CMOS 4-Bit Microcontroller

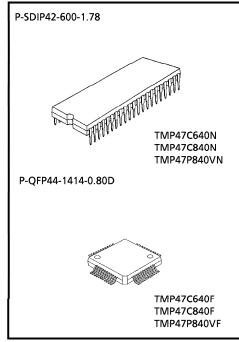
TMP47C640N, TMP47C840N TMP47C640F, TMP47C840F

The TMP47C640/840 are high speed and high performance 4-bit single chip microcomputers based on the TLCS-470 series with a 8-bit AD converter.

Part No.	ROM	RAM	Package	OTP
TMP47C640N	C1440 bit	2044 64	P-SDIP42-600-1.78	TMP47P840VN
TMP47C640F	6144 × 8-bit	384 × 4-bit	P-QFP44-1414-0.80D	TMP47P840VF
TMP47C840N	91030 his	E124 bit	P-SDIP42-600-1.78	TMP47P840VN
TMP47C840F	8192 × 8-bit	8192 × 8-bit 512 × 4-bit	P-QFP44-1414-0.80D	TMP47P840VF

Features

- ◆4-bit single chip microcomputer
- ◆Instruction execution time:


1.3 μ s (at 6 MHz), 244 μ s (at 32.8 kHz)

- ♦92 basic instructions
 - Table look-up instructions
 - 5-bit to 8-bit data conversion instruction
- ◆Subroutine nesting: 15 levels max.
- ◆6 interrupt sources (External: 2, Internal: 4) All sources have independent latches each, and multiple interrupt control is available.
- ◆I/O port (34 pins)

Input 2 ports 5 pins Output 2 ports 8 pins I/O 6 ports 21 pins

- ◆Interval Timer
- ◆Two 12-bit Timer / Counters 2 channel

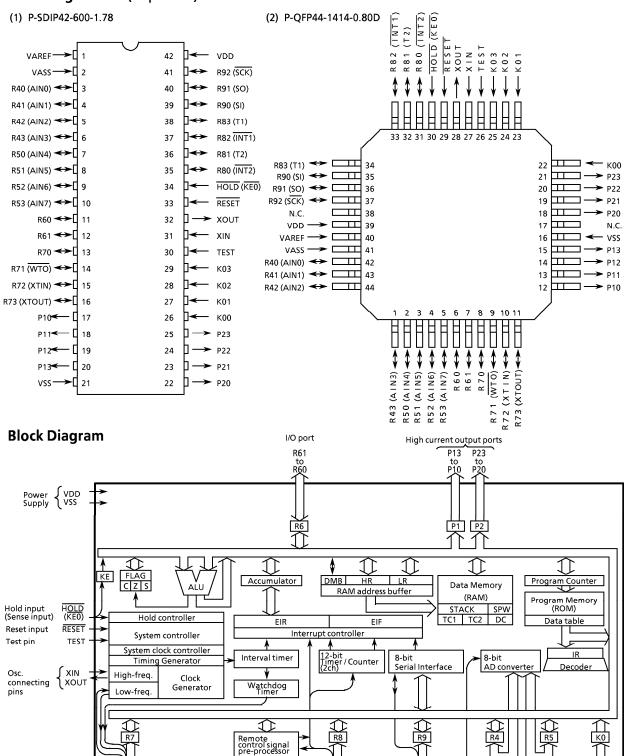
Timer, event counter, and pulse width measurement mode

- For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality and Reliability Assurance / Handling Precautions.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA

- making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.

 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..

 The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments traffic signal instruments control instruments medical instruments. all types of transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.


 The information contained herein is subject to change without notice.

- **♦**Watchdog Timer
- ◆Serial Interface with 8-bit buffer
 - Simultaneous transmission and reception capability
 - 8/4-bit transfer, external/internal clock, and leading / trailing edge shift mode
- ◆8-bit successive approximate type AD converter
 - With sample and hold
 - 8 analog inputs
 - Conversion time: 32 μ s (at 6 MHz)
- ◆Remote control signal pre-processing capability
- ♦ High current outputs
 - LED direct drive capability (typ. 20mA × 8 bits)
- ◆Dual-clock operation
 - High-speed/Low-power-consumption operating mode
- ♦ Hold function
 - Battery/Capacitor back-up
- ◆Real Time Emulator: BM47C860A + BM1174

Pin Assignments (Top View)

R73 (XTOUT) R72 (XTIN) R71 (WTO) R70

I/O port (Osc.connecting pins (Low-freq.))

R92 (SCK)

R91 (SO)

R90 (SI)

I/O port (Serial port) VAREF

Analog reference voltage

VASS

R43 (AIN3) R53 (AIN7)

to to R40 (AIN0 R50 (AIN4)

I/O port (Analog input) K03

Input port

2000-10-19

R83 (Ť1) R82 (INT1)

R81 (T2) R80 (INT2)

I/O (T/C input Interrupt input)

Pin Function

Pin Name	Input / Output	Functions				
K03 to K00	Input	4-bit input port				
P13 to P10	Output	4-bit output port with latch.				
P23 to P20	Ουτρατ	8-bit data are output by the 5-bit to 8-bit data	conversion instruction [OUTB @HL].			
R53 (AIN7) to R40 (AIN0)	I/O (Input)	4-bit I/O port with latch.	AD converter analog input			
R61, R60	I/O	When used as input port, watchdog timer output or analog input, the latch must be set to "1".				
R73 (XTOUT)	I/O (Output)	Set to Dual-clock operating mode, when	Resonator connecting pin (Low-freq.). For inputting external clock, XTIN is			
R72 (XTIN)	I/O (Input)	R73,R72 pin use as clock generator.	used and XTOUT is opened.			
R71 (WTO)	I/O (Output)	Can be set, cleared, and tested for each bit as specified by L register indirect addressing bit manipulation instructions.	Watchdog timer output			
R70	1/0	,				
R83 (T1)			Timer / Counter 1 external input			
R82 (ĪNT1)	I/O (Input)	4-bit I/O port with latch. When used as input port, external interrupt	External interrpt 1 input			
R81 (T2)	i/O (iliput)	input pin, or Timer / Counter external input pin, the latch must be set to "1".	Timer / Counter 2 external input			
R80 (INT2)		, , , , , , , , , , , , , , , , , , ,	External interrpt 2 or REMO-COM input			
R92 (SCK)	I/O(I/O)	3-bit I/O port with latch.	Serial clock I/O			
R91 (SO)	I/O (Output)	When used as input port or serial port, the	Serial data output			
R90 (SI)	I/O (Input)	latch must be set to "1".	Serial data input			
XIN	Input	Resonator connecting pin (High-frequency) .				
XOUT	Output	For inputting external clock, XIN is used and X	OUT is opened.			
RESET	Input	Reset signal input				
HOLD (KEO)	Input (Input)	HOLD request/release signal input	Sence input			
TEST	Input	Test pin for out-going test. Be opened or fixed	d to low level.			
VDD		+ 5V 0V (GND)				
VSS	Downer acceptor					
VAREF	Power supply	AD converter analog reference voltage (High)				
VASS		AD converter analog reference voltage (Low)				

Operational DESCRIPTION

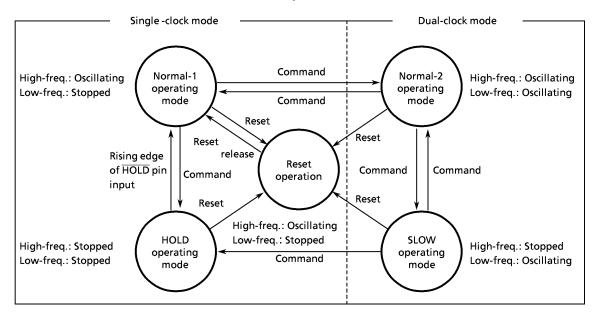
Concerning the TMP47C640/840 the configuration and functions of hardwares are described. As the description has been provided with priority on those parts differing from the TMP47C660/860, the technical data sheets for the TMP47C660/860 shall also be referred to.

1. System Configuration

◆ Internal CPU Function

Except for the system control circuit, the CPU core functions are the same as those of the TMP47C660/860.

- ◆ Periheral Hardware Function
 - 1) I/O Ports
 - 2 Interval Timer
 - 3 Timer/Counters (TC1, TC2)
 - 4 Watchdog Timer


- **⑤** Remote control pulse detector
- 6 AD converter
- 7 Serial Interface

The description has been provided with priority on the function (①) changed from the TMP47C660/860, and the system clock control circuit.

2. Internal CPU Function

2.1 System Control Circuit

The system clock controller starts or stops the high-frequency and low-frequency clock oscillator and switches between the basic clocks. The operating mode is generally divided into the single-clock mode and the dual-clock mode, which are controlled by command.

Note: Normal-1 and Normal-2 operating modes are sometimes referred to as the Normal operating mode collectively.

Figure 2-1. Operating mode transition diagram

Electrical Characteristics

Absolute Maximum Ratings $(V_{SS} = 0 V)$

Parameter	Symbol	Pins	Ratings	Unit	
Supply Voltage	V_{DD}		– 0.3 to 6.5	V	
Input Voltage	V_{IN}		-0.3 to $V_{DD} + 0.3$	٧	
Output Voltage	V _{OUT}		-0.3 to $V_{DD} + 0.3$	٧	
	I _{OUT1}	Ports R	3.2	4	
Output Current (per 1 pin)	lOUT2	Ports P1, P2	30	mA	
Output Current (total)	Σ I _{OUT}	Ports P1, P2	120	mA	
Power Dissipation [Topr = 70°C]	PD		600	mW	
Soldering Temperature (time)	Tsld		260 (10 s)	°C	
Storage Temperature	Tstg		– 55 to 125	°C	
Operating Temperature	Topr		– 40 to 70	°C	

Note: The absolute maximum ratings are rated values which must not be exceeded during operation, even for an instant.

Any one of the ratings must not be exceeded. If any absolute maximum rating is exceeded, a device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products which include this device, ensure that no absolute maximum rating value will ever be exceeded.

Recommended Opeating Conditions

 $(V_{SS} = 0 \text{ V}, \text{ Topr} = -40 \text{ to } 70^{\circ}\text{C})$

Parameter	Symbol	Pins	Conditions	Min	Max	Unit
			fc = 6 MHz	4.5		
Constant Valtage	.,		fc = 4.2 MHz	2.7		V
Supply Voltage	V_{DD}		In the SLOW mode	2.7	5.5	'
			In the HOLD mode	2.0		
<u></u>	V _{IH1}	Except Hysteresis Input	$V_{DD} \ge 4.5 V$	$V_{DD} \times 0.7$		v
	V_{IH2}	Hysteresis Input	V _{DD} ≦ 4.3 V	$V_{DD} \times 0.75$	V_{DD}	
	V _{IH3}		V_{DD} < 4.5 V	$V_{DD} \times 0.9$		
VI		Except Hysteresis Input	$V_{DD} \ge 4.5 V$		$V_{DD} \times 0.3$	
Input Low Voltage	V_{IL2}	Hysteresis Input	V _{DD} ≦ 4.5 V	0	$V_{DD} \times 0.25$	V
	V_{IL3}		$V_{DD} < 4.5 V$		$V_{DD} \times 0.1$	
Clask Fraguency	fc	XIN, XOUT		0.4	6.0	MHz
Clock Frequency	fs	XTIN, XTOUT		30	34	kHz

Note 1: The recommended operating conditions for a device are operating conditions under which it can be guaranteed that the device will operate as specified. If the device is used under operating conditions other than the recommended operating conditions (supply voltage, operating temperature range, specified AC/DC values etc.), malfunction may occur. Thus, when designing products which include this device, ensure that the recommended operating conditions for the device are always adhered to.

Note 2: Input voltage V_{IH3} , V_{IL3} : In the SLOW or HOLD mode.

DC Characteristics

 $(V_{SS} = 0V, Topr = -40 to 70^{\circ}C)$

Parameter	Symbol	Pins	Conditions	Min	Тур.	Max	Unit
Hysteresis Voltage	V _{HS}	Hysteresis Input		_	0.7	_	\ \
Input Current	I _{IN1}	Port K0, TEST, RESET, HOLD Ports R (open drain)	V _{DD} = 5.5 V, V _{IN} = 5.5 V / 0 V	-	-	± 2	μΑ
Low Input Current	I _{IL}	Ports R (push-pull)	$V_{DD} = 5.5 \text{ V}, V_{IN} = 0.4 \text{ V}$	_	_	- 2	mΑ
	R _{IN1}	Port KO with pull-up/pull-down		30	70	150	
Input Resistance	R _{IN2}	RESET		100	220	450	kΩ
Output Leakage Current	I _{LO}	Ports (open drain)	V _{DD} = 5.5 V, V _{OUT} = 5.5 V	-	-	2	μΑ
Output Low Voltage	V _{OL}	Except XOUT, ports P	$V_{DD} = 4.5 \text{ V}, I_{OL} = 1.6 \text{ mA}$	_	_	0.4	<
Output Low Current	I _{OL}	Ports P1, P2	V _{DD} = 4.5 V, V _{OL} = 1.0 V	_	20	_	mA
Supply Current (in the Normal mode)	I _{DD}		V _{DD} = 5.5 V fc = 4 MHz	_	3	6	mA
Supply Current (in the SLOW mode)	I _{DDS}		$V_{DD} = 3.0 \text{ V}$ fs = 32.768 kHz	_	30	60	μΑ
Supply Current (in the HOLD mode)	I _{DDH}		V _{DD} = 5.5 V	-	0.5	10	μΑ

Note 1: Typ. values show those at $T_{opr} = 25$ °C, $V_{DD} = 5$ V.

Note 2: Input Current I_{IN1}; The current through resistor is not included, when the input resistor (pull-up/pull-down) is contained.

Note 3: Supply Current I_{DD} , I_{DDH} ; $V_{IN} = 5.3 \text{ V} / 0.2 \text{ V}$

The KO port is open when the input resistor is contained. The voltage applied to the R port is within the valid range.

Supply Current I_{DDS} ; $V_{IN} = 2.8 \text{ V} / 0.2 \text{ V}$

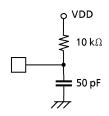
Low frequency clock is only osillated (connecting XTIN, XTOUT).

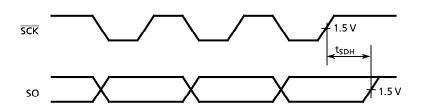
AD Conversion Characteristics

 $(T_{opr} = -40 \text{ to } 70^{\circ}\text{C})$

Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
A color Deference Value	V _{AREF}		V _{DD} _ 1.5	_	V _{DD}	
Analog Reference Voltage	V _{ASS}		V _{SS}	_	1.5	'
Analog Reference Voltage Range	$_{\Delta}V_{AREF}$	V _{AREF} -V _{ASS}	2.5	_	_	V
Analog Input Voltage	V _{AIN}		V _{ASS}	_	V _{AREF}	V
Analog Supply Current	I _{REF}		_	0.5	1.0	mA
Nonlinearity Error			_	_	± 1	
Zero Point Error		$V_{DD} = 4.5 \text{ to } 5.5 \text{ V}, V_{SS} = 0.0 \text{ V}$ $V_{AREF} = V_{DD} \pm 0.001 \text{ V}$	_	_	± 1	
Full Scale Error			_	_	± 1	LSB
Total Error		V _{ASS} = 0.000 V	_	_	± 2	

AC Characteristics

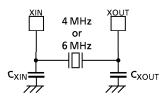

 $(V_{SS} = 0 \text{ V}, V_{DD} = 4.5 \text{ to } 6.0 \text{ V}, Topr = -40 \text{ to } 70^{\circ}\text{C})$


Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
Instruction Cycle Time	t _{cy}	In the Normal mode	1.3	_	20	μS
		In the SLOW mode	235	_	267	
High level Clock pulse Width	t _{WCH}	F to cold do do cold				
Low level Clock pulse Width	t _{WCL}	External clock mode	80	_	_	ns
A / D Sampling Time	t _{AIN}	fc = 4 MHz	_	4	_	μs
Shift Data Hold Time	t _{SDH}		0.5 tcy – 0.3	_	_	μs

Note: Shift Data Hold Time

External circuit for SCK pin and SO pin

Serial port (completion of transmission)

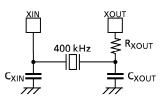

Recommended Oscillating Conditions

 $(V_{SS} = 0 \text{ V}, V_{DD} = 4.5 \text{ to } 6.0 \text{ V}, Topr = -40 \text{ to } 70^{\circ}\text{C})$

(1) 6 MHz

Ceramic Resonator

CSA6.00MGU (MURATA) $C_{XIN} = C_{XOUT} = 30 \text{ pF}$ KBR-6.00MS (KYOCERA) $C_{XIN} = C_{XOUT} = 30 \text{ pF}$



(2) 4 MHz

Ceramic Resonator

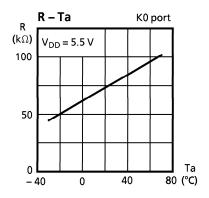
CSA4.00MG (MURATA) $C_{XIN} = C_{XOUT} = 30 \text{ pF}$ KBR-4.00MS (KYOCERA) $C_{XIN} = C_{XOUT} = 30 \text{ pF}$ Crystal Oscillator

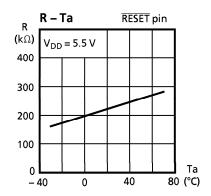
204B-6F 4.0000 (TOYOCOM) $C_{XIN} = C_{XOUT} = 20 \text{ pF}$

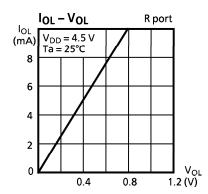
(3) 400 kHz

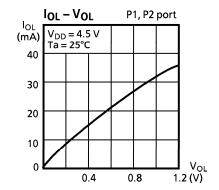
Ceramic Resonator

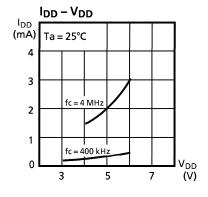
CSB400B (MURATA) $C_{XIN} = C_{XOUT} = 220 \text{ pF}, R_{XOUT} = 6.8 \text{ k}\Omega$ KBR-400B (KYOCERA) $C_{XIN} = C_{XOUT} = 100 \text{ pF}, R_{XOUT} = 10 \text{ k}\Omega$


32.768 kHz


(4) 32.768 kHz (Vss = 0V, V_{DD} = 2.7 to 6.0V, T_{opr} = -40 to 70°C) Crystal Oscillator C_{XTIN} , C_{XTOUT} ; 10 to 33 pF


Note: In order to get the accurate oscillation frequency, the adjustment of capacitors must be required.


TOSHIBA


Typical Characteristics

