 4 at 06C216	064216	06C216
	22nd character	Bit 4 at 06D516	065516	06D516
	23rd character	Bit 4 at 06D616	065616	06D616
	24th character	Bit 4 at 06D716	065716	06D716
	Not used	06D816 to 06FF16	065816 to 067F16	06D816 to 06FF16

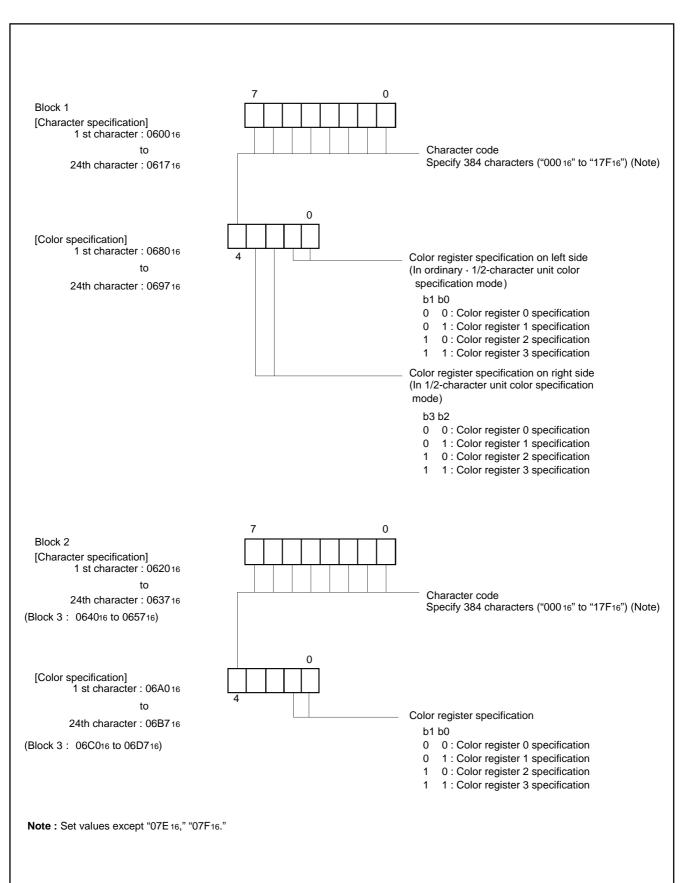


Fig. 53. Structure of RAM for Display

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

(5) Color Registers

The color of a displayed character can be specified by setting the color to one of the 4 registers (CO0 to CO3: addresses 00E616 to 00E916) and then specifying that color register with the CRT display RAM. There are 4 color outputs; R, G, B and I. By using a combination of these outputs, it is possible to set 2^4 –1 (when no output) = 15 colors. However, since only 4 color registers are available, up to 4 colors can be disabled at one time.

R, G, B and I outputs are set by using bits 0 to 3 in the color register. Bit 5 is used to specify whether a character output or blank output. Bits 4, 6 and 7 are used to specify character background color. Figure 54 shows the structure of the color register.

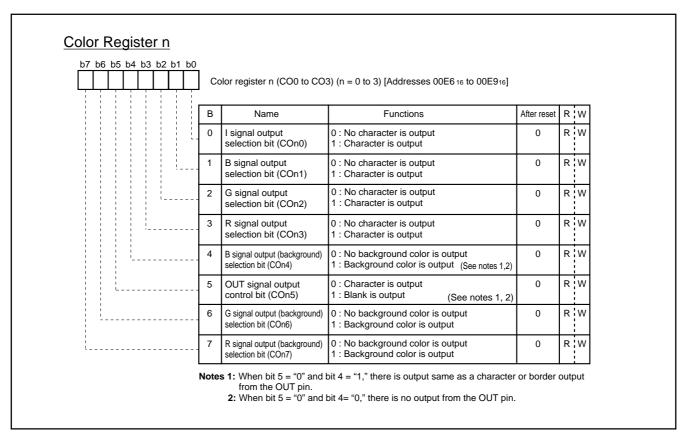


Fig. 54. Color Register n

Table 10. Colorling to Character Background by R,G,B Output Signals

	RGB Output		
Bit 7 (B)	Color Register Bit 6 (G)	Color	
0	0	Bit 3 (R) 0	Black
0	0	1	Red
0	1	0	Green
0	1	1	Yellow
1	0	0	Blue
1	0	1	Magenta
1	1	0	Cyan
1	1	1	White

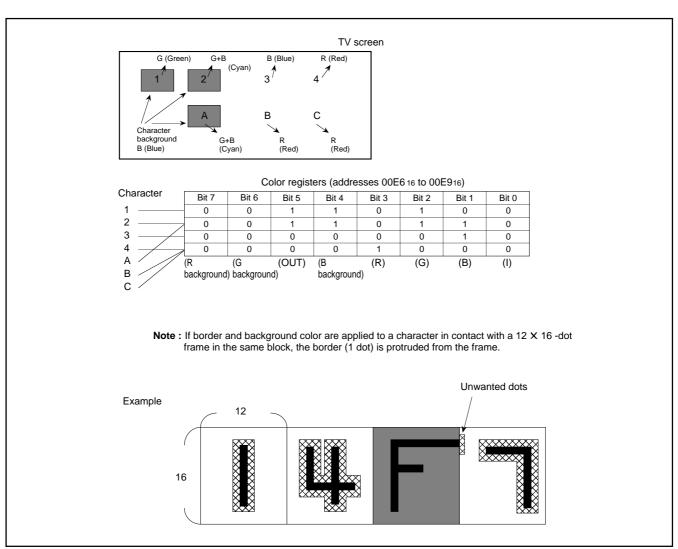


Fig. 55. Display Example

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

Table 11. Display Example of Character Background Coloring (when green is set for a character and blue is set for background color)

		p.w, _					9				ind blue is set for background color
			Color	regist	ers			G output	B output	OUT output	Character output
CO _{n7}	COn ₆	COn ₅	COn4	СОnз	COn2	COn ₁	COn ₀				·
×	x	0 (1	0 Note 1	0	1	0	0	A	No output	No output	Green > TV image is displayed on the character background.
×	×	0 (1	1 Note 1	0)	1	0	0	A	No output	Same output as character A	Green > Video signal and character color (green) are not mixed.
0	0	1	1	0	1	0	0	A	Background —character A	Blank output	Blue TV image on the character background is not displayed.
0	0	1	0	0	1	0	0	A	No output	Blank output	Black TV image on the character background is not displayed.

Notes 1: When COn5 = "0" and COn4 = "1," there is output same as a character or border output from the OUT pin.

When COn5 = "0" and COn4 = "0," there is no output from the OUT pin.

- 2: The portion "A" in which character dots are displayed is not mixed with any TV video signal.
- 3: The wavy-lined arrows in the table denote video signals.
- 4: n : 0 to 3, X : 0 or 1

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

(6) 1/2-character Unit Color Specification Mode

By setting "1" to bit 4 of CRT control register 1 (address 00EA16) it is possible to specify colors, in units of a 1/2-character size (16 dots high X 6 dots wide), to characters in only block 1.

In the 1/2-character unit color specification mode, colors of display characters in block 1 are specified as follows:

- The color on the left side :
- this is set to the color of the color register which is specified by bits 0 and 1 at the color specification addresses (addresses 068016 to 069716) in the CRT display RAM.
- The color on the right side: this is set to the color of the color register which is specified by bits 2 and 3 at the color specification addresses (addresses 068016 to 069716) in the CRT display RAM.

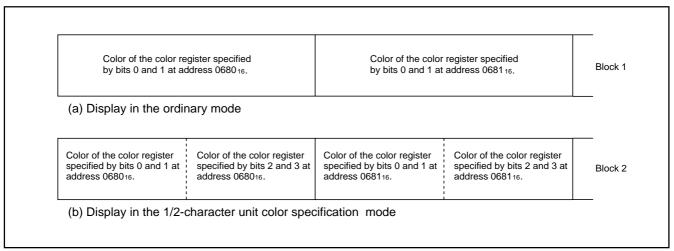


Fig. 56. Difference between Ordinary Color Specification Mode and 1/2-character Unit Color Specification Mode

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

(7) Character Border Function

An border of 1 clock (1 dot) equivalent size can be added to a character to be displayed in both horizontal and vertical directions. The border is output from the OUT pin.

Border can be specified in units of block by using the border selection register (address 00E516). The setting of the border takes priority of the setting by bit 5 of the color register, however, the border of the character to which a background color has been set cannot be output. Figure 58 shows the border selection register. Table 12 shows the relationship between the values set in the border selection register and the character border function.

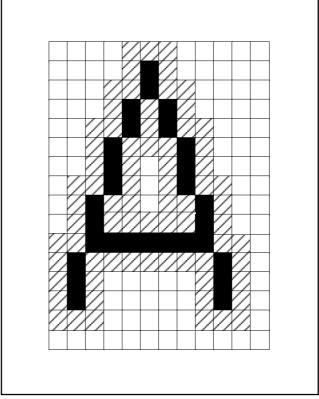


Fig. 57. Example of Border

M37207MF-XXXSP/FP

, M37207M8-XXXSP M37207EFSP/FP

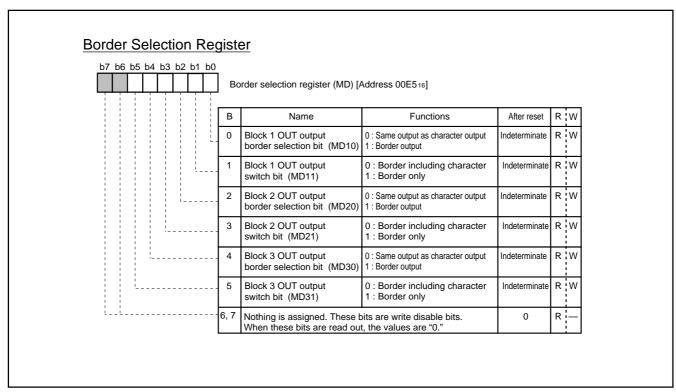


Fig. 58. Border Selection Register

Table 12. Relationship between Set Value in Border Selection Register and Character Border Function

Border Sele	ection Register	Functions	Example of Output				
MDn ₁	MDn1	Functions	Example of Output				
×	0	Ordinary	R, G, B, I output ———— OUT output ————				
0	1	Border including character output	R, G, B, I output OUT output				
1	1	Border only output	R, G, B, I output ——————————————————————————————————				

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

(8) Multiline Display

This microcomputer can ordinarily display 3 lines on the CRT screen by displaying 3 blocks at different vertical positions. In addition, it can display up to 16 lines by using CRT interrupts.

A CRT interrupt request occurs at the point at which display of each block has been completed. In other words, when a scanning line reaches the point of the display position (specified by the vertical position registers) of a certain block, the character display of that block starts, and an interrupt occurs at the point at which the scanning line exceeds the block.

Note: A CRT interrupt does not occur at the end of display when the block is not displayed. In other words, if a block is set to off display with the display control bit of the CRT control register 1 (address 00EA16), a CRT interrupt request does not occur (refer to Figure 59).

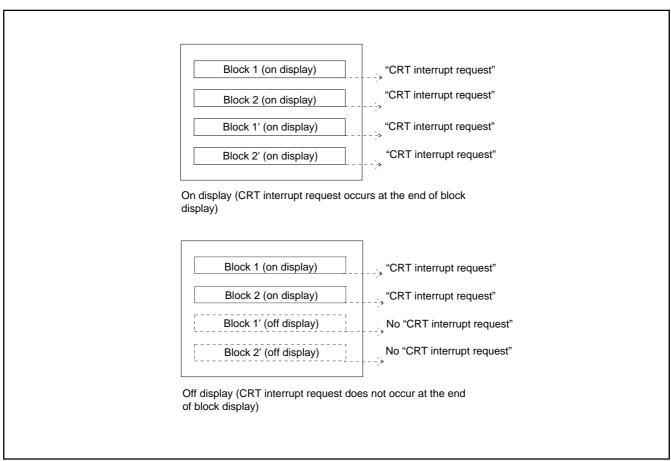


Fig. 59. Timing of CRT Interrupt Request

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

The display block counter counts the number of times the display of a block has been completed, and its contents are incremented by 1 each time the display of one block is completed.

To provide multi-line display, enable CRT interrupts by clearing the interrupt disable flag to "0" and setting the CRT interrupt enable bit (bit 4 of address 00FE16) to "1." After that, process the following sequence within the CRT interrupt processing routine:

- $\ensuremath{\mathfrak{O}}$ ead the value of the display block counter.
- ② The block for which display is terminated (i.e., the cause of CRT interrupt generation) can be determined by the value read in ①.
- ③ Replace the display character data and vertical display position of that block with the character data (contents of CRT display RAM) and vertical display position (contents of vertical position register) to be displayed next.

Figure 60 shows the structure of the display block counter.

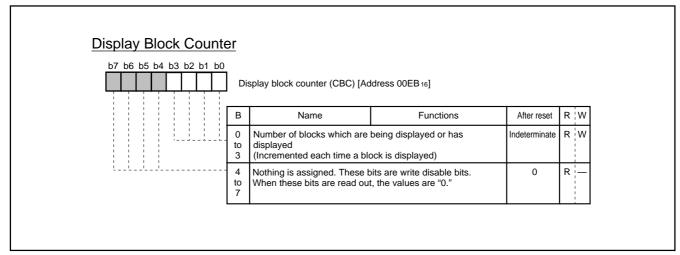


Fig. 60. Display Counter

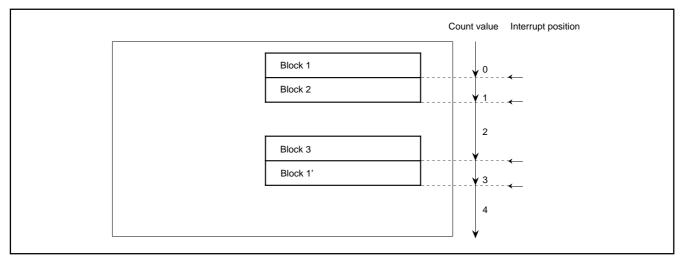


Fig. 61. Timing of CRT Interrupt Request and Display Counter Value

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

(9) Scanning Line Double Count Mode

1 dot in a displayed character is normally shown with 1 scanning line. In the scanning double count mode, 1 dot can be shown with 2 scanning lines. As a result, the displayed dot is extended 2 times the normal size in the vertical direction only (that is to say, the height of a character is extended twofold.)

In addition, because the scanning line count is doubled, the display start position of a character becomes also twofold position in the vertical direction.

In other words, the contents of the vertical position register is as follows:

- In ordinary mode
 256 steps as values "0016" to "FF16"
 (4 scanning lines per step)
- In scanning line double count mode 128 steps as values "0016" to "7F16" (8 scanning lines per step)

If the contents of the vertical position register for a block are set in the range of "8016" to "FF16" in the scanning line double count mode, that block cannot be displayed (not output to the CRT screen). The scanning line double count mode is specified by setting bit 6 of the CRT control register 1 (address 00EA16) to "1."

Since this function works in units of a screen, even if the mode is changed during display of 1 screen, the mode before the change remains until the display of the next screen.

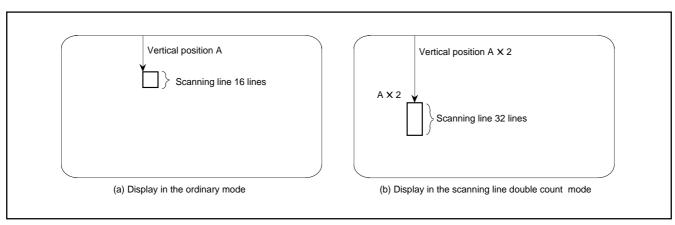


Fig. 62. Display in Ordinary Mode and in Scanning Line Double Count Mode

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

(10) Wipe Function

①Wipe mode

This microcomputer allows the display area to be gradually expanded or shrunk in the vertically direction in units of 1H (H: HSYNC signal). There are 3 modes for this scroll method. Each mode has DOWN and UP modes, providing a total of 6 modes.

Table 13 shows the contents of each wipe mode.

Table 13. Wipe Operation in Each Mode and Values of Wipe Mode Register

Mode		Wipe Operation		Wipe Mode Register		
				Bit 2	Bit 1	Bit 0
1	DOWN	Appear from upper side	A B C D E F G H I J K L M N O P Q R S T U V W X	0	0	1
	UP	Erase from lower side		1	0	1
2	DOWN	Erase from upper side	A B C D E F G H I J K L M N O P Q R S T U V W X	0	1	0
	UP	Appear from lower side		1	1	0
3	DOWN	Erase from both upper and lower sides	A B C D E F G H I J K L M N O P Q R S T U V W X	0	1	1
	UP	Appear to both upper and lower sides		1	1	1

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

②Wipe speed

The wipe speed is determined by the vertical synchronization (VSYNC) signal. For the NTSC interlace method, assuming that VSYNC = 16.7 ms, 262.5 Hsync signals (per field) we obtain the wipe speed as shown in Table 14.

Wipe resolution varies with each wipe mode. In mode 1 and mode 2, one of 3 resolutions (1H, 2H, 4H) can be selected. In mode 3, wipe is done in units of 4H only.

Table 14. Wipe Speed (NTSC interlace method, H = 262.5)

Wipe Resolution	Wipe Speed (entire screen)	
1H Unit	16.7 (ms) X262.5 ÷ 1 = 4 (s)	
2H Unit	16.7 (ms) X262.5 ÷ 2 = 2 (s)	
4H Unit	16.7 (ms) X 262.5 ÷ 4 = 1 (s)	

Table 15. Wipe Mode and Wipe Resolution

Table 101 Tripe mean and tripe recording:							
Mode	Wipe Resolution	Wipe Speed					
Mode 1	1H Unit	about 4 (s)					
Mode 2	2H Unit	about 2 (s)					
	4H Unit	about 1 (s)					
Mode 3	4H Unit	about 1 (s)					

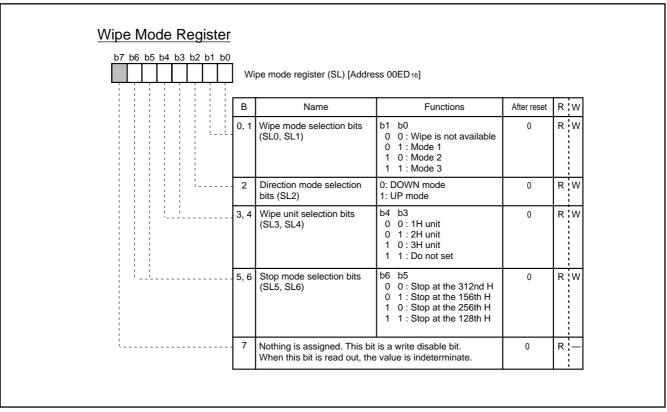


Fig. 63. Structure of Wipe Mode Register

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

(11) CRT Output Pin Control

The CRT output pins R, G, B, I and OUT can also function as ports P52, P53, P54, P55 and P56. Set the corresponding bit of the port P5 control register (address 00CB16) to "0" to specify these pins as CRT output pins, or set it to "1" to specify it as a general-purpose port P5 pins.

The input polarity of signals HSYNC and VSYNC and output polarity of signals R, G, B, I and OUT can be specified with the bits of the CRT port control register (address 00EC16). Set a bit to "0" to specify positive polarity; set it to "1" to specify negative polarity.

The CRT clock I/O pins OSC1, OSC2 are controlled with the port control register (address 020616).

The CRT port control register is shown in Figure 64.

The port control register is shown in Figure 65.

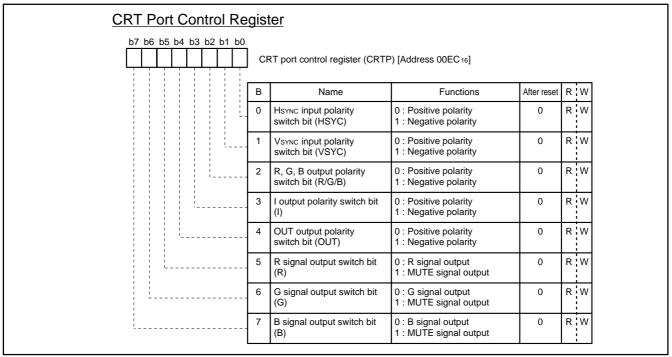


Fig. 64. CRT Port Control Register

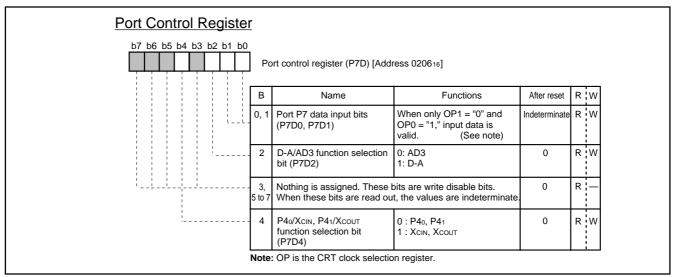


Fig. 65. Port Control Register

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

(12) Raster Coloring Function

An entire screen (raster) can be colored by switching each of the R, G, and B pins to MUTE output. R, G, B are controlled with the CRT port control register; I is controlled with the CRT control register 2; OUT is controlled with the character size register. 15 raster colors can be obtained.

If the OUT pin has been set to raster coloring output, a raster coloring signal is always output during 1 horizontal scanning period. This setting is necessary for erasing a background TV image.

If the R, G, and B pins have been set to MUTE signal output, a raster coloring signal is output in the part except a no-raster colored character (in Figure 66, a character "O") during 1 horizontal scanning period. This ensures that character colors do not mix with the raster color. In this case, MUTE signal is output from the OUT pin.

An example in which a magenta character "I" and a red character "O" are displayed with blue raster coloring is shown in Figure 66.

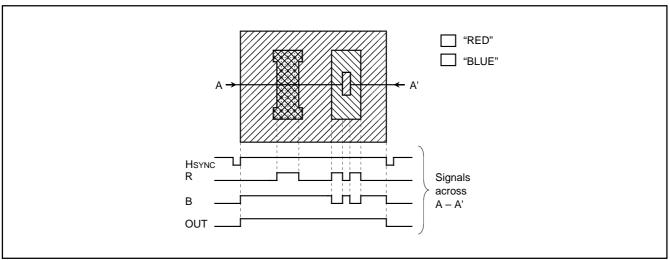


Fig. 66. Example of Raster Coloring

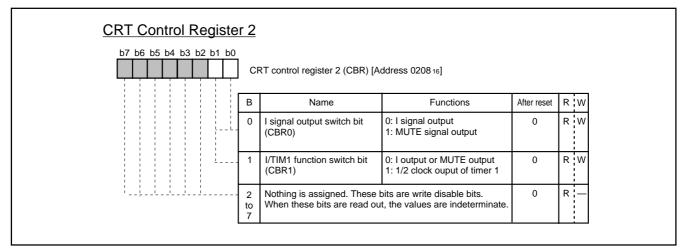


Fig. 67. CRT Control Register 2

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

(13) Clock for Display

Às a clock for display to be used for CRT display, it is possible to select one of the following 3 types.

- Main clock supplied from the XIN pin
- Clock from the LC or RC supplied from the pins OSC1 and OSC2.
- Clock from the ceramic resonator or quartz-crystal oscillator supplied from the pins OSC1 and OSC2.

This clock for display can be selected for each block by the CRT clock selection register (address 020916).

When selecting the main clock, set the oscillation frequency to 8 MHz.

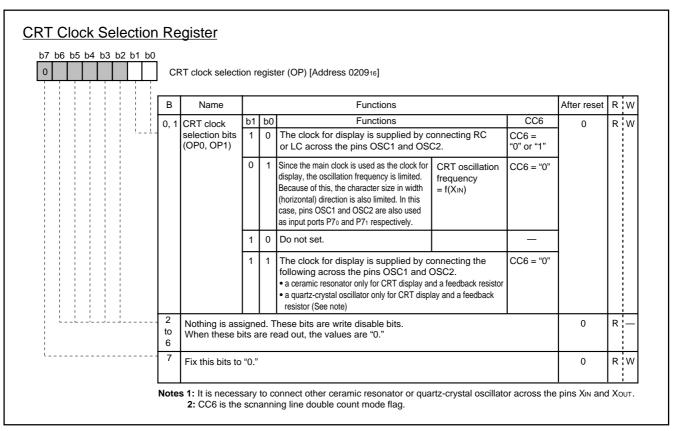


Fig. 68. CRT Clock Selection Register

SINGLE-CHIP 8-BIT CMOS MICR

OCOMPUTER f and ON-SCREEN DISPLA

r VOLTAGE SYNTHESI Y CONTR OLLER

INTERRUPT INTERVAL DETERMINATION FUNCTION

This microcomputer incorporates an interrupt interval determination circuit. This interrupt interval determination circuit has an 8-bit binary up counter as shown in Figure 69. Using this counter, it determines an interval on the INT1 or INT2 (refer to Figure 72)

The following describes how the interrupt interval is determined.

- The interrupt input to be determined (INT1 input or INT2 input) is selected by using bit 2 in the interrupt interval determination control register (address 00D816). When this bit is cleared to "0," the INT1 input is selected; when the bit is set to "1," the INT2 input is selected.
- 2. When the INT1 input is to be determined, the polarity is selected by using bit 3 of the interrupt interval determination control register; when the INT2 input is to be determined, the polarity is selected by using bit 4 of the interrupt interval determination control register.
 - When the relevant bit is cleared to "0," determination is made of the interval of a positive polarity (rising transition); when the bit is set to "1," determination is made of the interval of a negative polarity (falling transition).

- 3. The reference clock is selected by using bit 1 of the interrupt interval determination control register. When the bit is cleared to "0," a 32 ms clock is selected; when the bit is set to "1," a 16 ms clock is selected (based on an oscillation frequency of 8MHz in either case).
- 4. Simultaneously when the input pulse of the specified polarity (rising or falling transition) occurs on the INT1 pin (or INT2 pin), the 8-bit binary up counter starts counting up with the selected reference clock (32 ms or 16 ms).
- 5. Simultaneously with the next input pulse, the value of the 8-bit binary up counter is loaded into the interrupt interval determination register (address 00D716) and the counter is immediately reset ("0016"). The reference clock is input in succession even after the counter is reset, and the counter restarts counting up from "0016."
- 6. When count value "FE16" is reached, the 8-bit binary up counter stops counting. Then, simultaneously when the next reference clock is input, the counter sets value "FF16" to the interrupt interval determination register. The reference clock is generated by setting bit 0 of PWM mode register 1 to "0."

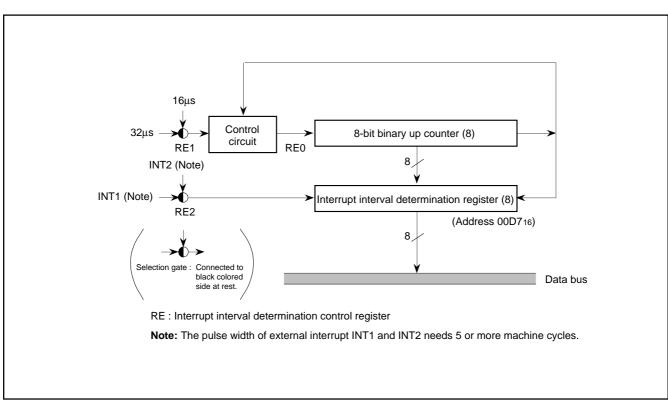


Fig. 69. Block Diagram of Interrupt Interval Determination Circuit

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

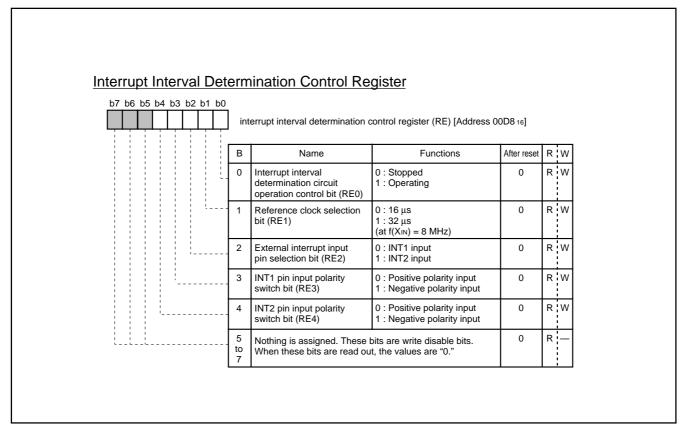


Fig. 70. Interrupt Interval Determination Control Register

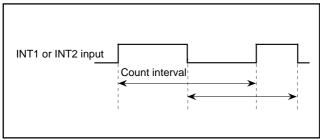


Fig. 71. Measuring Interval

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

ROM CORRECTION FUNCTION

This can correct program data in ROM. Up to 2 addresses (2 blocks) can be corrected, a program for correction is stored in the ROM correction memory in RAM. The ROM memory for correction is 32 bytes X2 blocks.

Block 1: addresses 02C016 to 02DF16 Block 2: addresses 02E016 to 02FF16

Set the address of the ROM data to be corrected into the ROM correction address register. When the value of the counter matches the ROM data address in the ROM correction address, the main program branches to the correction program stored in the ROM memory for correction. To return from the correction program to the main program, the op code and operand of the JMP instruction (total of 3 bytes) are necessary at the end of the correction program. When the blocks 1 and 2 are used in series, the above instruction is not needed at the end of the block 1.

The ROM correction function is controlled by the ROM correction enable register.

- **Notes 1**: Specify the first address (op code address) of each instruction as the ROM correction address.
 - **2**: Use the JMP instruction (total of 3 bytes) to return from the correction program to the main program.
 - 3: Do not set the same ROM correction address to the blocks 1 and 2.

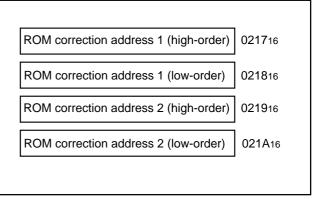


Fig. 72. ROM Correction Address Registers

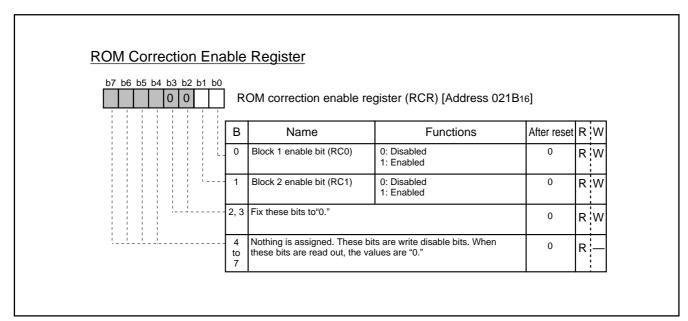


Fig. 73. ROM Correction Enable Register

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

RESET CIRCUIT

When the oscillation of a quartz-crystal oscillator or a ceramic resonator is stable and the power source voltage is 5 V \pm 10 %, hold the RESET pin at LOW for 2 μs or more, then return is to HIGH. Then, as shown in Figure 75, reset is released and the program starts from the address formed by using the content of address FFFF16 as the high-order address and the content of the address FFFE16 as the low-order address. The internal state of microcomputer at reset are shown in Figure 75.

An example of the reset circuit is shown in Figure 74.

The reset input voltage must be kept 0.6 V or less until the power source voltage surpasses $4.5\ V.$

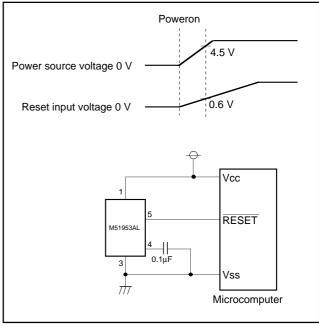


Fig. 74. Example of Reset Circuit

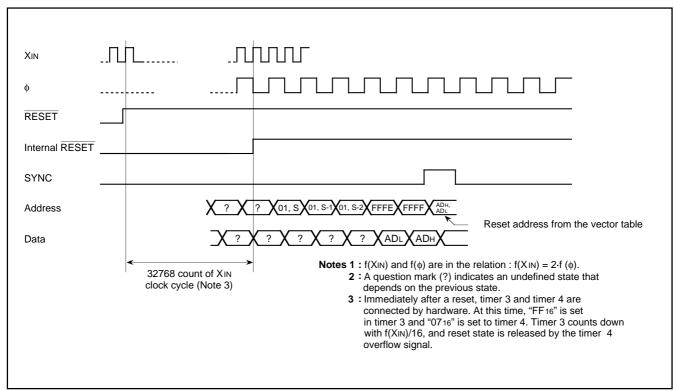


Fig. 75. Reset Sequence

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

CLOCK GENERATING CIRCUIT

This microcomputer has 2 built-in oscillation circuits. An oscillation circuit can be formed by connecting a resonator between XIN and XOUT (XCIN and XCOUT). Use the circuit constants in accordance with the resonator manufacturer's recommended values. No external resistor is needed between XIN and XOUT since a feed-back resistor exists on-chip. However, an external feed-back resistor is needed between XCIN and XCOUT. When using XCIN-XCOUT as sub-clock, clear bits 7 and 6 of the mixing control register to "0." To supply a clock signal externally, input it to the XIN (XCIN) pin and make the XOUT (XCOUT) pin open. When not using XCIN clock, connect the XCIN to VSs and make the XCOUT pin open.

After reset has completed, the internal clock ϕ is half the frequency of XIN. Immediately after poweron, both the XIN and XCIN clock start oscillating. To set the internal clock ϕ to low-speed operation mode, set bit 7 of the CPU mode register (address 00FB16) to "1."

Oscillation Control (1) Stop mode

The built-in clock generating circuit is shown in Figure 78. When the STP instruction is executed, the internal clock ϕ stops at HIGH. At the same time, timers 3 and 4 are connected by hardware and "FF16" is set in timer 3 and "0716" is set in the timer 4. Select f(XIN)/16 or f(XCIN)/16 as the timer 3 count source (set bit 0 of the timer mode register 2 to "0" before the execution of the STP instruction). Moreover, set the timer 3 and timer 4 interrupt enable bits to disabled ("0") before execution of the STP instruction. The oscillator restarts when external interrupt is accepted. However, the internal clock ϕ keeps its HIGH until timer 4 overflows, allowing time for oscillation stabilization when a ceramic resonator or a quartz-crystal oscillator is used.

(2) Wait mode

When the WIT instruction is executed, the internal clock ϕ stops in the "H" level but the oscillator continues running. This wait state is released at reset or when an interrupt is accepted (Note). Since the oscillator does not stop, the next instruction can be executed at once.

Note: In the wait mode, the following interrupts are invalid.

- (1) VSYNC interrupt
- (2) CRT interrupt
- (3) f(XIN)/4096 interrupt
- (4) Timer 1 and 2 interrupts using TIM2 pin input as count
- (5) Timer 1 interrupt using f(XIN)/4096 or f(XCIN)/4096 as count source
- (6) Timer 3 interrupt using TIM3 pin input as count source
- (7) Multi-master I²C-BUS interface interrupt
- (8) Timer 4 interrupt using f(XIN)/2 or f(XCIN)/2 as count souce

(3) Low-Speed Mode

If the internal clock is generated from the sub-clock (XCIN), a low power consumption operation can be realized by stopping only the main clock XIN. To stop the main clock, set bit 6 (CM6) of the CPU mode register (00FB16) to "1." When the main clock XIN is restarted, the program must allow enough time to for oscillation to stabilize. Note that in low-power-consumption mode the XCIN-XCOUT drivability can be reduced, allowing even lower power consumption (20 μ A with f (XCIN) = 32kHz). To reduce the XCIN-XCOUT drivability, clear bit 5 (CM5) of the CPU mode register (00FB16) to "0." At reset, this bit is set to "1" and strong drivability is selected to help the oscillation to start. When an STP instruction is executed, set this bit to "1" by software before executing.

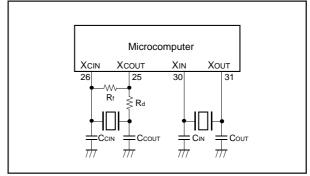


Fig. 76. Ceramic Resonator Circuit Example

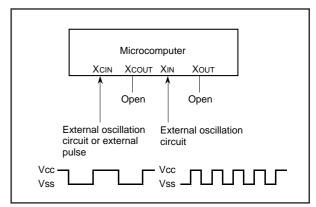


Fig. 77. External Clock Input Circuit Example

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

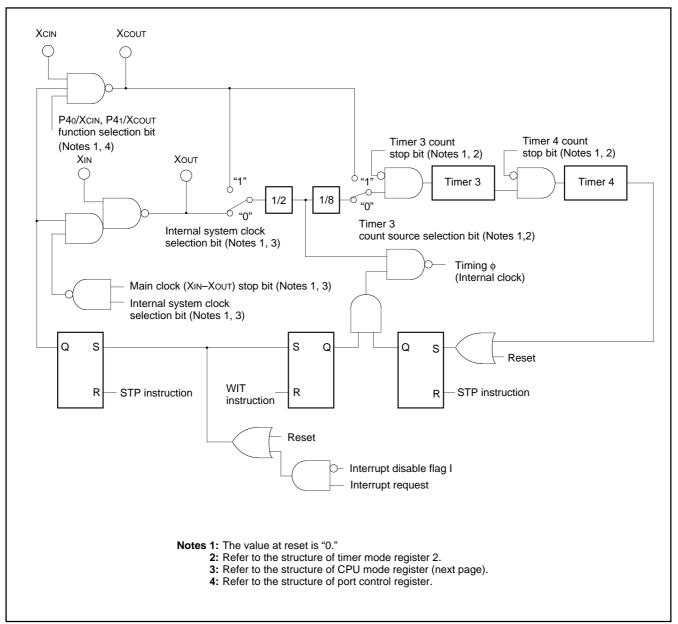


Fig. 78. Clock Generating Circuit Block Diagram

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

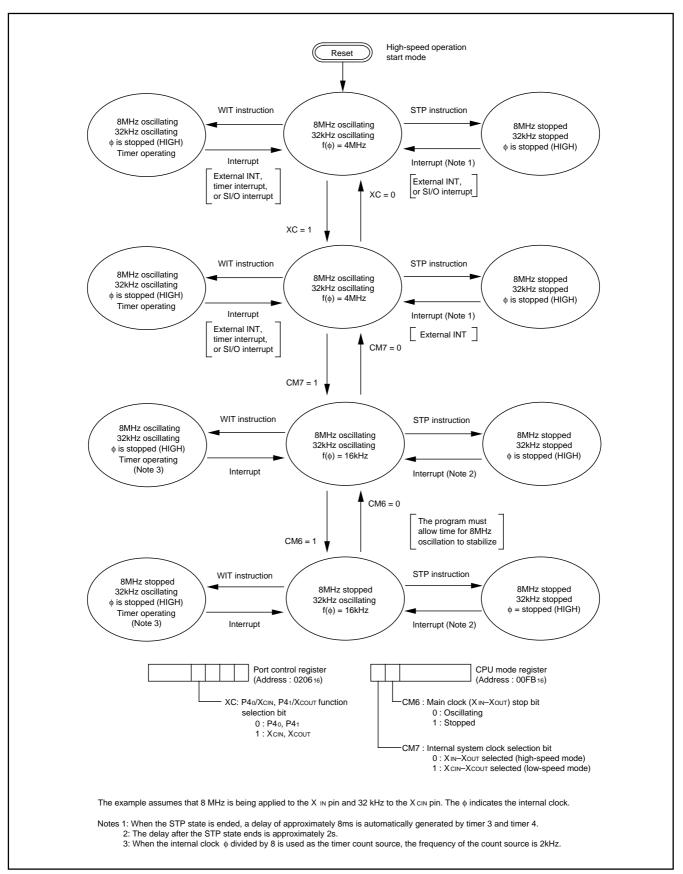


Fig. 79. State Transitions of System Clock

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

DISPLAY OSCILLATION CIRCUIT

The CRT display clock oscillation circuit has a built-in clock oscillation circuits, so that a clock for CRT display can be obtained simply by connecting an LC, an RC, a quartz-crystal oscillator or a ceramic resonator across the pins OSC1 and OSC2. Which of the sub-clock or the display oscillation circuit is selected by setting bits 0 and 1 of the CRT clock selection register (address 020916).

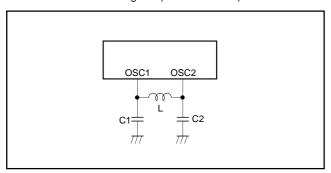


Fig. 80. Display Oscillation Circuit

AUTO-CLEAR CIRCUIT

When a power source is supplied, the auto-clear function will operate by connecting the following circuit to the RESET pin.

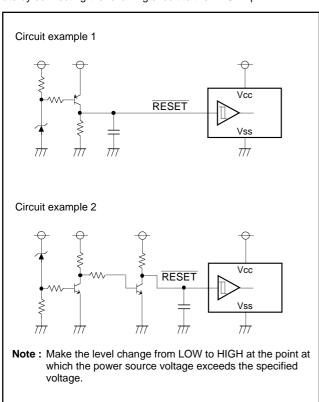


Fig. 81. Auto-clear Circuit Example

ADDRESSING MODE

The memory access is reinforced with 17 kinds of addressing modes. Refer to SERIES 740 <Software> User's Manual for details.

MACHINE INSTRUCTIONS

There are 71 machine instructions. Refer to SERIES 740 <Soft- ware> User's Manual for details.

PROGRAMMING NOTES

- (1) The divide ratio of the timer is 1/(n+1).
- (2) Even though the BBC and BBS instructions are executed immediately after the interrupt request bits are modified (by the program), those instructions are only valid for the contents before the modification. At least one instruction cycle is needed (such as an NOP) between the modification of the interrupt request bits and the execution of the BBC and BBS instructions.
- (3) After the ADC and SBC instructions are executed (in the decimal mode), one instruction cycle (such as an NOP) is needed before the SEC, CLC, or CLD instruction is executed.
- (4) An NOP instruction is needed immediately after the execution of a PLP instruction.
- (5) In order to avoid noise and latch-up, connect a bypass capacitor ($\approx 0.1~\mu F$) directly between the VCC pin–VSS pin and the VCC pin–CNVss pin, using a thick wire.

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

DATA REQUIRED FOR MASK ORDERS

The following are necessary when ordering a mask ROM production:

- (1) Mask ROM Order Confirmation Form
- (2) Mark Specification Form
- (3) Data to be written to ROM, in EPROM form (32-pin DIP type 27C101, three identical copies)

PROM Programming Method

The built-in PROM of the One Time PROM version (blank) and the built-in EPROM version can be read or programmed with a general-purpose PROM programmer using a special programming adapter.

Product	Name of Programming Adapter
M37207EFSP	PCA4762
M37207EFFP	PCA7417

The PROM of the One Time PROM version (blank) is not tested or screened in the assembly process nor any following processes. To ensure proper operation after programming, the procedure shown in Figure 82 is recommended to verify programming.

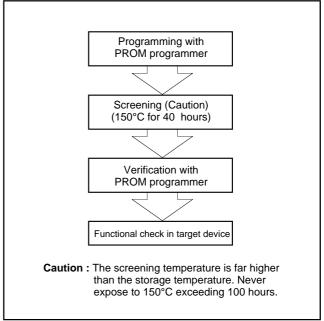


Fig. 82. Programming and Testing of One Time PROM Version

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

ABSOLUTE MAXIMUM RATINGS

Symbol		Parameter	Conditions	Ratings	Unit
Vcc	Power source voltage	Vcc	All voltages are based	-0.3 to 6	V
Vı	Input voltage	CNVss	on Vss. Output transistors are	-0.3 to 6	V
VI	Input voltage	P00-P07, P10-P17, P20-P27, P30-P36, P40-P47, P60-P67, P70, P71,OSC1, XIN, HSYNC, VSYNC, RESET, XCIN, AD1-AD8	cut off.	-0.3 to Vcc + 0.3	V
Vo	Output voltage	P00-P07, P10-P17, P20-P27, P30-P36, P40-P45, R, G, B, I, OUT, D-A, XOUT, XCOUT, OSC2		-0.3 to Vcc + 0.3	V
Vo	Output voltage	P46, P47, P60-P67		-0.3 to 13	V
Іон	Circuit current	R, G, B, I, OUT, P00–P07, P10–P17, P20–P27, P30, P31, D-A		0 to 1 (Note 1)	mA
IOL1	Circuit current	R, G, B, I, OUT, P00–P07, P10–P17, P20–P23,P30–P36, D-A		0 to 2 (Note 2)	mA
IOL2	Circuit current	P46, P47, P60-P67		0 to 1 (Note 2)	mA
IOL3	Circuit current	P24-P27		0 to 10 (Note 3)	mA
IOL4	Circuit current	P40-P45		0 to 6 (Note 2)	mA
Pd	Power dissipation			550	mW
Topr	Operating temperature		Ta = 25 °C	-10 to 70	°C
Tstg	Storage temperature			-40 to 125	°C

RECOMMENDED OPERATING CONDITIONS (Ta = -10 °C to 70 °C, Vcc = 5 V \pm 10 %, unless otherwise noted)

Symbol	Parameter		Limits				
Symbol	'	Parameter	Min.	Тур.	Max.	Unit	
Vcc	Power source voltage (Note 4), Dur	ring CPU, CRT operation	4.5	5.0	5.5	V	
Vss	Power source voltage	-	0	0	0	V	
VIH1	HIGH input voltage	P00–P07, P10–P17, P20–P27, P30–P36, P60–P67, P70, P71, HSYNC, VSYNC, RESET, XIN, XCIN, OSC1, P40–P47 (including when using serial I/O)	0.8Vcc		Vcc	V	
VIH2	HIGH input voltage	SDA3, SCL3, S DA2, SCL2, SDA1, SCL1 (When using I ² C-BUS)	0.7Vcc		Vcc	V	
VIL1	LOW input voltage	P00–P07, P10–P17, P20–P27, P30, P31, P35, P40–P47, P70, P71	0		0.4 Vcc	V	
VIL2	LOW input voltage	SDA3, SCL3, SDA2, SCL2, SDA1, SCL1 (When using I ² C-BUS)	0		0.3 Vcc	V	
VIL3	LOW input voltage	HSYNC, VSYNC, RESET, P32-P34, P36, P41, P42, P44-P46, XIN, XCIN, OSC1 When using serial I/O; SOUT2, SCLK2, SIN2, SOUT1, SCLK1, SIN1	0		0.2 VCC	V	
Іон	HIGH average output current (Note 1)	R, G, B, I, OUT, D-A, P00–P07, P10–P17, P20–P27, P30, P31			1	mA	
IOL1	LOW average output current (Note 2)	R, G, B, I, OUT, D-A, P00–P07, P10–P17, P20–P23, P30–P36			2	mA	
IOL2	LOW average output current (Note 2)	P46, P47, P60–P67			1	mA	
IOL3	LOW average output current (Note 3)	P24-P27			10	mA	
IOL4	LOW average output current (Note 2)	P40-P45			6	mA	
f(XIN)	Oscillation frequency (for CPU oper	ration) (Note 5) XIN	7.9	8.0	8.1	MH:	
f(XCIN)	Oscillation frequency (for sub-clock	operation) (Note 7)XCIN	29	32	35	kHz	
fosc	Oscillation frequency (for CRT disp	lay) (Note 6) OSC1	6.0		13	MH	
fhs1	Input frequency	TIM2, TIM3, INT1, INT2			100	kHz	
fhs2	Input frequency	SCLK1, SCLK2			1	MH:	
fhs3	Input frequency	SCL1, SCL2, SCL3			400	kHz	

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

ELECTRIC CHARACTERISTICS (Vcc = 5 V \pm 10 %, Vss = 0 V, f(XIN) = 8 MHz, Ta = -10 °C to 70 °C, unless otherwise noted)

Symbol	Parameter		Test conditions			Limits		Unit
Symbol	1 6	arameter	1631 00	riditions	Min.	Тур.	Max.	Offic
Icc	Power source current System operation		VCC = 5.5 V, $f(XIN) = 8 MHz$	CRT OFF		15	30	mA
				CRT ON		30	45	
			Vcc = 5.5 V, f f(Xcin) = 32kh CRT OFF, Lo dissipation n (CM5 = "0," Ch	Hz, 'w-power node set		100	200	μА
		Wait mode	Vcc = 5.5 V, f	(XIN) = 8 MHz		2	4	mA
			VCC = 5.5 V, f f(XCIN) = 32kh Low-power of mode set (CM "1")	·Ìz,		60	100	μА
		Stop mode	VCC = 5.5 V, f f(XCIN) = 0	f(XIN) = 0,		1	10	
Voн	P	, G, B, I, OUT, P00–P07, 10–P17, P20–P27, D-A, P30, 31	VCC = 4.5 V IOH = -0.5 mA	4	2.4			V
VOL	P	r, G, B, I, OUT, P00–P07, 10–P17, P20–P23, P30–P36, I-A	VCC = 4.5 V IOL = 0.5 mA				0.4	
	LOW output voltage P46, P47, P60-P67		VCC = 4.5 V IOL = 0.5 mA				0.4	V
	LOW output voltage P24–P27		VCC = 4.5 V IOL = 10.0 mA				3.0	
	LOW output voltage P	40-P45	Vcc = 4.5 V	IOL = 3 mA			0.4	
				IOL = 6 mA			0.6	
VT+-VT-	Hysteresis R	ESET	Vcc = 5.0 V			0.5	0.7	V
		SYNC, VSYNC, P32, P33, P34, 36, P40–P46,	VCC = 5.0 V			0.5	1.3	
lizh	P	ESET, P00–P07, P10–P17, 20–P27, P30–P36, P40–P47, D1–AD8	VCC = 5.5 V VI = 5.5 V				5	μА
lızı	' P	ESET, P00–P07, P10–P17, 20–P27, P30–P36, P40–P46, 60–P67, AD1–AD8	VCC = 5.5 V VI = 0 V				5	μА
ЮZН	HIGH output leak current P	46, P47, P60–P67	Vcc = 5.5 V Vo = 12 V				10	μА
RBS	I ² C-BUS-BUS switch c (between SCL1 and SC		VCC = 4.5 V				130	Ω

Notes 1: The total current that flows out of the IC must be 20 mA or less.

- 2: The total input current to IC (IOL1 + IOL2 + IOL4) must be 30 mA or less.
- 3: The total average input current for ports P24–P27 to IC must be 20 mA or less.
- **4:** Connect 0.022 m F or more capacitor externally between the power source pins Vcc–Vss so as to reduce power source noise. Also connect 0.068 m F or more capacitor externally between the pins Vcc–CNVss.
- 5: Use a quartz-crystal oscillator or a ceramic resonator for the CPU oscillation circuit.
- 6: Use a RC or an LC for the CRT oscillation circuit.
- 7: When using the sub-clock, set fCLK < fCPU/3.
- **8:** P32–P34 ,P36 have the hysteresis when these pins are used as interrupt input pins or timer input pins. P40–P46 have the hysteresis when these pins are used as serial I/O pins.

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

A-D COMPARATOR CHARACTERISTICS

(Vcc = 5 V \pm 10 %, Vss = 0 V, f(XIN) = 8 MHz, Ta = -10 °C to 70 °C, unless otherwise noted)

Symbol	Parameter	Test conditions		l loit		
			Min.	Тур.	Max.	Unit
_	Resolution				6	bits
_	Absolute accuracy		0	±1	±2	LSB

Note: When Vcc = 5 V, 1 LSB = 5/64 V.

MULTI-MASTER I2C-BUS BUS LINE CHARACTERISTICS

Cymhal	Davamentas	Standard of	clock mode	High-speed	Unit	
Symbol	Parameter	Min.	Max.	Min.	Max.	Offic
tBUF	Bus free time	4.7		1.3		μs
tHD:STA	Hold time for START condition	4.0		0.6		μs
tLOW	"L" period of SCL clock	4.7		1.3		μs
tR	Rising time of both SCL and SDA signals		1000	20+0.1Cb	300	ns
tHD:DAT	Data hold time	0		0	0.9	μs
tHIGH	"H" period of SCL clock	4.0		0.6		μs
tF	Falling time of both SCL and SDA signals		300	20+0.1Cb	300	ns
tsu:dat	Data set-up time	250		100		ns
tsu:sta	Set-up time for repeated START condition	4.7		0.6		μs
tsu:sto	Set-up time for STOP condition	4.0		0.6		μs

Note: Cb = total capacitance of 1 bus line

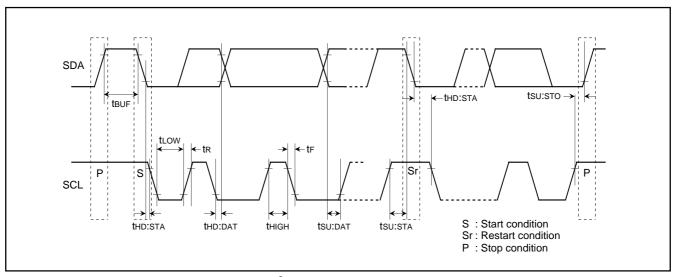
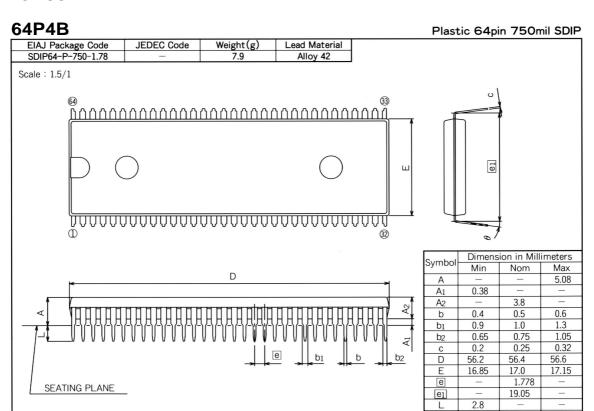
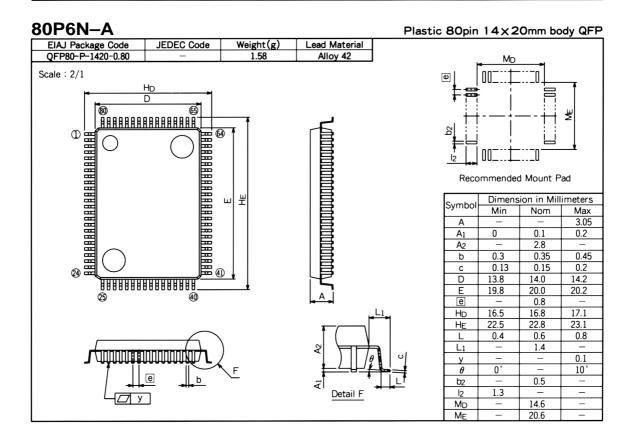


Fig. 83. Definition diagram of timing on multi-master I²C-BUS

15°


M37207MF-XXXSP/FP, M37207M8-XXXSP M37207EFSP/FP


SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

A

U,

PACKAGE OUTLINE

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

GZZ-SH08-83B < 48B0 >

740 FAMILY MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37207MF-XXXSP/FP MITSUBISHI ELECTRIC

Mask R	OM number	
	Date :	
٠.	Section head signature	Supervisor signature
Receipt		
Re		

Note: Please fill in all items marked *

		Company		TEL			Submitted by	Supervisor
ale.	Customor	name		()	ance		
*	Customer	Date issued	Date :			Issua		

1. Confirmation

Specify the name of the product being ordered and the type of EPROMs submitted.

Three EPROMs are required for each pattern.

If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based on this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differs from this data. Thus, extreme care must be taken to verify the data in the submitted EPROMs.

Microcomputer name :	☐ M37207MF-XXXSP	☐ M37	7207MF-XXXFP	
Checksum co	ode for entire EPROM		(hexadecimal notation	า)

EPROM type (indicate the type used)

LI KOW type	o (intaloc	ate the type
	27C′	101
EPROM add	Iress	
000016	Produc	t name
000F ₁₆		code : 07MF –'
080016	dat	ta
FFFF ₁₆	ROM 62	K bytes
1000016	Character	ROM 1-a
1080016		Character ROM 1-b
1100016	Character	ROM 2-a
1180016		Character ROM 2-b
1200016	Character	ROM 3-a
1280016		Character ROM 3-b
13000 ₁₆ 1FFFF ₁₆		

- (1) Set "FF₁₆" in the shaded area.
- (2) Write the ASCII codes that indicates the product name of "M37207MF-" to addresses 0000 16 to 000F16. EPROM data check item (Refer the EPROM data and check " √" in the appropriate box)
 - Do you set "FF16" in the shaded area (set "F16" in the low-order 4-bit shaded area) ? \rightarrow Yes \square
 - Do you write the ASCII codes that indicates the product name of "M37207MF-" to addresses 0000 ₁₆ to 000F₁₆? → Yes □

2. Mark specification

Mark specification must be submitted using the correct form for the type package being ordered fill out the appropriate mark specification form (64P4B for M37207MF-XXXSP, 80P6N for M37207MF-XXXFP) and attach to the mask ROM confirmation form.

(1/3)

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

GZZ-SH08-83B <48B0 >

740 FAMILY MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37207MF-XXXSP/FP MITSUBISHI ELECTRIC

Writing the product name and character ROM data onto EPROMs

Addresses 0000 16 to 000F16 store the product name, and addresses 10000 16 to 12FFF16 store the character pattern. If the name of the product contained in the EPROMs does not match the name on the mask ROM confirmation form, the ROM processing is disabled. Write the data correctly.

 Inputting the name of the product with the ASCII code ASCII codes 'M37207MF-' are listed on the right.
 The addresses and data are in hexadecimal notation.

Address		Address	
000016	'M' = 4 D ₁₆	000816	'-' = 2 D ₁₆
000116	'3' = 3 3 ₁₆	000916	F F ₁₆
000216	'7' = 3 7 ₁₆	000A ₁₆	F F ₁₆
000316	'2' = 3 2 ₁₆	000B ₁₆	F F ₁₆
000416	'0' = 3 0 ₁₆	000C ₁₆	FF ₁₆
000516	'7' = 3 7 ₁₆	000D ₁₆	F F ₁₆
000616	'M' = 4 D ₁₆	000E ₁₆	FF ₁₆
000716	'F' = 4 6 ₁₆	000F ₁₆	F F 16

Inputting the character ROM
 Input the character ROM data by dividing it into character ROM1, character ROM2 and character ROM3. For the character ROM data, see the next page and on.

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

GZZ-SH08-83B< 48B0 >

740 FAMILY MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37207MF-XXXSP/FP MITSUBISHI ELECTRIC

The structure of character ROM (divided of 12 X16 dots font)

Character code "k16" (k = "016" to "17F16") (m = "016" to "216") (n= "016" to "7F16")			Character
	←	Character ROM1	→ ← Character → ROM2

//		//		
Character ROM address Character ROM data		Character ROM address	Character ROM data	
b7 b6 b5 b4 b3 b2 b1 b0			b7 b6 b5 b4 b3 b2 b1 b0	
1000016+m00016+n016+016	0016	1080016+m00016+n016+016		F0 ₁₆
1000016+m00016+n016+116	0416	1080016+m00016+n016+116		F0 ₁₆
1000016+m00016+n016+216	0416	1080016+m00016+n016+216		F0 ₁₆
1000016+m00016+n016+316	0A16	1080016+m00016+n016+316		F0 ₁₆
1000016+m00016+n016+416	0A16	1080016+m00016+n016+416		F0 ₁₆
1000016+m00016+n016+516	1116	1080016+m00016+n016+516		F0 ₁₆
1000016+m00016+n016+616	1116	1080016+m00016+n016+616		F0 ₁₆
1000016+m00016+n016+716	1116	1080016+m00016+n016+716	F ₁₆	F0 ₁₆
1000016+m00016+n016+816	2016	1080016+m00016+n016+816		F8 ₁₆
1000016+m00016+n016+916	2016	1080016+m00016+n016+916		F8 ₁₆
1000016+m00016+n016+A16 🔲 🔲 🔳 🔳 🔳 🗷	3F16	1080016+m00016+n016+A16		F8 ₁₆
1000016+m00016+n016+B16	4016	1080016+m00016+n016+B16		F4 ₁₆
1000016+m00016+n016+C16	4016	1080016+m00016+n016+C1		F4 ₁₆
1000016+m00016+n016+D16	4016	1080016+m00016+n016+D16		F4 ₁₆
1000016+m00016+n016+E16	0016	1080016+m00016+n016+E16		F0 ₁₆
1000016+m00016+n016+F16	0016	1080016+m00016+n016+F16		F0 ₁₆

(3/3)

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

GZZ-SH10-49B < 61A0 >

740 FAMILY MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37207M8-XXXSP MITSUBISHI ELECTRIC

Mask ROM number						
	Date :					
_ ا	Section head signature	Supervisor signature				
Receipt						
Re						

Note: Please fill in all items marked *..

		Company		TEL				Submitted by	Supervisor
*	Customer	name		()	Ö	ature		
		Date issued	Date :			nssl	sign		

1. Confirmation

Specify the name of the product being ordered and the type of EPROMs submitted.

Three EPROMs are required for each pattern.

If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based on this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differs from this data. Thus, extreme care must be taken to verify the data in the submitted EPROMs.

	(hexadecimal notation)
_	

EPROM type (indicate the type used)

Li Now type (malcate the type						
	27C101					
EPROM address						
000016	Product name					
000F ₁₆	ASCII code : 'M37207M8 –'					
800016	data					
FFFF ₁₆	ROM 32 K bytes					
1000016	Character ROM 1-a					
1080016	Character ROM 1-b					
1100016	Character ROM 2-a					
1180016	Character ROM 2-b					
1200016						
1FFFF ₁₆						

- (1) Set " FF_{16} " (" F_{16} " in the high-order 4-bit shaded area) in the shaded area.
- (2) Write the ASCII codes that indicate the product name of "M37207M8-" to addresses 0000 16 to 000F16.

EPROM data check item (Confirm the EPROM data and check " ✓ " the appropriate box)

- Is "FF₁₆" in the shaded area (set "F₁₆" in the high-order 4-bit shaded area)? \rightarrow Yes
- Are the ASCII codes that indicates the product name of "M37207M8-" to addresses 0000 16 to 000F16?
 → Yes □

2. Mark specification

Mark specification must be submitted using the correct form for the type of package being ordered. Fill out the appropriate mark specification form (64P4B for M37207M8-XXXSP) and attach to the mask ROM confirmation form.

(1/3)

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

GZZ-SH10-49B <61A0 >

740 FAMILY MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37207M8-XXXSP MITSUBISHI ELECTRIC

How to Write the Product Name and Character ROM Data onto EPROMs

Addresses 0000 16 to 000F16 store the product name, and addresses 10000 16 to 11FFF16 store the character pattern. If the name of the product contained in the EPROMs does not match the name on the mask ROM confirmation form, the ROM processing is disabled. Please make sure the data is written correctly.

1. How to input the	name of the product with the ASCII code:	Address		Address	
ASCII codes 'M3	7207M8-' are listed on the right.	000016	'M' = 4 D ₁₆	000816	'-' = 2 D ₁₆
The addresses a	nd data are in hexadecimal notation.	000116	'3' = 3 3 ₁₆	000916	FF 16
The addresses e	nd data are in nexadeoinal notation.	000216	'7' = 3 7 ₁₆	000A ₁₆	FF ₁₆
		000316	'2' = 3 2 ₁₆	000B ₁₆	FF 16
		000416	'0' = 3 0 ₁₆	000C16	FF 16
		000516	'7' = 3 7 ₁₆	000D16	F F 16
		000616	'M' = 4 D ₁₆	000E ₁₆	FF ₁₆
		000716	'8' = 3 8 ₁₆	000F ₁₆	F F 16

Inputting the character ROM
 Input the character ROM data by dividing it into character ROM1 and character ROM2. For the character ROM data, see the next page and on.

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

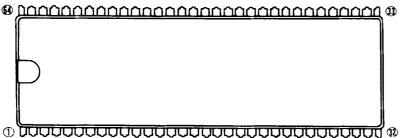
GZZ-SH10-49B< 61A0 >

740 FAMILY MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37207M8-XXXSP MITSUBISHI ELECTRIC

The structure of character ROM (divided of 12 X16 dots font)

Example		
Character code		
" k 16"		
Kio		
(k = "016" to "17F16")		
(m = "0.16" to "1.16")		
(n= "016" to "7F16")		
(11- 010 10 11 10)		
	Character	→ Character
	ROM1	ROM2

	//		//		
Character ROM address	Character ROM data		Character ROM address	Character ROM data	
	b7 b6 b5 b4 b3 b2 b1 b0			b7 b6 b5 b4 b3 b2 b1 b0	
1000016+m00016+n016+016		0016	1080016+m00016+n016+016		F0 ₁₆
1000016+m00016+n016+116		0416	1080016+m00016+n016+116		F0 ₁₆
1000016+m00016+n016+216		0416	1080016+m00016+n016+216		F0 ₁₆
1000016+m00016+n016+316		0A16	1080016+m00016+n016+316		F0 ₁₆
1000016+m00016+n016+416		0A16	1080016+m00016+n016+416		F0 ₁₆
1000016+m00016+n016+516		1116	1080016+m00016+n016+516		F0 ₁₆
1000016+m00016+n016+616		1116	1080016+m00016+n016+616		F0 ₁₆
1000016+m00016+n016+716		1116	1080016+m00016+n016+716	F ₁₆	F0 ₁₆
1000016+m00016+n016+816		2016	1080016+m00016+n016+816		F8 ₁₆
1000016+m00016+n016+916		2016	1080016+m00016+n016+916		F8 ₁₆
1000016+m00016+n016+A16		3F ₁₆	1080016+m00016+n016+A16		F8 ₁₆
1000016+m00016+n016+B16		4016	1080016+m00016+n016+B16		F4 ₁₆
1000016+m00016+n016+C16		4016	1080016+m00016+n016+C16		F4 ₁₆
1000016+m00016+n016+D16		4016	1080016+m00016+n016+D16		F4 ₁₆
1000016+m00016+n016+E16		0016	1080016+m00016+n016+E16		F0 ₁₆
1000016+m00016+n016+F16		0016	1080016+m00016+n016+F16		F0 ₁₆


(3/3)

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

64P4B (64-PIN SHRINK DIP) MARK SPECIFICATION FORM

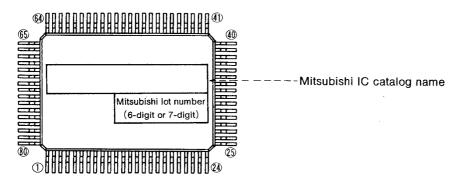
Mitsubishi IC catalog name
Please choose one of the marking types below (A, B, C), and enter the Mitsubishi IC catalog name and the special mark (if needed).
A. Standard Mitsubishi Mark
Mitsubishi lot number (6-digit or 7-digit) The property of the control of the co
B. Customer's Parts Number + Mitsubishi Catalog Name Ondonononononononononononononononononono
C. Special Mark Required

- Note1: If the special mark is to be printed, indicate the desired layout of the mark in the upper figure. The layout will. be duplicated as close as possible. Mitsubishi lot number (6-digit or 7-digit) and mask ROM number (3-digit) are always marked.
 - 2: If the customer's trade mark logo must be used in the special mark, check the box below. Please submit a clean original of the logo.

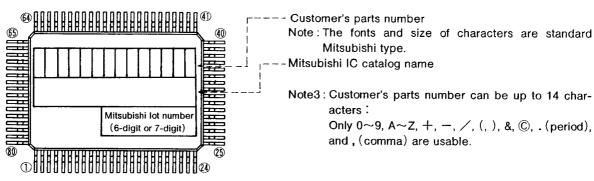
For the new special character fonts a clean font original (ideally logo drawing) must be submitted.

Special	logo	requi	ired
---------	------	-------	------

The standard Mitsubishi font is used for all characters except for a logo.

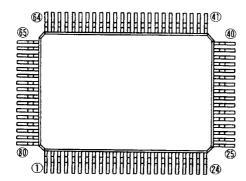


SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER


80P6N (80-PIN QFP) MARK SPECIFICATION FORM

Please choose one of the marking types below (A, B, C), and enter the Mitsubishi IC catalog name and the special mark (if needed).

A. Standard Mitsubishi Mark



B. Customer's Parts Number + Mitsubishi Catalog Name

Note1: The mark field should be written right aligned.

- 2: The fonts and size of characters are standard Mitsubishi type.
- C. Special Mark Required

Note1: If the special mark is to be printed, indicate the desired layout of the mark in the left figure. The layout will be duplicated as close as possible. Mitsubishi lot number (6-digit or 7-digit) and mask ROM number (3-digit) are always marked.

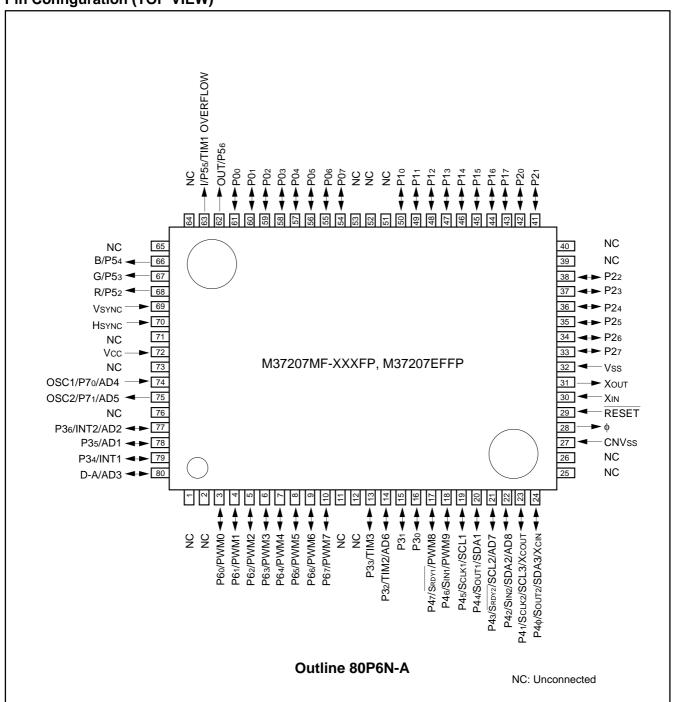
2: If the customer's trade mark logo must be used in the special mark, check the box below. Please submit a clean original of the logo.

For the new special character fonts a clean font original (ideally logo drawing) must be submitted.

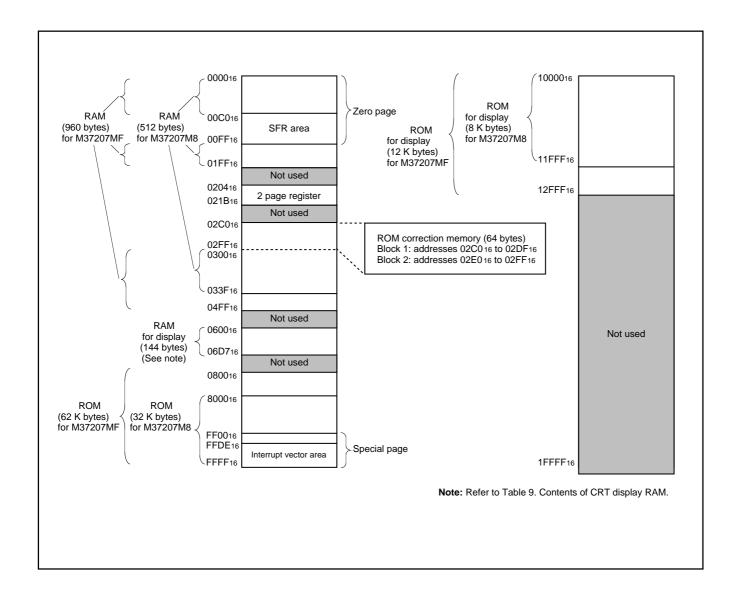
Special logo required


The standard Mitsubishi font is used for all characters except for a logo.

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER


APPENDIX

Pin Configuration (TOP VIEW)


SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

Pin Configuration (TOP VIEW)

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

Memory Map

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

Memory Map of Special Function Register (SFR)

■SFR Area (addresses C0 ₁₆ t	o DF ₁₆)			
· ·	•	<state after="" immediately="" reset=""></state>		
		ediately after reset		
	Function bit	diately after reset		
	_	ediately after reset		
		ed immediately		
	0 : Fix this bit to "0" after res (do not write "1")	et		
	1 : Fix this bit to "1" (do not write "0")			
Dominton.	,			
Address Register	Bit allocation State imme	ediately after reset b0		
C0 ₁₆ Port P0 (P0)		?		
C1 ₁₆ Port P0 direction register (D0)		0016		
C2 ₁₆ Port P1 (P1)		?		
C3 ₁₆ Port P1 direction register (D1)		0016		
C4 ₁₆ Port P2 (P2)		?		
C5 ₁₆ Port P2 direction register (D2)		0016		
C6 ₁₆ Port P3 (P3)	0 ? ?	? ? ? ? ?		
C7 ₁₆ Port P3 direction register (D3)		0016		
C816 Port P4 (P4)		?		
C9 ₁₆ Port P4 direction register (D4)		?		
CA ₁₆ Port P5 (P5)	0 ? ?	? ? ? ? ?		
CB ₁₆ Port P5 control register (D5)		0016		
CC ₁₆ Port P6 (P6)		?		
CD ₁₆ Port P6 direction register (D6)		0016		
CE ₁₆ DA-H register (DA-H)		?		
CF ₁₆ DA-L register (DA-L)	0 0 ?	? ? ? ? ?		
D0 ₁₆ PWM0 register (PWM0)		?		
D1 ₁₆ PWM1 register (PWM1)		?		
D2 ₁₆ PWM2 register (PWM2)		?		
D3 ₁₆ PWM3 register (PWM3)		?		
D4 ₁₆ PWM4 register (PWM4)		?		
D5 ₁₆ PWM output control register 1 (PW)	PW7 PW6 PW5 PW4 PW3 PW2 PW1 PW0	0016		
D6 ₁₆ PWM output control register 2 (PN)	PN4 PN3 PN2 PN1 PN0	0016		
D7 ₁₆ Interrupt interval determination register (??)		?		
D816 Interrupt interval determination control register (RE)	RE5 RE4 RE3 RE2 RE1 RE0	0016		
D9 ₁₆ I ² C data shift register (S0)	D7 D6 D5 D4 D3 D2 D1 D0	?		
DA ₁₆ I ² C address register (S0D)	SAD6 SAD5 SAD4 SAD3 SAD2 SAD1 SAD0 RBW	0016		
DB ₁₆ I ² C status register (S1)	MST TRX BB PIN AL AAS ADO LRB 0 0 0	1 0 0 0 ?		
DC ₁₆ I ² C control register (S1D)	BSEL1 BSEL0 10BIT ALS ESO BC2 BC1 BC0	0016		
DD16 I ² C clock control register (S2)	ACK BIT MODE CCR4 CCR3 CCR2 CCR1 CCR0	0016		
DE ₁₆ Serial I/O mode register (SM)	SM6 SM5 0 SM3 SM2 SM1 SM0	0016		
DF ₁₆ Serial I/O regsiter (SIO)		?		
3, (2.2)				

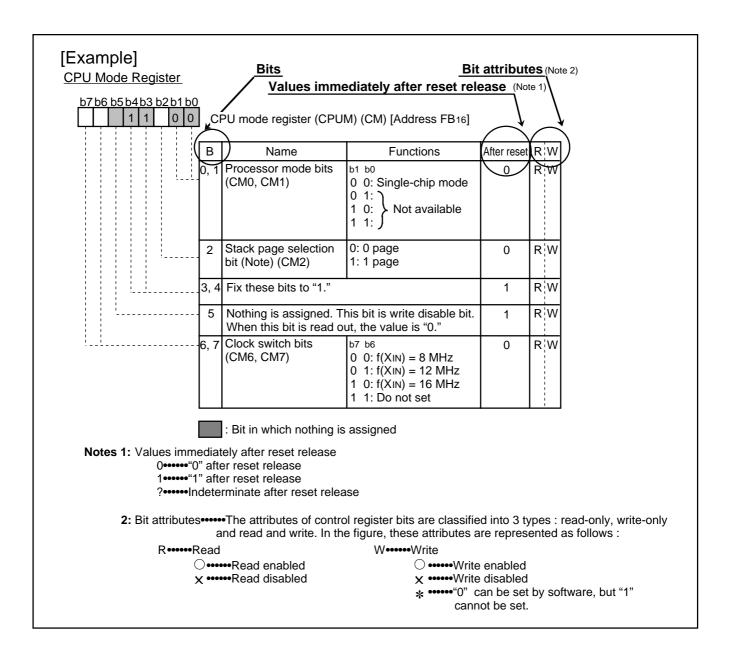
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

■ SFR Area (addresses E				•													
	<bit< td=""><td>alloc</td><td>ation</td><td> ></td><td></td><td></td><td></td><td></td><td><sta< td=""><td>te im</td><td>medi</td><td>ately</td><td>after</td><td>rese</td><td>t></td><td></td><td></td></sta<></td></bit<>	alloc	ation	 >					<sta< td=""><td>te im</td><td>medi</td><td>ately</td><td>after</td><td>rese</td><td>t></td><td></td><td></td></sta<>	te im	medi	ately	after	rese	t>		
		: լ բ	uncti	on L	si#				0	: "0" i	mme	diate	ly aft	ter re	set		
	Name	: } 「	uncu	on t	JI				1	: "1" i	mme	diate	ly aft	ter re	set		
			funct						?	: Und	define er res		medi	iately			
	0		this I							ane	1162	Εl					
	1		this I														
Address Register	L 7		Bit	allo	cati	on		L 0	_S	tate i	imme	edia	tely	after	res	et	
Ente Harizantal register (HD)	b7		HR5	LID 4	пра	ЦΒα	UD1	b0	D/				١			b0	l
E016 Horizontal register (HR)	U	CV16	CV15			\vdash		-	0	1	7	00		2	2	2	
E116 Vertical register 1 (CV1)			CV15					\vdash	-	?	⊢÷-	?	?	?	?	?	
E216 Vertical register 2 (CV2)					 	_		\vdash	0	?	?	?	?	?	?	?	
E316 Vertical register 3 (CV3)	007		CV35						0	?	?	?	?	?	?	?	
E416 Character size register (CS)	CS7		CS31					-	0	0	?	?	?	?	?	?	
E516 Border selection register (MD)			MD31					\Box	0	0	?	?	?	?	?	?	
E616 Color register 0 (CO0)	\vdash		CO05		ļ							00					
E7 ₁₆ Color register 1 (CO1)	\vdash		CO15		-	_						00					
E8 ₁₆ Color register 2 (CO2)	-		CO25		-	-						00					
E9 ₁₆ Color register 3 (CO ₃)	CO37	CO36	CO35	CO34	CO33	CO32	CO31	CO33				00					
EA ₁₆ CRT control register 1 (CC)	0	CC6	CC5	CC4	CC3	CC2	CC1	CC0				00) 16				
EB ₁₆ Display block counter (CBC)												00	16				
EC ₁₆ CRT port control register (CRTP)	В	G	R	I		R/G/B	VSYC	HSYC				00	16				
ED ₁₆ Wipe mode register (SL)		SL6	SL5	SL4	SL3	SL2	SL1	SL0				00) 16				
EE ₁₆ Wipe start register (??)												00) 16				
EF ₁₆ A-D control register 1 (ADM)				ADM4		ADM2	ADM1	ADM0	0	0	0	?	0	0	0	0	
F0 ₁₆ Timer 1 (TM1)												FF	16				
F1 ₁₆ Timer 2 (TM2)												07	7 16				
F2 ₁₆ Timer 3 (TM3)												FF	16				
F316 Timer 4 (TM4)												07	7 16				
F416 Timer mode register 1 (TMR1)	TMR17	TMR16	TMR15	TMR14	TMR13	TMR12	TMR11	TMR10				00)16				1
F5 ₁₆ Timer mode register 2 (TMR2)								TMR20				00					
F6 ₁₆ PWM5 register (PWM5)						-						?					
F7 ₁₆ PWM6 register (PWM6)								\neg				7					
F8 ₁₆ PWM7 register (PWM7)								$\neg \uparrow$				7					
F9 ₁₆ PWM8 register (PWM8)								\neg									
FA ₁₆ PWM9 register (PWM9)								\neg				7					
FB ₁₆ CPU mode register (CPUM)	CM7	CM6	CM5	1	1	CM2	0	0	0	0	1	1	1	1	0	0	
FC16 Interrupt request register 1 (IREQ1)			VSCR	•			_		ا ا		<u> </u>	00		<u> </u>			
FD16 Interrupt request register 1 (IREQ1)	0		TM56R			-	IT2R	-				00					
FE ₁₆ Interrupt control register 1 (ICON1)	U		VSCE		TM4F	_						00					
FF16 Interrupt control register 2 (ICON2)	TM56C		TM56E				IT2E	-				00					
interrupt control register 2 (ICON2)	IWIJOO	U	IVIJUL	IVIOE	U	SIE	1120	/ · · / L				UC	116				l

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

■SFR Area (addresses 204	1 ₁₆ to 21B ₁₆)
	<pre> <bit allocation=""> <state after="" immediately="" reset=""> ①: "0" immediately after reset ①: "1" immediately after reset ②: "1" immediately after reset ②: "1" immediately after reset ②: Undefined immediately after reset ②: Undefined immediately after reset ②: Trix this bit to "0" (do not write "1") 1: Fix this bit to "1" (do not write "0") </state></bit></pre>
Address Register 20416 Timer 5 (T5) 20516 Timer 6 (T6) 20616 Port control register (P7D) 20716 Serial I/O control register (SIC) 20816 CRT control register 2 (CBR) 20916 CRT clock selection register (OP) 20A16 A-D control register (ADC) 20B16 Timer mode register (TMR3) 20C16 20D16 20D16 20E16 21116 21116 21116 21316 21416	State immediately after reset b0 D016 D016
21416 21516 21616 21716 ROM correction address 1 (high-order 21816 ROM correction address 1 (low-order) 21916 ROM correction address 2 (high-order 21A16 ROM correction address 2 (low-order) 21B16 ROM correction enable register (RCR	0016 0016 0016

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

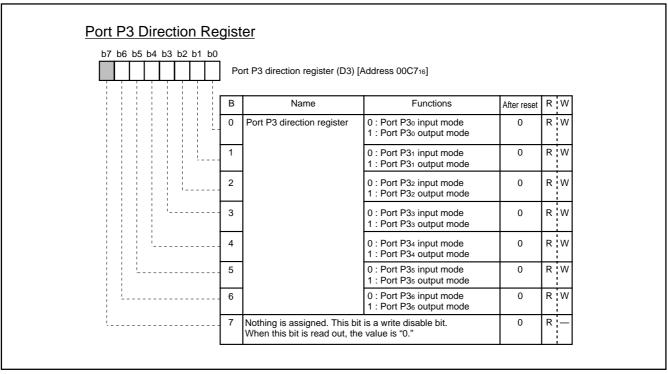

Internal State of Processor Status Register and Program Counter at Reset

	<bit allocation=""></bit>	<state after="" immediately="" reset=""></state>
	: Function bit	0 : "0" immediately after reset
	Name : Function bit	1 : "1" immediately after reset
	: No function bit	? : Undefined immediately
	0 : Fix this bit to "0" (do not write "1")	after reset
	1 : Fix this bit to "1" (do not write "0")	
Register	Bit allocation b7	State immediately after reset b0 b7 b0
Processor status register (PS)	N V T B D I Z	C ? ? ? ? ? 1 ? ?
Program counter (PCH)		Contents of address FFFF ₁₆
Program counter (PCL)		Contents of address FFFE ₁₆

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

Structure of Register

The figure of each register structure describes its functions, contents at reset, and attributes as follows:



SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

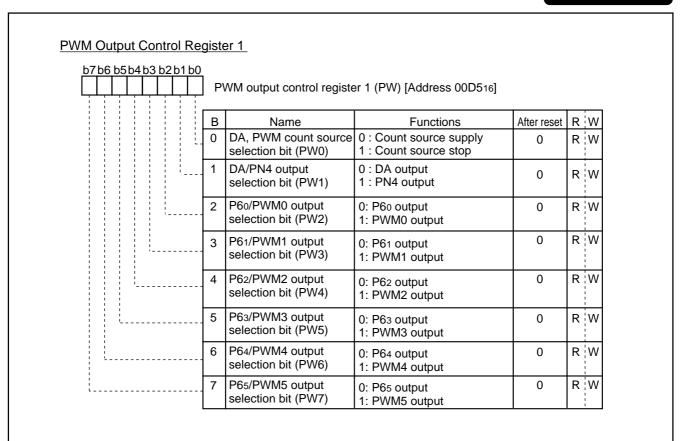
b7 b6 b5 b4 b3 b2 b1 b0							
D7 D0 D3 D4 D3 D2 D1 D0	Po	ort Pi direction register (Di) (i=	0,1,2, 6) [Addresses 00C1 ₁₆ , 0	0C316 00C51	6 O	0CD161	
		(= ., (-	-, -, -, -, -, -,		-, -		
	В	Name	Functions	After reset	R	W	
	0	Port Pi direction register	0 : Port Pio input mode 1 : Port Pio output mode	0	R	W	
	1		0 : Port Pi ₁ input mode 1 : Port Pi ₁ output mode	0	R	W	
	2		0 : Port Pi2 input mode 1 : Port Pi2 output mode	0	R	W	
	3		0 : Port Pi3 input mode 1 : Port Pi3 output mode	0	R	W	
	4		0 : Port Pi4 input mode 1 : Port Pi4 output mode	0	R	W	
	5]		0 : Port Pis input mode 1 : Port Pis output mode	0	R	W
	6		0 : Port Pis input mode 1 : Port Pis output mode	0	R	W	
[7		0 : Port Pi7 input mode 1 : Port Pi7 output mode	0	ı	W	

Port Pi Direction Register

Addresses 00C116, 00C316, 00C516, 00CD16

Port P3 Direction Register

Address 00C7₁₆



SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

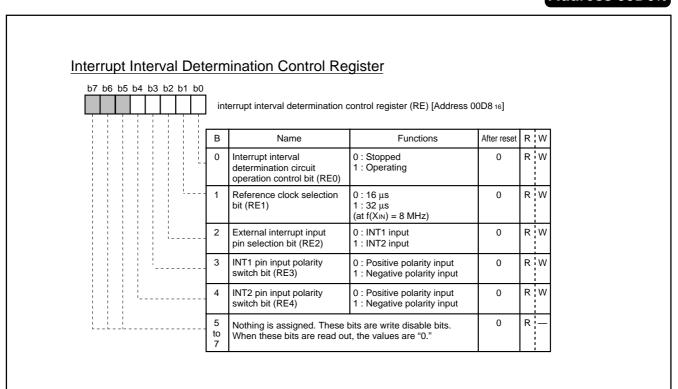
Port P5 Control Reg		-				
	Po	ort P5 control register (D5) [Ad	ldress 00CB ₁₆]			
	В	Name	Functions	After reset	R	W
	0, 1, 7	Nothing is assigned. These the When these bits are read out	bits are write disable bits. t, the values are "0."	0	R	
	2	Port P52 output signal selection bit (R)	0 : R signal output 1 : Port P5₂ output	0	R	W
	3	Port P5 ₃ output signal selection bit (G)	0 : G signal output 1 : Port P5₃ output	0	R	W
	- 4	Port P54 output signal selection bit (B)	0 : B signal output 1 : Port P54 output	0	R	W
	5	Port P5₅ output signal selection bit (I)	0 : I/TIM1 OVERFLOW signal output 1 : Port P5₅ output	0	R	W
	- 6	Port P56 output signal selection bit (OUT)	0 : OUT signal output 1 : Port P56 output	0	R	W

Port P5 Control Register

Address 00CB₁₆

PWM Output Control Register 1

Address 00D5₁₆

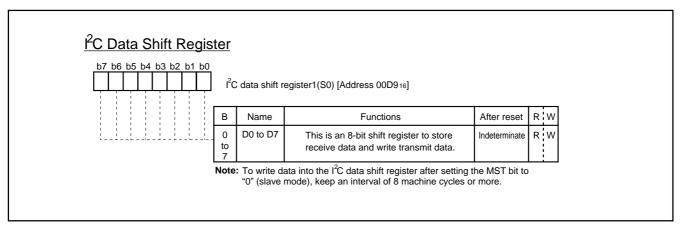


SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

b7 b6 b5 b	04 b3 b2 b1 b0	1	WM output control regist	er 2 (PN) [Address 00D616]		
		В	Name	Functions	After reset	RW
		0	P66/PWM6 output selection bit (PN0)	0 : P66 output 1 : PWM6 output	0	RW
		1	P67/PWM7 output selection bit (PN1)	0 : P67 output 1 : PWM7 output	0	RW
		2	DA output polarity selection bit (PN3)	0 : Positive polarity 1 : Negative polarity	0	RW
		3	PWM output polarity selection bit (PN4)	0 : Positive polarity 1 : Negative polarity	0	RW
	<u> </u>	4	DA general-purpose output bit (PN5)	0 : Output LOW 1 : Output HIGH	0	R W
		5 to 7		nese bits are write disable bits. ad out, the values are "0."	0	R —

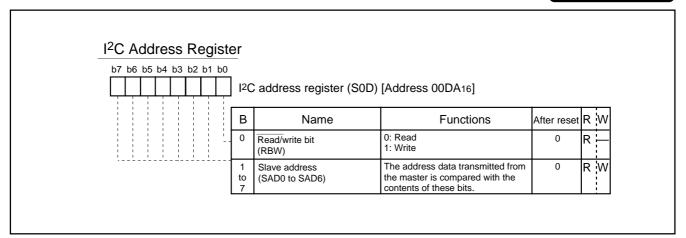
PWM Output Control Register

Address 00D6₁₆



Interrupt Interval Determination Control Register

Address 00D8₁₆



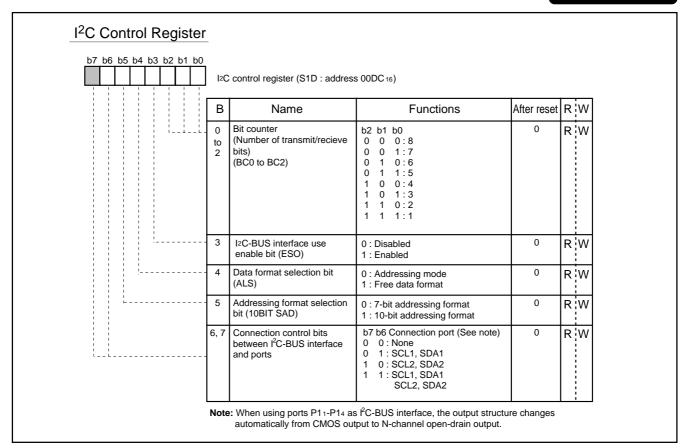
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

I²C Data Shift Register

Address 00D9₁₆

I²C Adress Register

Address 00DA₁₆



SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

b7 b6 b5 b4 b3 b2 b1 b0	l				
	 2	C status register (S1) [A	ddress 00DB16]		
	В	Name	Functions	After reset	RW
	0	Last receive bit (LRB) (See note)	0 : Last bit = "0 " 1 : Last bit = "1 "	Indeterminate	R —
	1	General call detecting flag (AD0) (See note)	0 : No general call detected 1 : General call detected	0	R —
	2	Slave address comparison flag (AAS) (See note)	0 : Address mismatch 1 : Address match	0	R —
	3	Arbitration lost detecting flag (AL) (See note)	0 : Not detected 1 : Detected	0	R —
	4	I ₂ C-BUS interface interrupt request bit (PIN)	0 : Interrupt request issued 1 : No interrupt request issued	0	R —
	5	Bus busy flag (BB)	0 : Bus free 1 : Bus busy	0	RW
11	6, 7	Communication mode specification bits (TRX, MST)	b7 b6 0 0: Slave recieve mode 0 1: Slave transmit mode 1 0: Master recieve mode 1 1: Master transmit mode	0	R W

I²C Status Register

Address 00DB₁₆

I²C Control Register

Address 00DC₁₆



SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

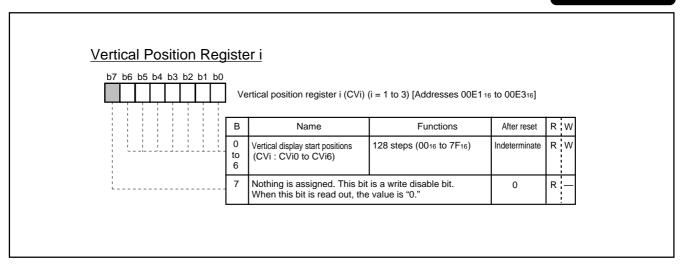
I ² C Clock Control R	egis	ster						
b7 b6 b5 b4 b3 b2 b1 b0								
	l ² (C clock control register (S2:	address 00D	D ₁₆)				
	В	Name		Function	ns	After reset	RW	
	0 to 4	SCL frequency control bits (CCR0 to CCR4)	Setup value of CCR4–CCR0	Standard clock mode	High speed clock mode	0	RW	
1 1 1	"		00 to 02	Setup disabled	Setup disabled			
			03	Setup disabled	333			
			04	Setup disabled	250			
			05	100	400 (See note)			
			06	83.3	166			
			:	500/CCR value	1000/CCR value			
			1D	17.2	34.5			
			1E	16.6	33.3			
			1F	16.1	32.3			
				(at $\phi = 4 \text{ MH}$	lz, unit : kHz)		i	
	5	SCL mode specification bit (FAST MODE)		d clock mode eed clock mod	le	0	R W	
\	6	ACK bit (ACK BIT)	0 : ACK is i 1 : ACK is i	eturned. not returned.		0	RW	
į	7	ACK clock bit (ACK)	0 : No ACK 1 : ACK clo			0	RW	
		Note: At 400 kHz in the hig "0" period : "1" period In the other cases, th "0" period : "1" period	l = 3 : 2 le duty is as b		uty is as belov	v .		

I²C Clock Control Register

Address 00DD₁₆

Serial I/O Mode Register

Address 00DE₁₆



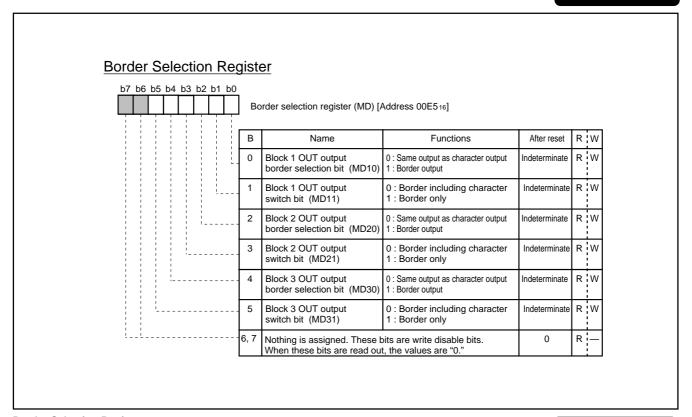
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

Horizontal Position R	egi	<u>ster</u>			
b7 b6 b5 b4 b3 b2 b1 b0 0	Но	rizontal position register (HR)	[Address 00E0 ₁₆]		
	В	Name	Functions	After reset	R W
	0 to 5	Horizontal display start positions (HR0 to HR5)	64 steps (00 ₁₆ to 3F ₁₆)	0	R W
ļ		Nothing is assigned. This bit When this bit is read out, the		0	R —
\	7	Fix this bit to "0."		0	R W

Horizontal Position Register

Address 00E0₁₆

Vertical Position Register i


Addresses 00E116, 00E316

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

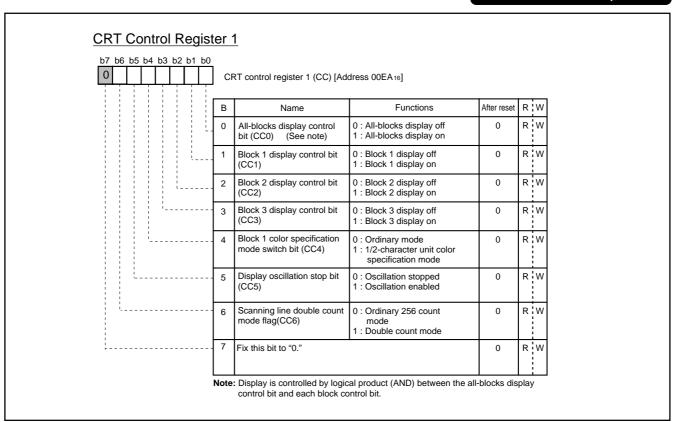
Character Size Regis		naracter size register (CS) [Ad	dress 00E4 ₁₆]			
	В	Name	Functions	After reset	R	w
11-	0, 1	Character size of block 1 selection bits (CS10, CS11)	b1 b0 0 0: Minimum size 0 1: Medium size 1 0: Large size 1 1: Extra large size	Indeterminate	R	W
	2, 3	Character size of block 2 selection bits (CS20, CS21)	b3 b2 0 0: Minimum size 0 1: Medium size 1 0: Large size 1 1: Extra large size	Indeterminate	R	W
	4, 5	Character size of block 2 selection bits (CS30, CS31)	b5 b4 0 0: Minimum size 0 1: Medium size 1 0: Large size 1 1: Extra large size	Indeterminate	R	W
	6	Nothing is assigned. This bit When this bit is read out, the		Indeterminate	R	
t	7	OUT signal output switch bit (CS7)	0 : OUT signal output 1 : MUTE signal output (See note)	Indeterminate	R	W

Character Size Register

Address 00E4₁₆

Border Selection Register

Address 00E5₁₆



SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

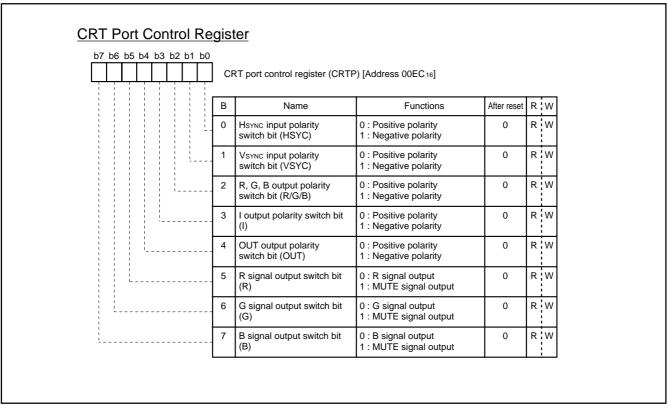
b7 b6 b5 b4 b3 b2 b1 b0	Co	olor register n (CO0 to CO	3) (n = 0 to 3) [Addresses 00E616 to 00E916]		
	В	Name	Functions	After reset	R W
	0	I signal output selection bit (COn0)	0 : No character is output 1 : Character is output	0	R W
	1	B signal output selection bit (COn1)	0 : No character is output 1 : Character is output	0	R W
	2	G signal output selection bit (COn2)	0 : No character is output 1 : Character is output	0	R W
	3	R signal output selection bit (COn3)	0 : No character is output 1 : Character is output	0	R W
	4	B signal output (background) selection bit (COn4)	0 : No background color is output 1 : Background color is output (See notes 1,2)	0	R W
	5	OUT signal output control bit (COn5)	0 : Character is output 1 : Blank is output (See notes 1, 2)	0	R W
	6	G signal output (background) selection bit (COn6)	0 : No background color is output 1 : Background color is output	0	R W
	7	R signal output (background) selection bit (COn7)	0 : No background color is output 1 : Background color is output	0	R W

Color Register n

Addresses 00E616, 00E916

CRT Contol Register 1

Address 00EA₁₆



SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

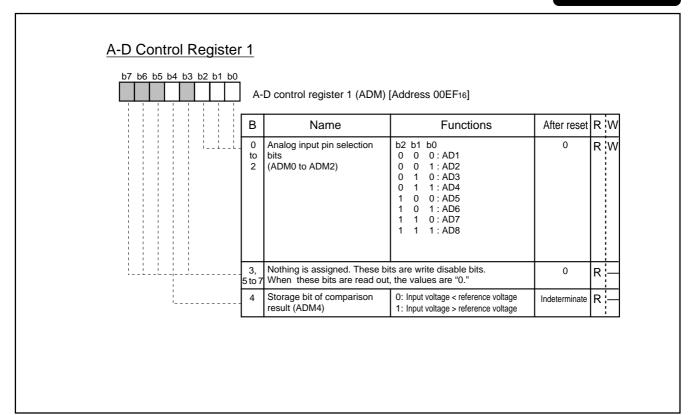
b7 b6 b5 b4 b3 b2	b1 b0	Dis	splay block counter (CBC) [Ad	dress 00EB ₁₆]			
	[В	Name	Functions	After reset	R	W
		0 to 3	Number of blocks which are displayed (Incremented each time a block)	. ,	Indeterminate	R	W
tt <u>-</u>		4 to 7	Nothing is assigned. These be When these bits are read out		0	R	_

Display Block Counter

Address 00EB₁₆

CRT Port Control Register

Address 00EC₁₆



SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

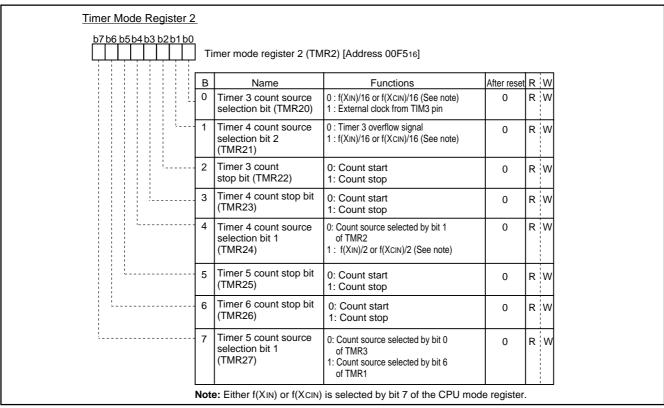
b7 b6 b5 b4 b3 b2 b1 b	ì	ipe mode register (SL) [Addro	ess 00ED ₁₆]		
	В	Name	Functions	After reset	R W
	0, 1	Wipe mode selection bits (SL0, SL1)	b1 b0 0 0: Wipe is not available 0 1: Mode 1 1 0: Mode 2 1 1: Mode 3	0	R W
	. 2	Direction mode selection bits (SL2)	0: DOWN mode 1: UP mode	0	RW
1.1	3, 4	Wipe unit selection bits (SL3, SL4)	b4 b3 0 0:1H unit 0 1:2H unit 1 0:3H unit 1 1:Do not set	0	R W
1_1_	5, 6	Stop mode selection bits (SL5, SL6)	b6 b5 0 0: Stop at the 312nd H 0 1: Stop at the 156th H 1 0: Stop at the 256th H 1 1: Stop at the 128th H	0	R W
Ĺ	7	Nothing is assigned. This b When this bit is read out, th	t is a write disable bit. e value is indeterminate.	0	R —

Wipe Mode Register

Address 00ED₁₆

A-D Control Register 1

Address 00EF₁₆



SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

b7 b6 b5 b	4 b3 b2 b1 b0	Ti	mer mode register 1 (TM	R1) [Address 00F416]			
		В	Name	Functions	After reset	R	W
		0	Timer 1 count source selection bit 1 (TMR10, TMR15)	b5 b0 0 0: f(XIN)/16 or f(XCIN)/16 (See note) 0 1: f(XIN)/4096 or f(XCIN)/4096 (See note) 1 0: f(XCIN) 1 1: External clock from TIM2 pin	0	R	W
		1	Timer 2 count source selection bit 1 (TMR11)	Count source selected by bit 4 of TM1 External clock from TIM2 pin	0	R	W
		2	Timer 1 count stop bit (TMR12)	0: Count start 1: Count stop	0	R	W
		3	Timer 2 count stop bit (TMR13)	0: Count start 1: Count stop	0	R	W
	·	4	Timer 2 count source selection bit 2 (TMR14)	0: f(Xin)/16 or f(Xcin)/16 (See note) 1: Timer 1 overflow	0	R	W
		6	Timer 5 count source selection bit 2 (TMR16)	0: Timer 2 overflow 1: Timer 4 overflow	0	R	W
		7	Timer 6 internal count source selection bit (TMR17)	0: f(XIN)/16 or f(XCIN)/16 (See note) 1: Timer 5 overflow	0	R	W

Timer Mode Register 1

Address 00F4₁₆

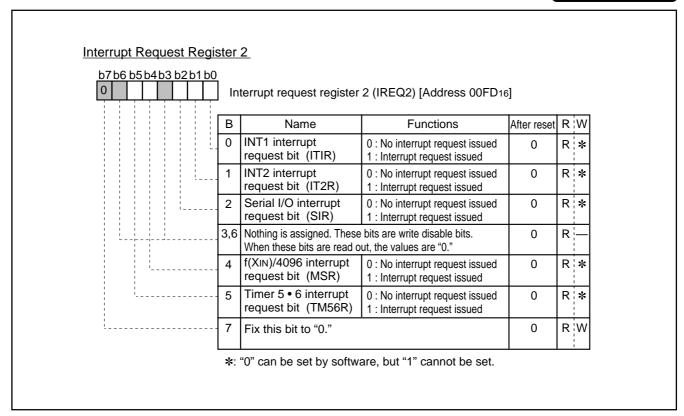
Timer Mode Register 2

Address 00F5₁₆

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

] C	PU mode register (CPUN	4) (CM) [Address 00FB16]]		
	В	Name	Functions	After reset	R	W
	0, 1	Processor mode bits (CM0, CM1)	b1 b0 0 0: Single-chip mode 0 1: 1 0: 1 1:	0	R	W
	2	Stack page selection bit (CM2) (See note 1)	0: 0 page 1: 1 page	1	R	W
	3	Fix these bits to "1."		1	R	W
	4	Internal system clock output selection bit (CM4) (See note 2)	0: Output is stopped1: Internal system clock φ output	1	R	W
	5	XCOUT drivability selection bit (CM5)	0: LOW drive 1: HIGH drive	1	R	W
	6	Main Clock (XIN–XOUT) stop bit (CM6)	0: Oscillating 1: Stopped	0	R	W
\ <u>.</u>	7	Internal system clock selection bit (CM7)	0: XIN-XOUT selected (high-speed mode) 1: XCIN-XCOUT selected (high-speed mode)	0	R	W

CPU Mode Register


Address 00FB₁₆

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

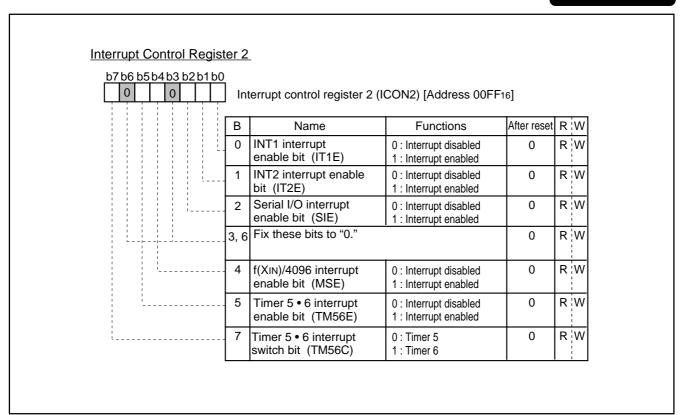
b7 b6 b5 b4 b3 b2 b1 b0	In	terrupt request register 1	(IREQ1) [Address 00FC16]			
	В	Name	Functions	After reset	R	W
	0	Timer 1 interrupt request bit (TM1R)	0 : No interrupt request issued 1 : Interrupt request issued	0	R	*
	1	Timer 2 interrupt request bit (TM2R)	0 : No interrupt request issued 1 : Interrupt request issued	0	R	*
	2	Timer 3 interrupt request bit (TM3R)	0 : No interrupt request issued 1 : Interrupt request issued	0	R	*
	3	Timer 4 interrupt request bit (TM4R)	0 : No interrupt request issued 1 : Interrupt request issued	0	R	*
	4	CRT interrupt request bit (CRTR)	0 : No interrupt request issued 1 : Interrupt request issued	0	R	*
	5	VSYNC interrupt request bit (VSCR)	0 : No interrupt request issued 1 : Interrupt request issued	0	R	*
	6	Multi-master I ² C-BUS interface interrupt request bit (IICR)	0 : No interrupt request issued 1 : Interrupt request issued	0	R	*
l	7	Nothing is assigned. The When this bit is read out	is bit is a write disable bit.	0	R	

Interrupt Reguest Register 1

Address 00FC₁₆

Interrupt Reguest Register 2

Address 00FD₁₆



SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

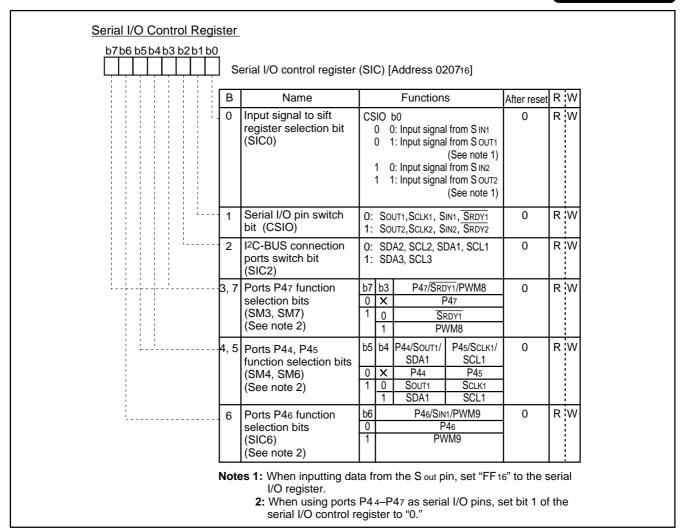
b7 b6 b5 b4 b3 b2 b1 b0						
07 06 03 04 03 02 01 00	ln	terrupt control register 1 (l	CON1) [Address 00FE	16]		
	В	Name	Functions	After reset	R	W
	0	Timer 1 interrupt enable bit (TM1E)	0 : Interrupt disabled 1 : Interrupt enabled	0	R	W
	1	Timer 2 interrupt enable bit (TM2E)	0 : Interrupt disabled 1 : Interrupt enabled	0	R	W
	2	Timer 3 interrupt enable bit (TM3E)	0 : Interrupt disabled 1 : Interrupt enabled	0	R	W
	3	Timer 4 interrupt enable bit (TM4E)	0 : Interrupt disabled 1 : Interrupt enabled	0	R	W
	4	CRT interrupt enable bit (CRTE)	0 : Interrupt disabled 1 : Interrupt enabled	0	R	W
L	5	VSYNC interrupt enable bit (VSCE)	0 : Interrupt disabled 1 : Interrupt enabled	0	R	W
	6	Multi-master I ² C-BUS interface interrupt enable bit (IICE)	0 : Interrupt disabled 1 : Interrupt enabled	0	R	W
'	7	Nothing is assigned. This bit. When this bit is read		0	R	

Interrupt Control Register 1

Address 00FE₁₆

Interrupt Control Register 2

Address 00FF₁₆

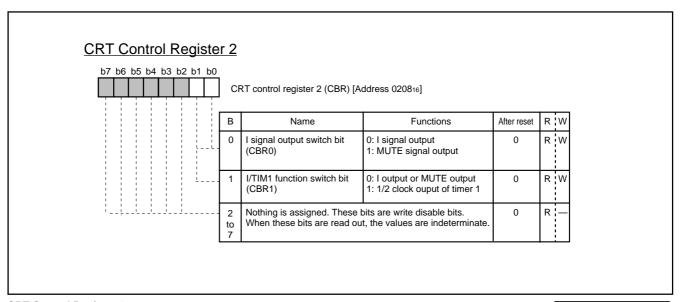


SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

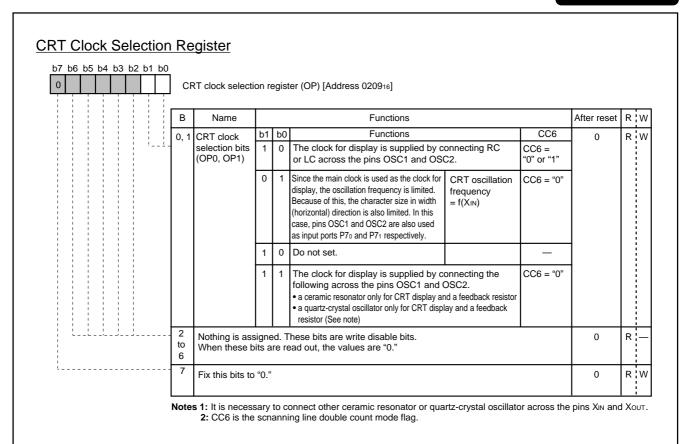
Port Control F		_					
		Po	rt control register (P7D) [Add	ress 0206 ₁₆]			
		В	Name	Functions	After reset	R	w
		0, 1	Port P7 data input bits (P7D0, P7D1)	When only OP1 = "0" and OP0 = "1," input data is valid. (See note)	Indeterminate	R	W
	!	2	D-A/AD3 function selection bit (P7D2)	0: AD3 1: D-A	0	R	W
		3, 5 to 7	Nothing is assigned. These I When these bits are read ou	oits are write disable bits. t, the values are indeterminate.	0	R	
<u>L</u>		4	P4 ₀ /X _{CIN} , P4 ₁ /X _{COUT} function selection bit (P7D4)	0 : P4 ₀ , P4 ₁ 1 : Хсіл, Хсоит	0	R	W

Port Control Register

Address 0206₁₆



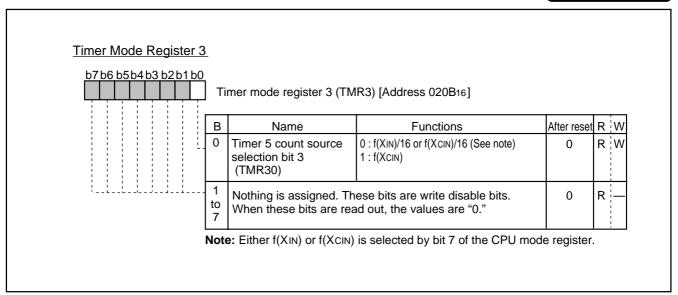
Serial I/O Control Register


Address 0207₁₆

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

CRT Control Register 2
Address 020816

CRT Clock Selection Register


Address 0209₁₆

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

A-D Control Register 2 b7 b6 b5 b4 b3 b2 b1 b0	A-	D control register 2(ADC) [Ad	dress 020A16]		
	В	Name	Functions	After reset	R W
	0 to 5	D-A converter set bits (ADC0 to ADC5)	b5 b4 b3 b2 b1 b0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Indeterminate	R W
lL	6, 7	Nothing is assigned. These I When these bits are reed ou		0	R —

A-D Control Register 2
Address 020A16

Timer Mode Register 3

Address 020B₁₆

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER for VOLTAGE SYNTHESIZER and ON-SCREEN DISPLAY CONTROLLER

b7 b6 b5 b4 b3 b2 b1 b0	_	OM correction enable re	gister (RCR) [Address 021	B16]	
	В	Name	Functions	After reset	RW
	0	Block 1 enable bit (RC0)	0: Disabled 1: Enabled	0	R W
L	1	Block 2 enable bit (RC1)	0: Disabled 1: Enabled	0	RW
	2, 3	Fix these bits to "0."		0	RW
	4 to 7	Nothing is assigned. These bit these bits are read out, the value	its are write disable bits. When alues are "0."	0	R —

ROM Correction Enable Register

Address 021B₁₆

Renesas Technology Corp.

Nippon Bldg.,6-2,Otemachi 2-chome,Chiyoda-ku,Tokyo,100-0004 Japan

Keep safety first in your circuit designs!

Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials -

- Notes regarding these materials

 These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.

 Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts or circuit application examples contained in these materials.

 All information contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein.

 Mitsubishi Electric Corporation semiconductors are not designed or granufactured for use in a device or system that is used under circumstances in which human life is notentially at stake. Please contact
- product usurioud or the latest product information before purchasing a product listed herein.

 Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

 The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.

 If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.

- Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

 Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.

REVISION DESCRIPTION LIST

M37207MF-XXXSP/FP, M37207M8-XXXSP, M37207EFSP/FP DATA SHEET

Rev. No.	Revision Description	Rev. date
1.0	First Edition	971212
1.1	Correct note (P76)	980731