

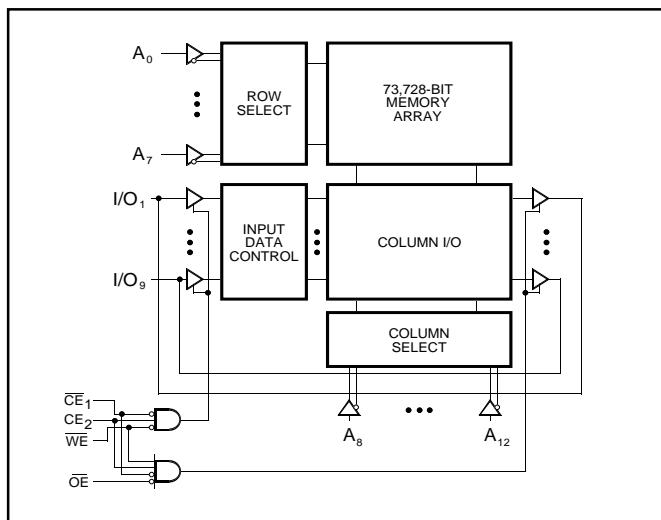
P4C163/P4C163L ULTRA HIGH SPEED 8K x 9 STATIC CMOS RAMS

FEATURES

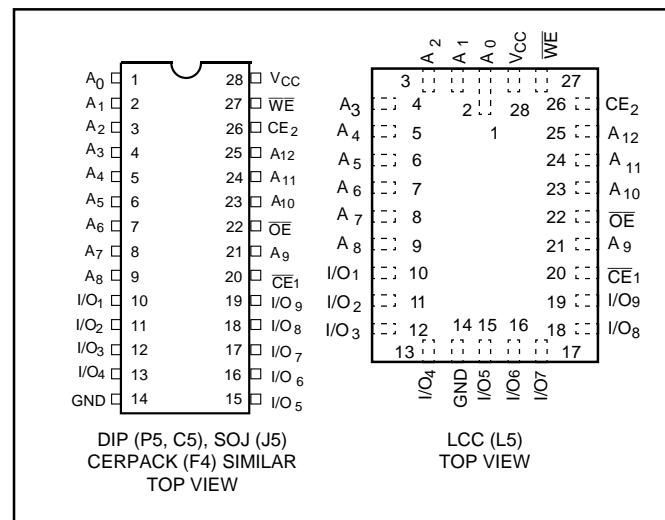
- Full CMOS, 6T Cell
- High Speed (Equal Access and Cycle Times)
 - 25/35ns (Commercial)
 - 25/35/45ns (Military)
- Low Power Operation (Commercial/Military)
 - 690/800 mW Active – 25
 - 193/220 mW Standby (TTL Input)
 - 5.5 mW Standby (CMOS Input) P4C163L
- Output Enable and Dual Chip Enable Control Functions

- Single 5V±10% Power Supply
- Data Retention with 2.0V Supply, 10 μ A Typical Current (P4C163L Military)
- Common I/O
- Fully TTL Compatible Inputs and Outputs
- Standard Pinout (JEDEC Approved)
 - 28-Pin 300 mil DIP, SOJ
 - 28-Pin 350 x 550 mil LCC
 - 28-Pin CERPACK

DESCRIPTION


The P4C163 and P4C163L are 73,728-bit ultra high-speed static RAMs organized as 8K x 9. The CMOS memories require no clocks or refreshing and have equal access and cycle times. Inputs are fully TTL-compatible. The RAMs operate from a single $5V \pm 10\%$ tolerance power supply. With battery backup, data integrity is maintained for supply voltages down to 2.0V. Current drain is 10 μ A from a 2.0V supply.

Access times as fast as 25 nanoseconds are available, permitting greatly enhanced system operating speeds. CMOS is used to reduce power consumption in both active and standby modes.


The P4C163 and P4C163L are available in 28-pin 300 mil DIP and SOJ and 28-pin 350 x 550 mil LCC packages providing excellent board level densities.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATIONS

Means Quality, Service and Speed

1Q97

MAXIMUM RATINGS⁽¹⁾

Symbol	Parameter	Value	Unit
V_{CC}	Power Supply Pin with Respect to GND	−0.5 to +7	V
V_{TERM}	Terminal Voltage with Respect to GND (up to 7.0V)	−0.5 to V_{CC} +0.5	V
T_A	Operating Temperature	−55 to +125	°C

Symbol	Parameter	Value	Unit
T_{BIAS}	Temperature Under Bias	−55 to +125	°C
T_{STG}	Storage Temperature	−65 to +150	°C
P_T	Power Dissipation	1.0	W
I_{OUT}	DC Output Current	50	mA

RECOMMENDED OPERATING TEMPERATURE AND SUPPLY VOLTAGE

Grade ⁽²⁾	Ambient Temperature	GND	V_{CC}
Military	−55 to +125°C	0V	5.0V ± 10%

Grade ⁽²⁾	Ambient Temperature	GND	V_{CC}
Commercial	0°C to +70°C	0V	5.0V ± 10%

DC ELECTRICAL CHARACTERISTICSOver recommended operating temperature and supply voltage⁽²⁾

Symbol	Parameter	Test Conditions	P4C163		P4C163L		Unit
			Min	Max	Min	Max	
V_{IH}	Input High Voltage		2.2	V_{CC} +0.5	2.2	V_{CC} +0.5	V
V_{IL}	Input Low Voltage		−0.5 ⁽³⁾	0.8	−0.5 ⁽³⁾	0.8	V
V_{HC}	CMOS Input High Voltage		V_{CC} −0.2	V_{CC} +0.5	V_{CC} −0.2	V_{CC} +0.5	V
V_{LC}	CMOS Input Low Voltage		−0.5 ⁽³⁾	0.2	−0.5 ⁽³⁾	0.2	V
V_{CD}	Input Clamp Diode Voltage	V_{CC} = Min., I_{IN} = −18 mA		−1.2		−1.2	V
V_{OL}	Output Low Voltage (TTL Load)	I_{OL} = +8 mA, V_{CC} = Min.		0.4		0.4	V
V_{OLC}	Output Low Voltage (CMOS Load)	I_{OLC} = +100 μA, V_{CC} = Min.		0.2		0.2	V
V_{OH}	Output High Voltage (TTL Load)	I_{OH} = −4 mA, V_{CC} = Min.	2.4		2.4		V
V_{OHC}	Output High Voltage (CMOS Load)	I_{OHC} = −100 μA, V_{CC} = Min.	V_{CC} −0.2		V_{CC} −0.2		V
I_{LI}	Input Leakage Current	V_{CC} = Max. V_{IN} = GND to V_{CC}	Mil. −5	+10 +5	−5 N/A	+5 N/A	μA
I_{LO}	Output Leakage Current	V_{CC} = Max., \overline{CE} = V_{IH} , V_{OUT} = GND to V_{CC}	Mil. −5	+10 +5	−5 N/A	+5 N/A	μA

CAPACITANCES⁽⁴⁾(V_{CC} = 5.0V, T_A = 25°C, f = 1.0MHz)

Symbol	Parameter	Conditions	Typ.	Unit
C _{IN}	Input Capacitance	V_{IN} = 0V	5	pF

Symbol	Parameter	Conditions	Typ.	Unit
C _{OUT}	Output Capacitance	V_{OUT} = 0V	7	pF

Notes:

1. Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to MAXIMUM rating conditions for extended periods may affect reliability.

2. Extended temperature operation guaranteed with 400 linear feet per minute of air flow.
3. Transient inputs with V_{IL} and I_{IL} not more negative than −3.0V and −100mA, respectively, are permissible for pulse widths up to 20ns.
4. This parameter is sampled and not 100% tested.

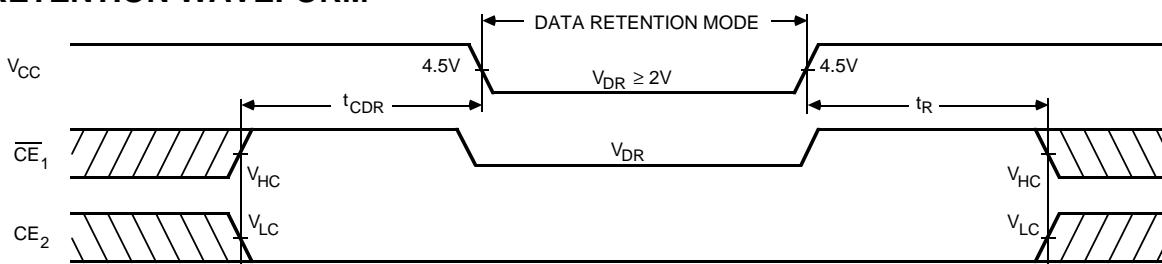
POWER DISSIPATION CHARACTERISTICS

Over recommended operating temperature and supply voltage⁽²⁾

Symbol	Parameter	Test Conditions	P4C163		P4C163L		Unit	
			Min	Max	Min	Max		
I_{CC}	Dynamic Operating Current – 25	$V_{CC} = \text{Max.}$, $f = \text{Max.}$, Outputs Open	Mil. Com'l.	— —	145 125	— —	145 N/A	mA
I_{CC}	Dynamic Operating Current – 35, 45	$V_{CC} = \text{Max.}$, $f = \text{Max.}$, Outputs Open	Mil. Com'l.	— —	120 95	— —	120 N/A	mA
I_{SB}	Standby Power Supply Current (TTL Input Levels)	$\overline{CE}_1 \geq V_{IH}$ or $CE_2 \leq V_{IL}$, $V_{CC} = \text{Max.}$, $f = \text{Max.}$, Outputs Open	Mil. Com'l.	— —	40 35	— —	40 N/A	mA
I_{SB1}	Standby Power Supply Current (CMOS Input Levels)	$\overline{CE}_1 \geq V_{HC}$ or $CE_2 \leq V_{LC}$, $V_{CC} = \text{Max.}$, $f = 0$, Outputs Open, $V_{IN} \leq V_{LC}$ or $V_{IN} \geq V_{HC}$	Mil. Com'l.	— —	20 18	— —	1 N/A	mA

n/a = Not Applicable

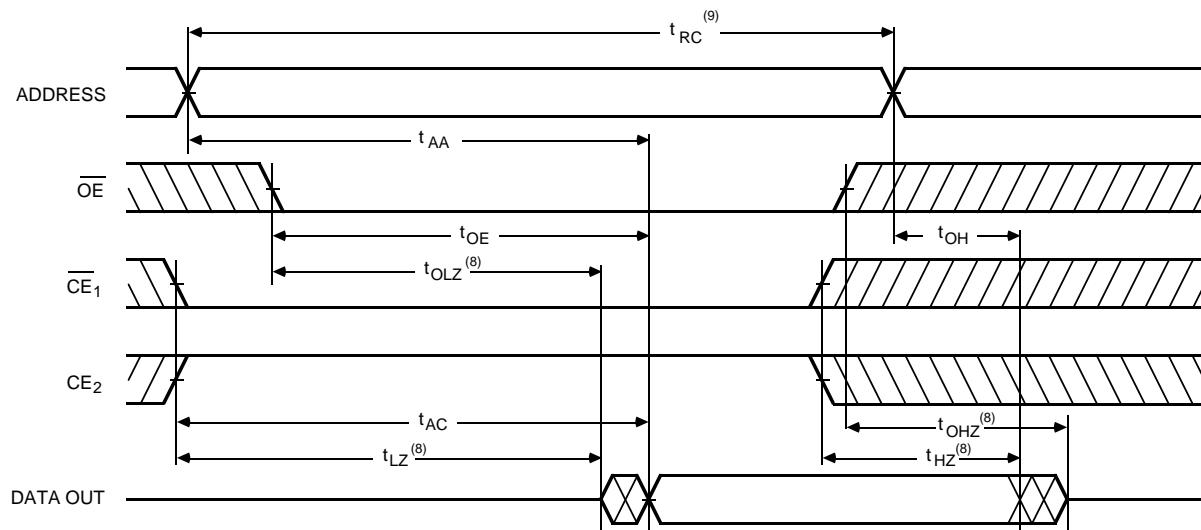
DATA RETENTION CHARACTERISTICS (P4C163L, Military Temperature Only)


Symbol	Parameter	Test Condition	Min	Typ.*		Max		Unit
				$V_{CC} = 2.0V$	$V_{CC} = 3.0V$	$V_{CC} = 2.0V$	$V_{CC} = 3.0V$	
V_{DR}	V_{CC} for Data Retention		2.0					V
I_{CCDR}	Data Retention Current			10	15	200	300	μA
t_{CDR}	Chip Deselect to Data Retention Time	$\overline{CE}_1 \geq V_{CC} - 0.2V$ or $CE_2 \leq 0.2V$, $V_{IN} \geq V_{CC} - 0.2V$ or $V_{IN} \leq 0.2V$	0					ns
t_R^{\dagger}	Operation Recovery Time		t_{RC}^{\ddagger}					ns

* $T_A = +25^\circ C$

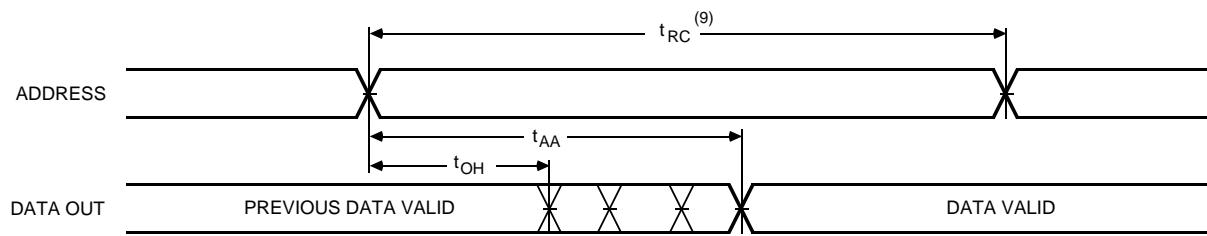
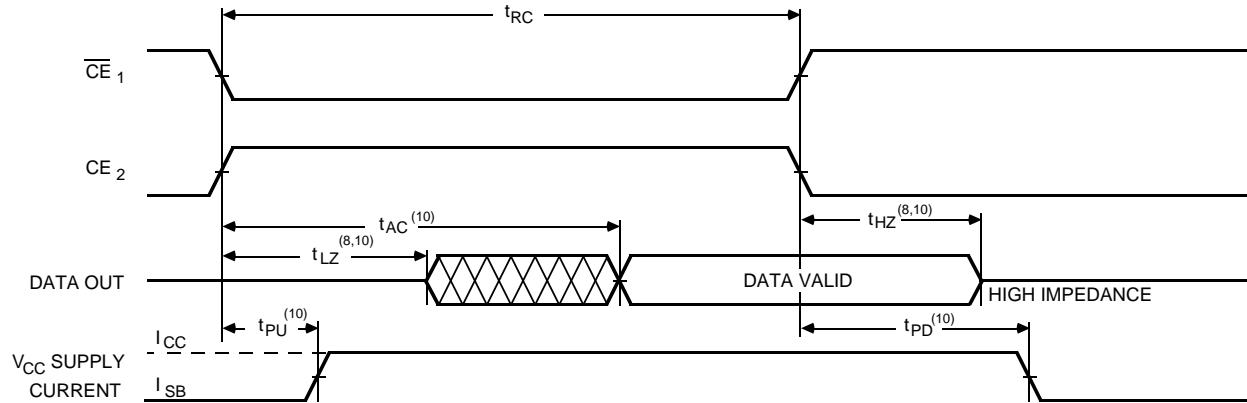
t_{RC}^{\ddagger} = Read Cycle Time

[†]This parameter is guaranteed but not tested.


DATA RETENTION WAVEFORM

AC ELECTRICAL CHARACTERISTICS—READ CYCLE

(V_{CC} = 5 V ± 10%, All Temperature Ranges)⁽²⁾



Symbol	Parameter	-25		-35		-45		Unit
		Min	Max	Min	Max	Min	Max	
t _{RC}	Read Cycle Time	25		35		45		ns
t _{AA}	Address Access Time		25		35		45	ns
t _{AC}	Chip Enable Access Time		25		35		45	ns
t _{OH}	Output Hold from Address Change	3		3		3		ns
t _{LZ}	Chip Enable to Output in Low Z	3		3		3		ns
t _{HZ}	Chip Disable to Output in High Z		10		15		20	ns
t _{OE}	Output Enable Low to Data Valid		13		18		20	ns
t _{OLZ}	Output Enable Low to Low Z	3		3		3		ns
t _{OHZ}	Output Enable High to High Z		12		15		20	ns
t _{PU}	Chip Enable to Power Up Time	0		0		0		ns
t _{PD}	Chip Disable to Power Down Time		20		20		25	ns

READ CYCLE NO. 1 (\overline{OE} CONTROLLED)⁽⁵⁾

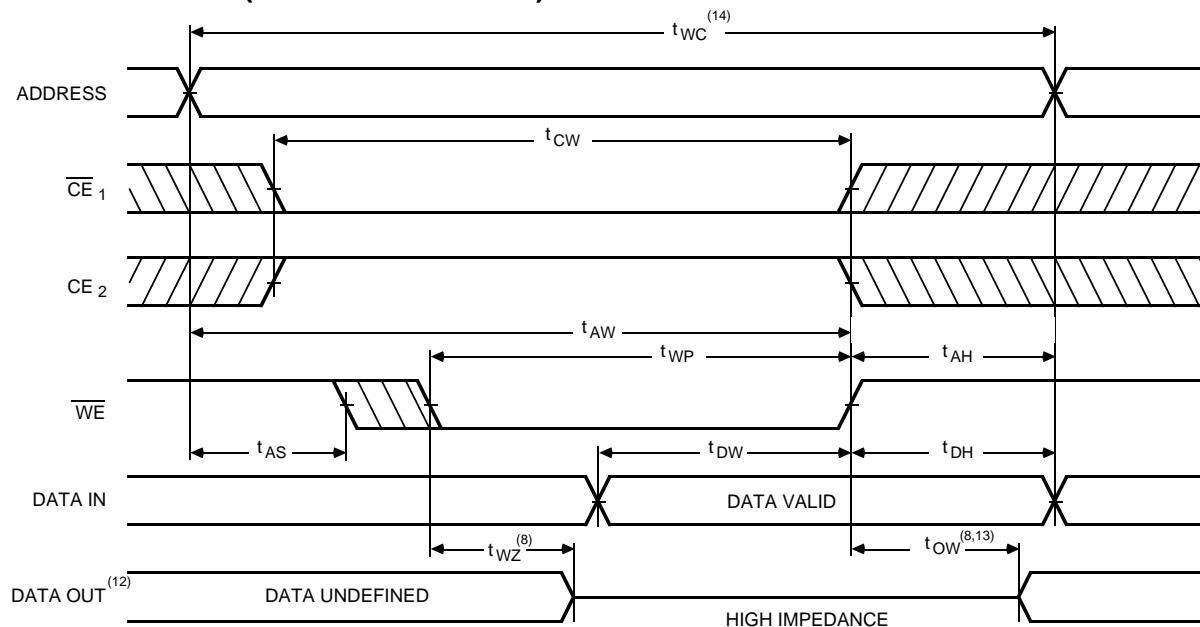
Notes:

5. WE is HIGH for READ cycle.
6. CE₁ is LOW, CE₂ is HIGH and \overline{OE} is LOW for READ cycle.
7. ADDRESS must be valid prior to, or coincident with \overline{CE}_1 transition LOW and CE₂ transition HIGH.

8. Transition is measured ± 200mV from steady state voltage prior to change, with loading as specified in Figure 1. This parameter is sampled and not 100% tested.

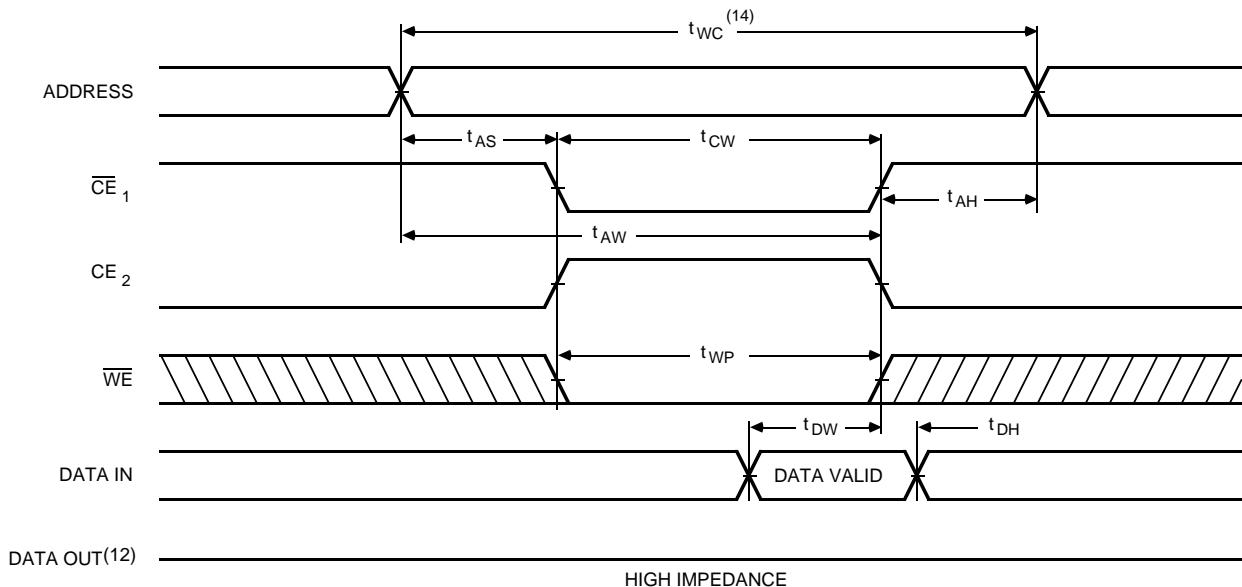
READ CYCLE NO. 2 (ADDRESS CONTROLLED)^(5,6)READ CYCLE NO. 3 (\overline{CE}_1 , CE_2 CONTROLLED)^(5,7,10)

Notes:


9. READ Cycle Time is measured from the last valid address to the first transitioning address.

10. Transitions caused by a chip enable control have similar delays irrespective of whether \overline{CE}_1 or CE_2 causes them.

AC CHARACTERISTICS—WRITE CYCLE


(V_{CC} = 5V ± 10%, All Temperature Ranges)⁽²⁾

Symbol	Parameter	-25		-35		-45		Unit
		Min	Max	Min	Max	Min	Max	
t _{WC}	Write Cycle Time	25		35		45		ns
t _{CW}	Chip Enable Time to End of Write	18		25		33		ns
t _{AW}	Address Valid to End of Write	18		25		33		ns
t _{AS}	Address Set-up Time	0		0		0		ns
t _{WP}	Write Pulse Width	18		20		25		ns
t _{AH}	Address Hold Time	0		0		0		ns
t _{DW}	Data Valid to End of Write	13		15		20		ns
t _{DH}	Data Hold Time	0		0		0		ns
t _{WZ}	Write Enable to Output in High Z		10		14		18	ns
t _{OW}	Output Active from End of Write	3		5		5		ns

WRITE CYCLE NO. 1 (WE CONTROLLED)⁽¹¹⁾

Notes:

11. \overline{CE}_1 and \overline{WE} must be LOW, and CE_2 HIGH for WRITE cycle.
12. OE is LOW for this WRITE cycle to show t_{WZ} and t_{OW} .
13. If \overline{CE}_1 goes HIGH, or CE_2 goes LOW, simultaneously with \overline{WE} HIGH, the output remains in a low impedance state.
14. Write Cycle Time is measured from the last valid address to the first transitioning address.

TIMING WAVEFORM OF WRITE CYCLE NO. 2 (\overline{CE} CONTROLLED)⁽¹¹⁾

AC TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise and Fall Times	3ns
Input Timing Reference Level	1.5V
Output Timing Reference Level	1.5V
Output Load	See Figures 1 and 2

TRUTH TABLE

Mode	\overline{CE}_1	CE_2	\overline{OE}	\overline{WE}	I/O	Power
Standby	H	X	X	X	High Z	Standby
Standby	X	L	X	X	High Z	Standby
D_{OUT} Disabled	L	H	H	H	High Z	Active
Read	L	H	L	H	D_{OUT}	Active
Write	L	H	X	L	High Z	Active

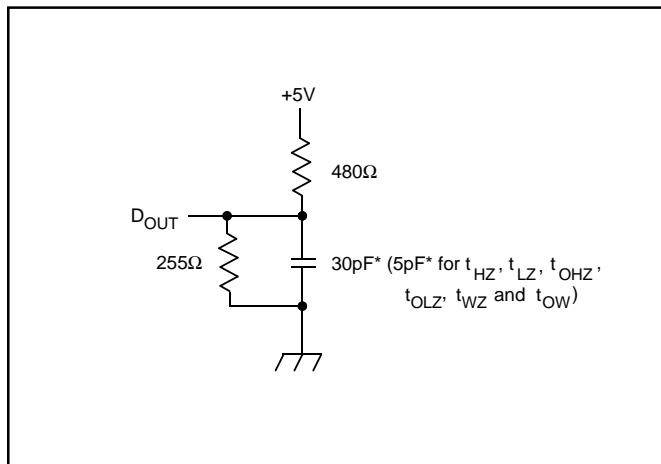


Figure 1. Output Load

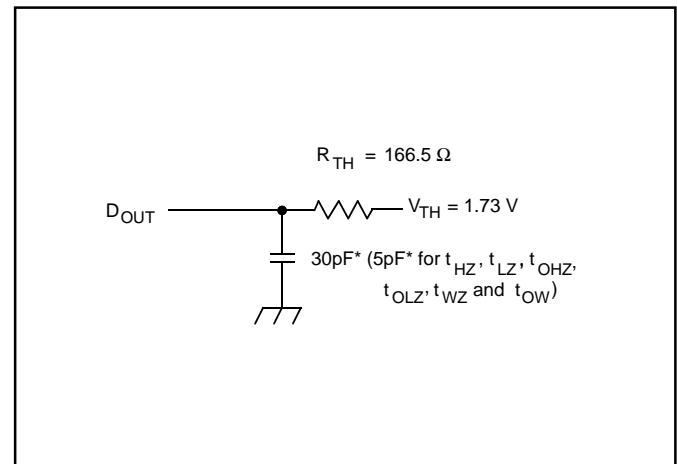


Figure 2. Thevenin Equivalent

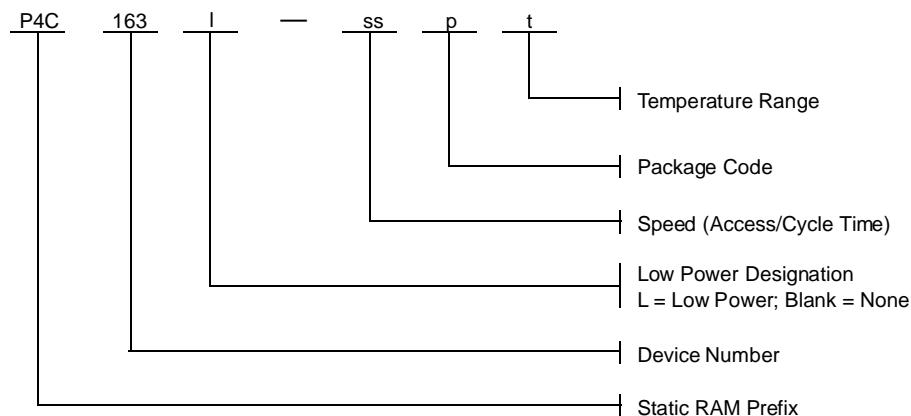
* including scope and test fixture.

Note:

Because of the ultra-high speed of the P4C163/L, care must be taken when testing this device; an inadequate setup can cause a normal functioning part to be rejected as faulty. Long high-inductance leads that cause supply bounce must be avoided by bringing the V_{CC} and ground planes directly up to the contactor fingers. A 0.01 μ F high frequency

capacitor is also required between V_{CC} and ground. To avoid signal reflections, proper termination must be used; for example, a 50Ω test environment should be terminated into a 50Ω load with 1.73V (Thevenin Voltage) at the comparator input, and a 116Ω resistor must be used in series with D_{OUT} to match 166Ω (Thevenin Resistance).

PACKAGE SUFFIX


Package Suffix	Description
P	Plastic DIP, 300 mil wide standard
J	Plastic SOJ, 300 mil wide standard
C	Sidebrazed DIP, 300 mil wide
L	Leadless Chip Carrier (ceramic)
F	CERPACK

TEMPERATURE RANGE SUFFIX

Temperature Range Suffix	Description
C	Commercial Temperature Range, 0°C to +70°C.
M	Military Temperature Range, -55°C to +125°C.
MB	Mil. Temp. with MIL-STD-883D Class B compliance

ORDERING INFORMATION

Performance Semiconductor's part numbering scheme is as follows:

I = Ultra-low standby power designator L, if available.

ss = Speed (access/cycle time in ns), e.g., 25, 35, 45.

p = Package code, i.e., P, J, C, L.

t = Temperature range, i.e., C, M, MB.

The P4C163L is also available to SMD-5962-88683

SELECTION GUIDE

The P4C163/L is available in the following temperature, speed and package options. The P4C163L is only available over the military temperature range.

Temp. Range	Package	Speed	25	35	45
Com'l	Plastic DIP Plastic SOJ		-25PC -25JC	-35PC -35JC	N/A N/A
Mil Temp.	Side Brazed LCC CERPACK		-25CM -25LM -25FM	-35CM -35LM -35FM	-45CM -45LM -45FM
Military Proc'd*	Side Brazed LCC CERPACK		-25CMB -25LMB -25FMB	-35CMB -35LMB -35FMB	-45CMB -45LMB -45FMB

* Military temperature range with MIL-STD-883, Class B processing.

N/A = Not available