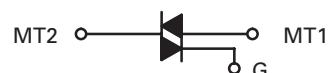


MAC16CMG, MAC16CNG

Pin Out


Description

Designed primarily for full wave ac control applications, such as motor controls, heating controls or dimmers; or wherever full-wave, silicon gate-controlled devices are

Features

- High Commutating di/dt and High Immunity to dV/dt @ 125°C
- Minimizes Snubber Networks for Protection
- Blocking Voltage to 800 Volts
- On-State Current Rating of 16 Amperes RMS
- High Surge Current Capability – 150 Amperes
- Industry Standard TO-220 Package for Ease of Design
- Glass Passivated Junctions for Reliability and Uniformity
- Operational in Three Quadrants, Q1, Q2, and Q3
- These Devices are Pb-Free and are RoHS Compliant

Functional Diagram

Additional Information

Datasheet

Resources

Samples

Maximum Ratings ($T_J = 25^\circ\text{C}$ unless otherwise noted)

Rating	Symbol	Value	Unit
Peak Repetitive Off-State Voltage (Note 1) (-40 to 125°C, Sine Wave, 50 to 60 Hz, Gate Open)	V_{DRM}	600	V
	V_{RRM}		
MAC16CM		800	
On-State RMS Current (Full Cycle Sine Wave, 50 to 60 Hz, $T_C = 80^\circ\text{C}$)	$I_{T(RMS)}$	16	A
Peak Non-Repetitive Surge Current (One Full Cycle Sine Wave, 60 Hz, $T_J = 125^\circ\text{C}$)	I_{TSM}	150	A
Circuit Fusing Consideration ($t = 8.3 \text{ ms}$)	I^2t	93	A^2sec
Peak Gate Power ($T_C = +80^\circ\text{C}$, Pulse Width = 1.0 μs)	P_{GM}	20	W
Average Gate Power ($t = 8.3 \text{ ms}, T_C = 80^\circ\text{C}$)	$P_{G(AV)}$	0.5	W
Operating Junction Temperature Range	T_J	-40 to +125	$^\circ\text{C}$
Storage Temperature Range	T_{stg}	-40 to +150	$^\circ\text{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

Thermal Characteristics

Rating	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case (AC)	R_{8JC}	2.2	$^\circ\text{C}/\text{W}$
	R_{8JA}	62.5	
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds	T_L	260	$^\circ\text{C}$

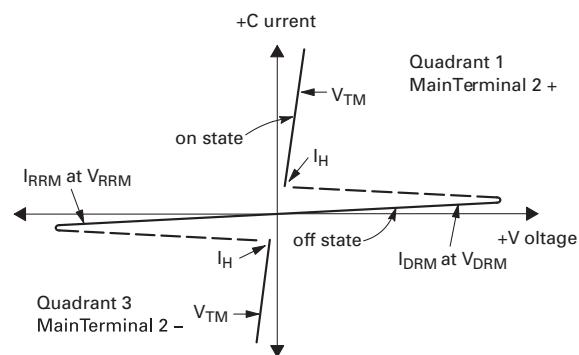
Electrical Characteristics - OFF ($T_J = 25^\circ\text{C}$ unless otherwise noted ; Electricals apply in both directions)

Characteristic		Symbol	Min	Typ	Max	Unit
Peak Repetitive Blocking Current ($V_D = V_{\text{DRM}} = V_{\text{RRM}}$; Gate Open)	$T_J = 25^\circ\text{C}$	I_{DRM}	-	-	0.01	μA
	$T_J = 125^\circ\text{C}$	I_{RRM}	-	-	2.0	mA

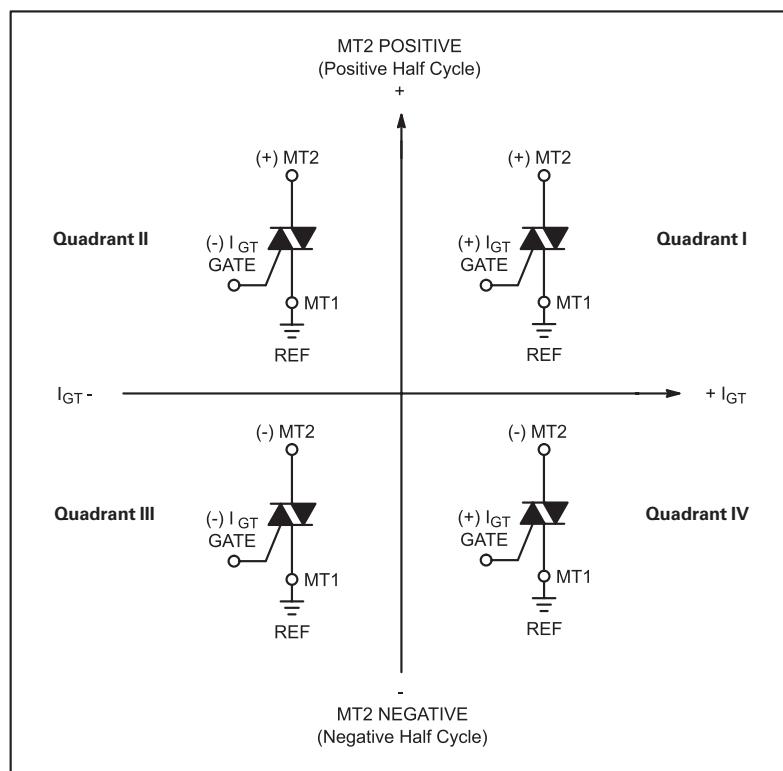
Electrical Characteristics - ON ($T_J = 25^\circ\text{C}$ unless otherwise noted; Electricals apply in both directions)

Characteristic	Symbol	Min	Typ	Max	Unit
Peak On-State Voltage (Note 2) ($I_{\text{TM}} = \pm 21 \text{ A Peak}$)	V_{TM}	-	1.2	1.6	V
Gate Trigger Current (Continuous dc) ($V_D = 12 \text{ V}$, $R_L = 100 \Omega$)	I_{GT}	8.0	12	35	mA
		8.0	16	35	
		8.0	20	35	
Gate Trigger Voltage (Continuous dc) ($V_D = 12 \text{ V}$, $R_L = 100 \Omega$)	V_{GT}	0.5	0.75	1.5	V
		0.5	0.72	1.5	
		0.5	0.82	1.5	
Latching Current ($V_D = 24 \text{ V}$, $I_G = 35 \text{ mA}$)	I_L	-	25	50	mA
		-	40	80	
		-	24	50	
Holding Current ($V_D = 12 \text{ V}_{\text{dc}}$, Gate Open, Initiating Current = $\pm 150 \text{ mA}$)	I_H	-	20	40	mA

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


2. Indicates Pulse Test: Pulse Width $\leq 2.0 \text{ ms}$, Duty Cycle $\leq 2\%$.

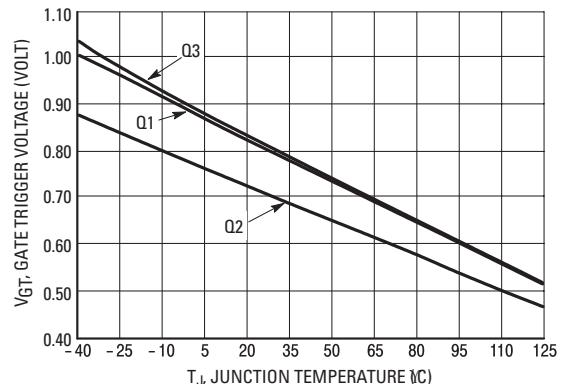
Dynamic Characteristics


Characteristic	Symbol	Min	Typ	Max	Unit
Rate of Change of Commutating Current ($V_D = 400 \text{ V}$, $I_{\text{TM}} = 6.0 \text{ A}$, Commutating $dV/dt = 24 \text{ V}/\mu\text{s}$, Gate Open, $T_J = 125^\circ\text{C}$, $f = 250 \text{ Hz}$, $C_L = 10 \mu\text{F}$, $L_L = 40 \text{ mH}$, with Snubber)	$(di/dt)_C$	15	-	-	$\text{A}/\mu\text{s}$
Critical Rate of Rise of Off-State Voltage ($V_D = \text{Rated } V_{\text{DRM}}$, Exponential Waveform, Gate Open, $T_J = 125^\circ\text{C}$)	dv/dt	600	-	-	$\text{V}/\mu\text{s}$
Repetitive Critical Rate of Rise of On-State Current IPK = 50 A; PW = 40 μsec ; $diG/dt = 200 \text{ mA}/\mu\text{sec}$; $f = 60 \text{ Hz}$	di/dt	-	-	10	

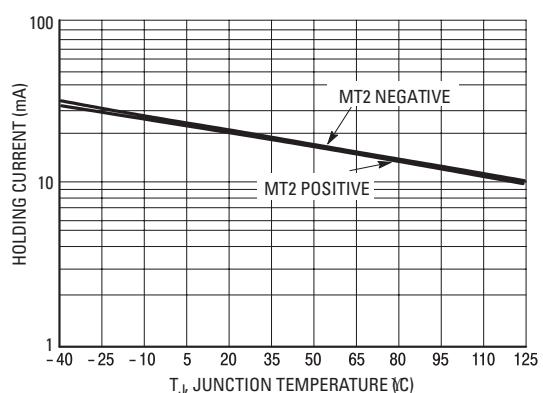
Voltage Current Characteristic of SCR

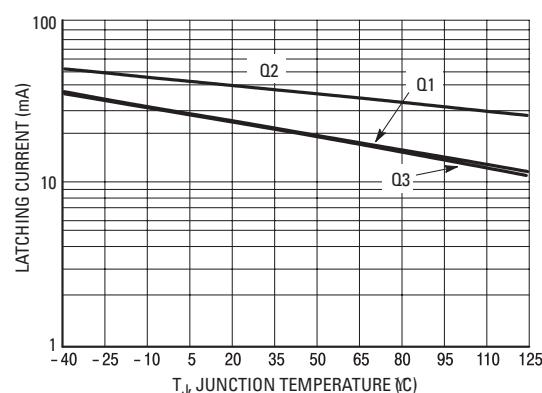
Symbol	Parameter
V_{DRM}	Peak Repetitive Forward Off State Voltage
I_{DRM}	Peak Forward Blocking Current
V_{RRM}	Peak Repetitive Reverse Off State Voltage
I_{RRM}	Peak Reverse Blocking Current
V_{TM}	Maximum On State Voltage
I_H	Holding Current

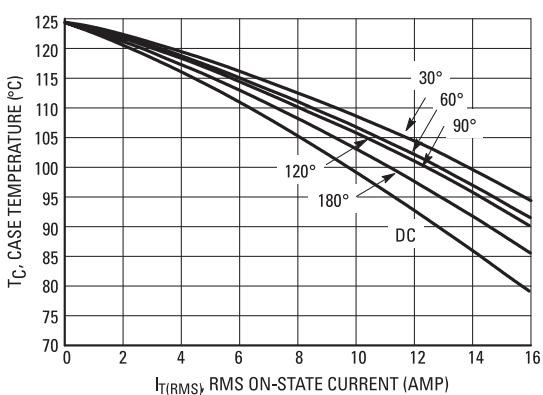
Quadrant Definitions for a Triac

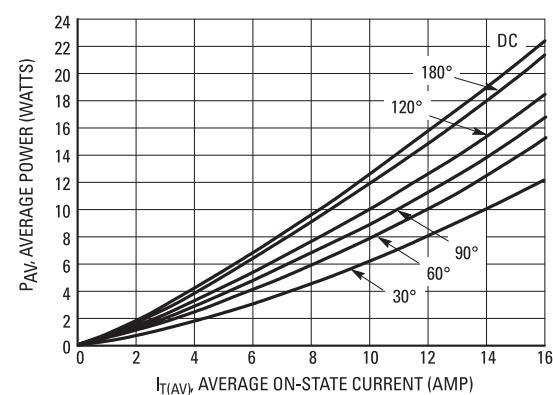

All polarities are referenced to MT1.

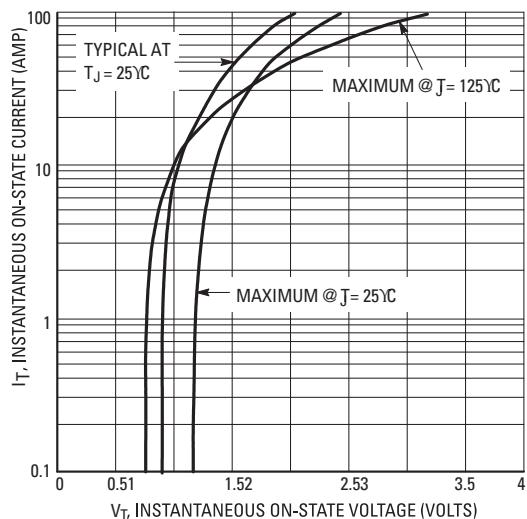
With in-phase signals (using standard AC lines) quadrants I and III are used.

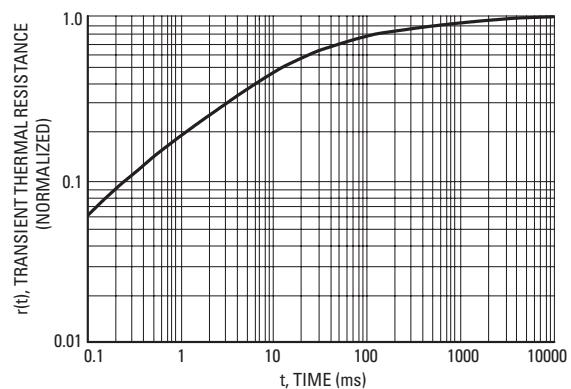

Figure 1. Typical Gate Trigger Current vs Junction Temperature

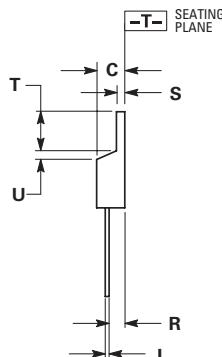
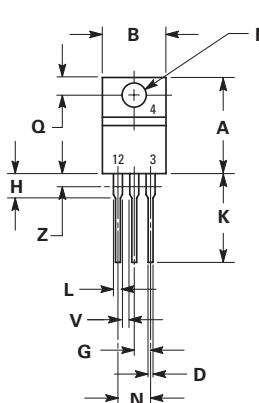

Figure 2. Typical Gate Trigger Voltage vs Junction Temperature

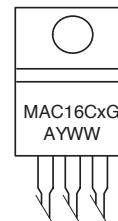
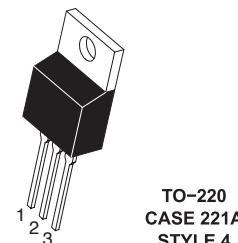

Figure 3. Typical Holding Current vs Junction Temperature


Figure 4. Typical Latching Current vs Junction Temperature


Figure 5. Typical RMS Current Derating


Figure 6. On-State Power Dissipation



Figure 7. On-State Characteristics



Figure 8. Typical Thermal Response

Dimensions

Part Marking System

TO-220
CASE 221A
STYLE 4

X= M or N
 A= Assembly Location
 Y= Year
 WW = Work Week
 G = Pb-Free Package

Pin Assignment

Dim	Inches		Millimeters	
	Min	Max	Min	Max
A	0.570	0.620	14.48	15.75
B	0.380	0.405	9.66	10.28
C	0.160	0.190	4.07	4.82
D	0.025	0.035	0.64	0.88
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.42	2.66
H	0.110	0.155	2.80	3.93
J	0.014	0.022	0.36	0.55
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
T	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
V	0.045	---	1.15	---
Z	---	0.080	---	2.04

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

2. CONTROLLING DIMENSION: INCH.

3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

Ordering Information

Device	Package	Shipping
MAC16CMG	TO-220 (Pb-Free)	50 Units/ Rail
MAC16CNG		

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at: www.littelfuse.com/disclaimer-electronics