

Multilayer Varistor for ESD pulse, Burst pulse

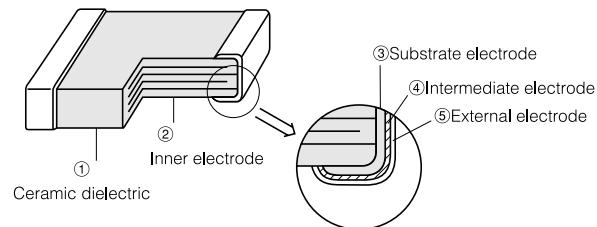
Series **EZJZ** : For high speed signal line
(ZnO:Zinc Oxide) (Small capacitance)

Series **EZJS** : For Power line
(ST:Strontium Titanate) (High capacitance)

series EZJZ series EZJS

■ Features

- Multilayer monolithic ceramic construction
- Excellent solderability and superior heat resistance
- Large surge current and energy capabilities in withstanding small size.

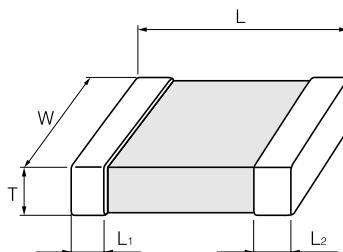

● Series EZJZ

- Multilayer varistor of Zinc oxide ceramic. suppresses the pulse noise(ESD, burst-noise) and protects the equipment from the transient surge.
- This Varistor is suitable for high-speed signal line due to small capacitance.

● Series EZJS

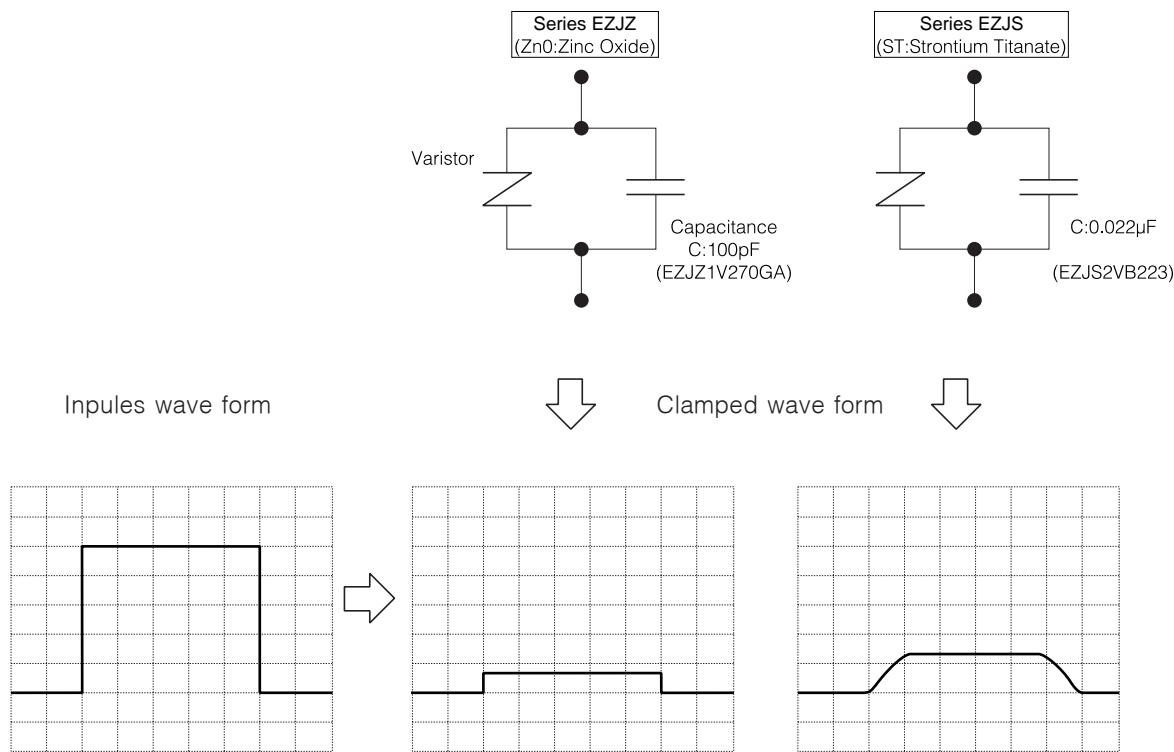
- Multilayer varistor of Strontium Titanate ceramic suppresses the pulse noise, especially high frequency noise(ESD, burst-noise) and protects the equipment from the transient surge.
- This Varistor is suitable for low-frequency signal circuit power and audio signal line due to large capacitance.

■ Construction

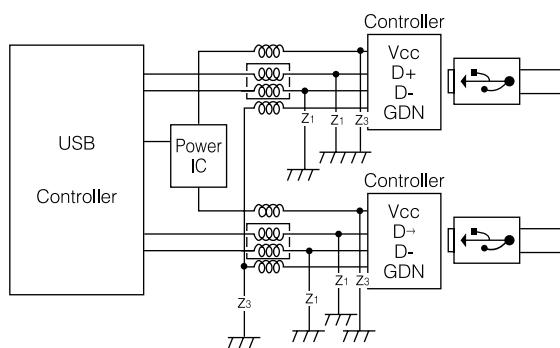


■ Precautions for Handling see Page 94 to 98

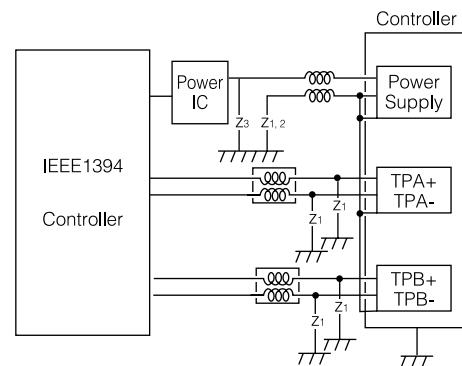
■ Recommended Applications


Applications Examples		Series		Recommended Applications			
		DC	1k	1M	1G	(Hz)	
PC mother board	Photoelectric sensor	Series EZJZ	Ultra low capacitance (3 pF max.)				DC to some tens of GHz Power, Relay, signal line High frequency circuit (USB, IEEE1394, etc)
HDD	Proximity sensor						
CD-ROM	Pressure switch		Low capacitance (47 to 330 pF)				DC to some tens of GHz Power, Relay, signal line High frequency circuit (USB, IEEE1394, etc)
DSC	Flowmeter						
Cellular telephone, PHS	SSR	Series EZJS	High capacitance (4700 to 22000 pF)				DC to some hundreds of kHz Power, Relay, Audio signal
PDA	motor						

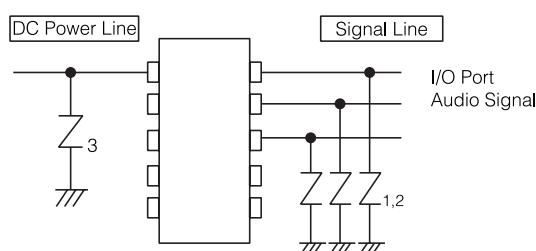
■ Dimension in mm(not to scale)

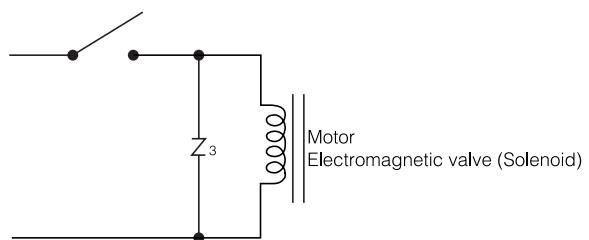

Size Code (EIA)	Part Numbers	L	W	T	L1, L2
0402	EZJZ0□□□□□A	1.00±0.10	0.50±0.10	0.50±0.10	0.20±0.10
0603	EZJZ1□□□□□A	1.60±0.15	0.80±0.10	0.80±0.20	0.30±0.20
0805	EZJS2VB233	2.00±0.20	1.25±0.20	0.80±0.10	0.50±0.25
	EZJS2Y□□□			1.25±0.20	

■ Equivalent and Impulses suppression



■ Typical circuits requiring protection

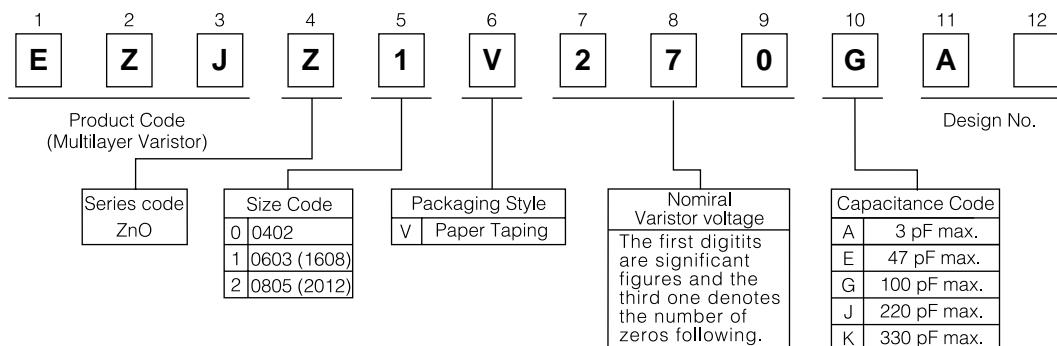

● USB Interface Circuit


● IEEE1394 Interface Circuit

● IC Protection

● Motor or Electromagnetic surge absorption

Z₁ : EZJZ Series(EZJZ□V171AA)

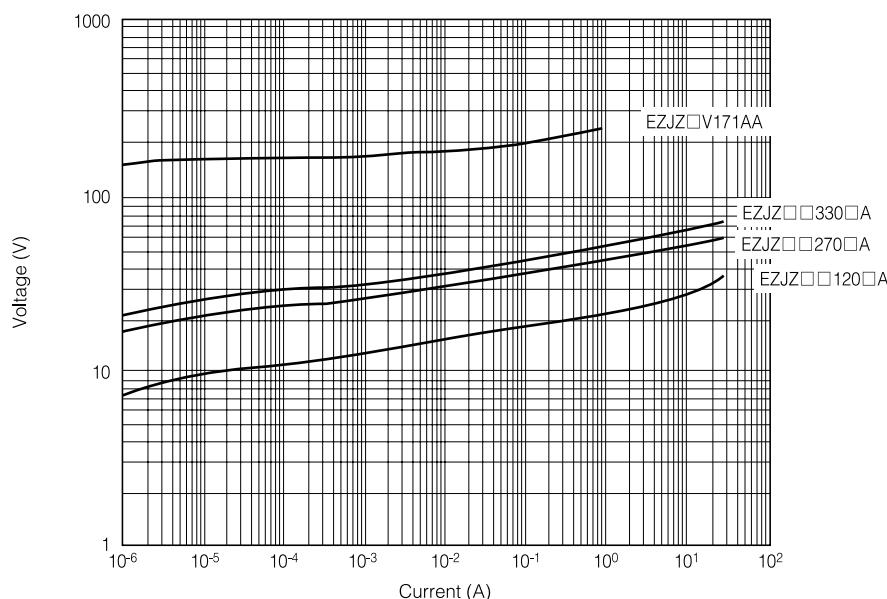

Z₂ : EZJZ Series

Z₃ : EZJZ Series or EZJS Series

Multilayer Varistor

Series: **EZJZ (ZnO)**

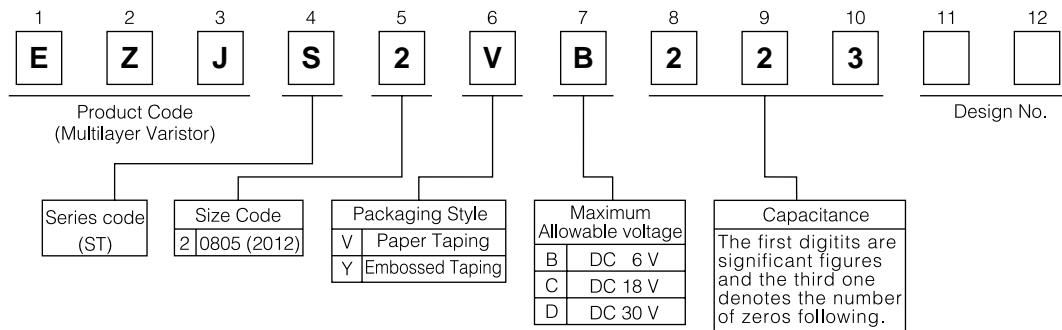
■ Explanation of Part Numbers


■ Ratings and Characteristics

Type	Part No.	Maximum Allowable Voltage	Varistor Voltage @ 1mA	Capacitance @ 1 MHz	Maximum Peak Current @ 8/20 μ s
Ultra low capacitance	EZJZ0V171AA	DC 18 V	170 V	3 pF max.	—
	EZJZ1V171AA	DC 18 V	170 V	3 pF max.	—
Low capacitance	EZJZ0V120JA	DC 6.7 V	12 V	220 pF max.	10 A
	EZJZ0V270EA	DC 16 V	27 V	47 pF max.	10 A
	EZJZ1V120KA	DC 6.7 V	12 V	330 pF max.	20 A
	EZJZ1V270GA	DC 16 V	27 V	100 pF max.	20 A
	EZJZ1V330GA	DC 26 V	33 V	100 pF max.	20 A

● Operating Temperature Range: -40 to 85 °C

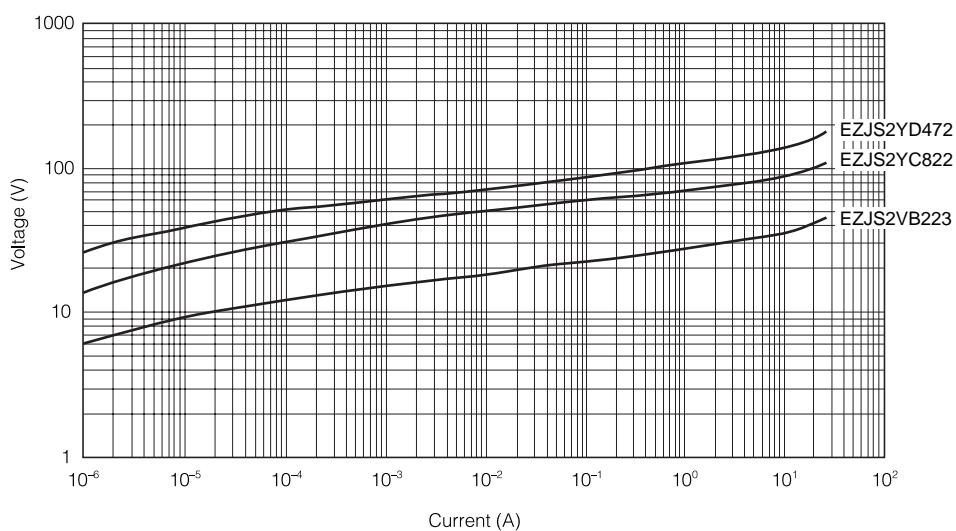
■ Typical Characteristics


● Voltage vs. Current

Multilayer Varistor

Series: **EZJS (ST)**

■ Explanation of Part Numbers


■ Ratings and Characteristics

Part No.	Maximum Allowable Voltage	Varistor Voltage ($V_{0.1mA}$)	Capacitance at 1 kHz (Typical)	Maximum ESD IEC61000-4-2
EZJS2VB223	DC 6 V	12 V	22000 pF	30 kV
EZJS2YC822	DC 18 V	30 V	8200 pF	
EZJS2YD472	DC 30 V	50 V	4700 pF	

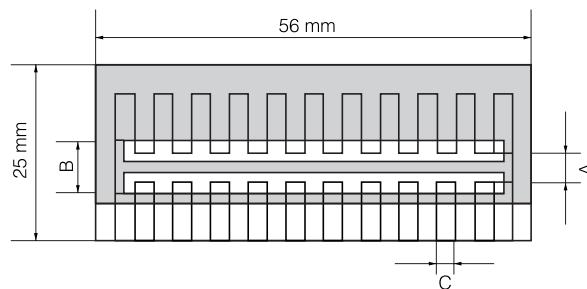
● Operating Temperature Range: -40 to 85 °C

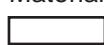
■ Typical Characteristics

● Voltage vs. Current

■ Performance Characteristics
 ● Electrical

Characteristics	Test Method	Specifications
Standard Test Condition	Unless otherwise specified all test and measurements shall be made at a temperature of 15 to 35 °C and at a relative humidity of 45 to 75 %RH. If results obtained are doubted a further test should be carried out at a temperature of 20±2 °C and a relative humidity of 60 to 70 %RH.	—
Maximum allowable Voltage	The maximum DC voltage that can be applied continuously in the specified operating temperature.	
Varistor voltage	The voltage between two terminals with the specified measuring current C_{mA} DC applied is called V_c or V_{cmA} . The measurement shall be made as fast as possible to avoid heat affection.	
Capacitance	Capacitance shall be measured with the specified measuring frequency, 0.2 to 2.0 Vms., 0V bias and 20 °C.	To meet the specified value.
Maximum peak current	The Maximum current within the varistor voltage change of ±10 % when a standard impulse current of 8/20 μ s is applied two times with an interval of 5 minutes.	
Maximum ESD	The maximum ESD within the varistor voltage change of ±10% when impressing 10 times of ESD (five times of positive-negatives for each polarity) which is based on IEC61000-4-2	To meet the specified value.
Temperature coefficient Varistor Voltage	Coefficient indicating dependency of V-I characteristics on temperature. This is shown by the change of V_{cmA} per °C at the ambient operating temperature.	EZJZ Series: ±0.1 %/°C EZJS Series: ±0.3 %/°C
Temperature coefficient capacitance	This is shown by the maximum capacitance change at the ambient operating temperature.	EZJZ Series: ±20 % EZJS Series: ±10 %


● Mechanical requirements


Characteristics	Test Method	Specifications
Solderability	After securing the specimen by the body with tweezers and dipping in to the specified soldering flux, the specimen shall be completely immersed into a soldering bath having a temperature of 230±5 °C for 4±1 seconds. And then the specimen shall be visually examined. Use the specified soldering flux and solder following: Soldering Flux: Ethanol solution of rosin about 25 % by weight Solder: Eutectic solder (Sn 63 : Pb 37)	Approximately 75 % of the terminals shall be covered with new solder uniformly,
Resistance to soldering heat	After preheating the specimen according to the following conditions in Table-1, the specimen shall be completely immersed into a soldering bath having a temperature of 270±5 °C for 3±0.5 seconds. And then be stored at room temperature for 24±2 hours. Thereafter, the change of V_c and the mechanical damage shall be examined.	No remarkable mechanical $\Delta V_c/V_c \leq \pm 10 \%$

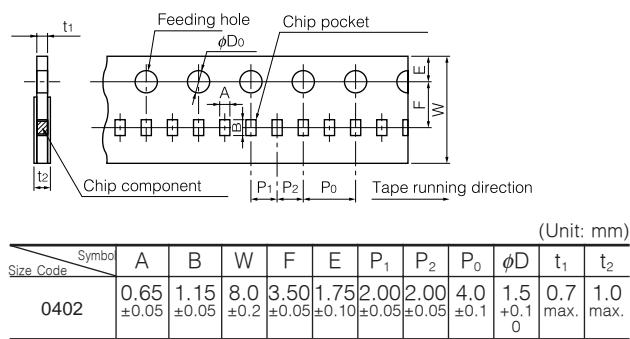
■ Performance Characteristics
 ● Environmental

Characteristics	Test Methods	Specifications																	
Temperature Cycle	<p>Solder the specimen to the testing jig shown in Fig.1. Condition the specimen to each temperature from step 1 to 4 in this order for the period shown in the table of specifications.</p> <p>Before the measurement after test, the specimen shall be left to stand and mechanical damage shall be examined.</p> <table border="1"> <thead> <tr> <th>Step</th> <th>Temperature</th> <th>Period</th> <th>Cycles</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>T_L</td> <td>30 min.</td> <td rowspan="4">5 cycles</td> </tr> <tr> <td>2</td> <td>Room Temp.</td> <td>15 min.</td> </tr> <tr> <td>3</td> <td>T_U</td> <td>30 min.</td> </tr> <tr> <td>4</td> <td>Room Temp.</td> <td>15 min.</td> </tr> </tbody> </table> <p>T_L : Lower operating temperature T_U : Upper operating temperature</p>	Step	Temperature	Period	Cycles	1	T_L	30 min.	5 cycles	2	Room Temp.	15 min.	3	T_U	30 min.	4	Room Temp.	15 min.	<p>No remarkable mechanical damage</p> <p>$\Delta V_c/V_c \leq \pm 10\%$</p>
Step	Temperature	Period	Cycles																
1	T_L	30 min.	5 cycles																
2	Room Temp.	15 min.																	
3	T_U	30 min.																	
4	Room Temp.	15 min.																	
Damp Heat Load	<p>Solder the specimen to the testing jig shown in Fig.1. The max. Allowable Voltage shall be applied continuously to the specimen at specified conditions for specified period and then stored at room temperature and normal humidity for 24 ± 2 hours. Thereafter, the change of V_c and mechanical damage shall be examined.</p> <p>Ambient condition : 40 ± 2 °C, 90 to 95 %RH</p> <p>Period : 500+24 hours -0</p>	<p>No remarkable mechanical damage</p> <p>$\Delta V_c/V_c \leq \pm 10\%$</p>																	
High Temperature Load (Dry Heat Load)	<p>Solder the specimen to the testing jig shown in Fig.1. The max. Allowable Voltage shall be applied continuously to the specimen at specified conditions for specified period and then stored at room temperature and normal humidity for 24 ± 2 hours. Thereafter, the change of V_c and mechanical damage shall be examined.</p> <p>Ambient temp. : Upper operating temperature</p> <p>Period : 500+24 hours -0</p>	<p>No remarkable mechanical damage</p> <p>$\Delta V_c/V_c \leq \pm 10\%$</p>																	

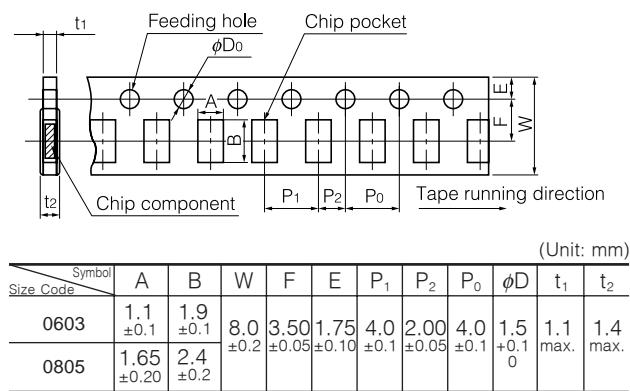
Fig.1

Material : Glass epoxy/PC board
 : Copper foil (0.035 mm in thickness)
 : Solder resist

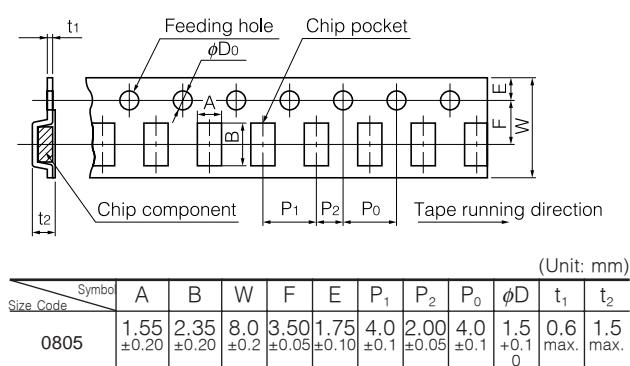
Size code(EIA)	(Unit: mm)		
	A	B	C
0402	0.4	1.5	0.5
0603	1.0	3.0	1.2
0805	1.2	4.0	1.65

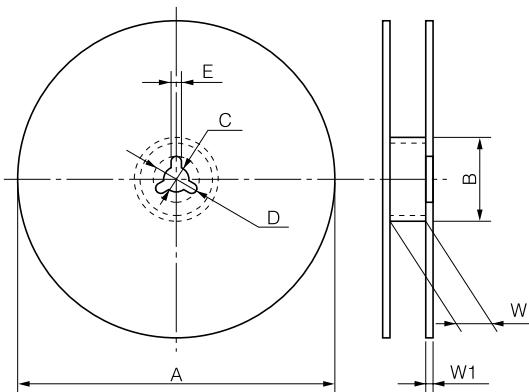

■ Packaging Specifications

- Standard Packing Quantity

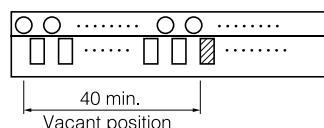

Series	Size Code (EIA)	Thickness	Paper taping	Embossed taping
EZJZ	0402	0.6 mm max.	Pitch: 2 mm 10,000 pcs./reel	—
	0603	0.9 mm max.	Pitch: 4 mm 4,000 pcs./reel	—
EZJS	0805	1.0 mm max.	Pitch: 4 mm 5,000 pcs./reel	—
		1.45 mm max.	—	Pitch: 4 mm 2,000 pcs./reel

● Paper Taping

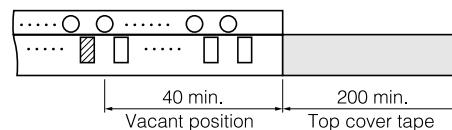

P₁: 2mm


P₁: 4mm

● Embossed Taping



● Reel



Symbol	A	B	C	D	E	W	W ₁
Dim. (mm)	φ180 ±0.5	φ60.0 ±0.5	13.0 ±0.5	21.0 ±0.8	2.0 ±0.5	9.0 ±0.3	1.3 ±0.2

● Leader Part and Taped End

Leader part

Unit : mm