Preliminary Product Information

MOS Integrated Circuit

78K0/KF2

8-BIT SINGLE-CHIP MICROCONTROLLER

The 78K0/KF2 products are 8-bit single-chip microcontrollers of the 78K0 series.

These microcontrollers feature Single-voltage Self-programming Flash memory and many peripherals.

FEATURES

- 78K0 CPU core, 8-bit CISC architecture
- Flash EEPROM and RAM sizes

Item	Program memory	Data memory
Product name	(Flash EEPROM)	(RAM)
μPD78F0547	128K bytes (Flash)	7K bytes
μPD78F0546	96K bytes (Flash)	5K bytes
μPD78F0545	60K bytes (Flash)	3K bytes
μPD78F0544	48K bytes (Flash)	2K bytes

Minimum instruction cycle

0.1 µs (20MHz@4.0V to 5.5V)

0.2 us (10MHz@2.7V to 5.5V)

0.4 µs (5MHz@1.8V to 5.5V)

Clock

- MAIN CLOCK
 - Internal Ring-oscillator 8MHz (Typ.)
 - Ceramic/Crystal Oscillator/External CLK (2MHz to 20MHz)
 (Instruction execution time = 100ns(min.) @20MHz)
- SUB CLOCK
 - 32.768KHz Crystal oscillator/ External CLK
- WDT CLOCK
 - Internal Ring-oscillator 240KHz (Typ.)

Peripherals.

- On-Chip Power-On-Clear (POC) Circuit
- Low-Voltage Detector (LVI) Circuit
- Timer
 - 16bit Timer 2ch
 - 8bit Timer 4ch
 - Watch Timer
 - Watchdog Timer (Operable with 240KHz Ring-OSC)
- Serial Interface
 - UART/CSI 1ch
 - UART (with LIN-bus) 1ch
 - Auto-CSI 1ch
 - CSI 1ch
 - IIC 1ch

- Key Interrupt 8ch
- AD CONVERTER
 - 10-bit resolution A/D converter 8ch
- I/O PORT

Total:71

CMOS I/O : 66

CMOS Output: 1

N-ch O.D I/O: 4

- •MULTUPLIER/DIVIDER
 - 16bit x 16bit, 32bit / 16bit
- Other
 - Self programming
 - PCL / BUZ OUTPUT
 - On-chip debug function (Product name is undecided.)

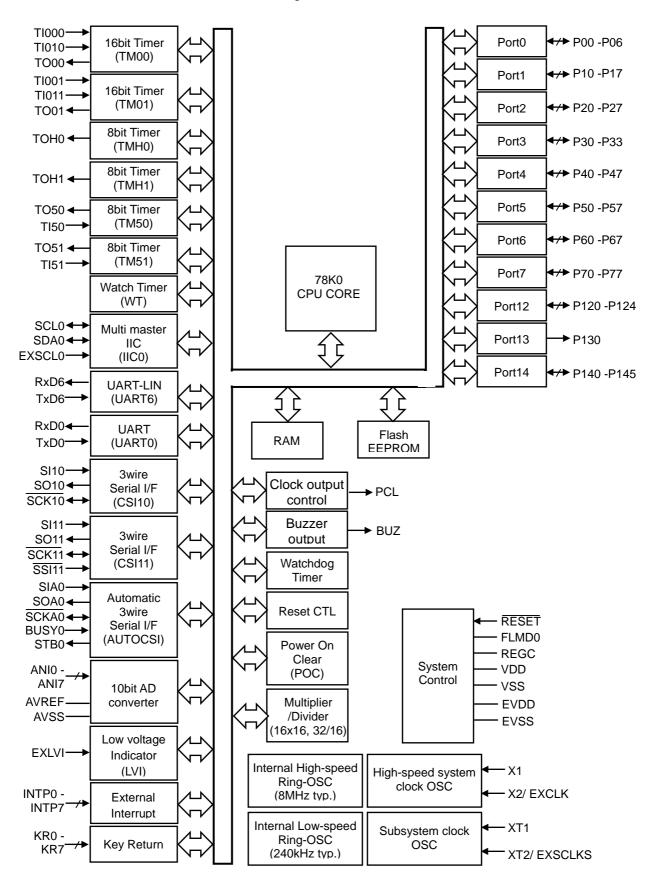
Interrupt

- Internal 20ch
- External 9ch

Operation Voltage

1.8V to 5.5V

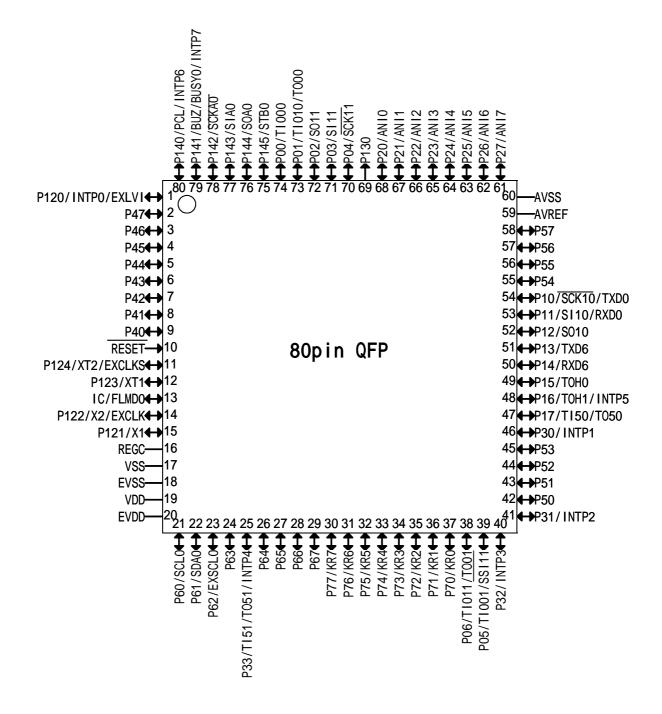
Package


80-pin LQFP (12mm x 12mm, 0.5mm pitch) 80-pin LQFP (14mm x 14mm, 0.65mm pitch)

This information contained in this document is being issued in advance of the production cycle for the product. The parameters for the product may change before final production or NEC Electronics Corporation, at its own discretion,, may withdraw the product prior to its production. Not all products and/ or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

1. Block Diagram

Fig. 78K0/KF2



2. Pin Lay Out

78K0/KF2

80-pin plastic QFP (14 x 14mm 0.65mm pitch) μ PD78F0547GC-UBT, μ PD78F0546GC-UBT μ PD78F0544GC-UBT

80-pin plastic LQFP (12 x 12mm 0.5mm pitch) μ PD78F0547GK-8EU, μ PD78F0546GK-8EU μ PD78F0544GK-8EU, μ PD78F0544GK-8EU

3. Pin Function

Table (1/2)

PIN NAME	Function
VDD	Positive power supply except for ports (except P20-P27 and P121-P124)
1,22	and AD converter
VSS	Ground potential except for ports (except P20-P27 and P121-P124) and
	AD converter
EVDD	Positive power supply for ports (except P20-P27 and P121-P124)
EVSS	Ground potential for ports (except P20-P27 and P121-P124)
RESET	System reset input
FLMD0	Flash EEPROM programming mode setting
REGC	Connecting regulator stabilization capacitor. Connect to GND via a
	capacitor (0.47 μ F).
AVREF	A/D converter analog power supply and power supply for P20-P27
AVSS	Ground potential for A/D converter and P20 - P27.
P00	I/O port
/TI000	External count clock input to 16-bit timer/event counter 00 Capture trigger input to capture registers (CR000, CR010) of16-bit
	timer/event counter 00 (TM00)
P01	I/O port
/TI010	Capture trigger input to capture register (CR000) of 16-bit timer/event
/TO00	counter 00 (TM00)
	16-bit timer/event counter 00 output (TM00)
P02	I/O port
/SO11	Serial data output from serial interface (CSI11)
P03	I/O port
/SI11	Serial data input to serial interface (CSI11)
P04	I/O port
/SCK11	Clock input/ output for serial interface (CSI11)
P05 /TI001	I/O port
/SSI11	External count clock input to 16-bit timer/event counter 01
700111	Capture trigger input to capture registers (CR001, CR011) of16-bit timer/event counter 01 (TM01)
	Chip select input for serial interface (CSI11)
P06	I/O port
/TI011	•
/TO01	Capture trigger input to capture register (CR001) of 16-bit timer/event counter 01 (TM01)
71001	16-bit timer/event counter 01 output (TM01)
P10	I/O port
/SCK10	Clock input/ output for serial interface (CSI10)
/TXD0	· · · · · · · · · · · · · · · · · · ·
P11	Serial data output from asynchronous serial interface (UART0) I/O port
/SI10	Serial data input to serial interface (CSI10)
/RXD0	Serial data input to serial interface (CSTO) Serial data input to asynchronous serial interface (UARTO)
P12	I/O port
/SO10	Serial data output form serial interface (CSI10)
P13	I/O port
/TXD6	Serial data output from asynchronous serial interface (UART6)
P14	I/O port
/RXD6	Serial data input to asynchronous serial interface (UART6)
P15	I/O port
/TOH0	8-bit timer H0 output (TMH0)
P16	I/O port
/TOH1	8-bit timer H1 output (TMH1)
/INTP5	External interrupt request input with specifiable valid edges
P17	I/O port
/TI50	External count clock input to 8-bit timer/event counter 50 (TM50)
/TO50	8-bit timer/event counter 50 output (TM50)

Table(2/2)

PIN NAME	Function
P20- P27	I/O ports
/ ANIO- ANI7	A/D converter analog input
P30/INTP1	I/O port
P31/INTP2	External interrupt request input with specifiable valid edges
P32/INTP3	
P33	I/O port
/TI51	External count clock input to 8-bit timer/event counter 51(TM51)
/TO51	8-bit timer/event counter 51output(TM51)
/INTP4	External interrupt request input with specifiable valid edges
P40 - P47	I/O port
P50 – P57	I/O port
P60	I/O port (N-ch Open drain)
/SCL0	Clock input/ output for serial interface (IIC0)
P61	I/O port (N-ch Open drain)
/SDA0	Serial data input/ output for serial interface (IIC0)
P62	I/O port (N-ch Open drain)
/EXSCL0	External clock input for serial interface (IIC0)
P63	I/O port (N-ch Open drain)
P64 – P67	I/O ports
P70 – P77	I/O ports
/KR0 – KR7	Key interrupt input
P120	I/O port
/INTP0	External interrupt request input with specifiable valid edges
/EXLVI	Reference voltage input for Low voltage Indicator
P121	I/O port (An external oscillation circuit is not used)
/X1	Connecting resonator for main system clock oscillation
P122	I/O port (An external oscillation circuit is not used)
/X2	Connecting resonator for main system clock oscillation
/EXCLK	External clock input for main system clock
P123	I/O port (An external oscillation circuit is not used)
/XT1	Connecting resonator for subsystem clock oscillation
P124	I/O port (An external oscillation circuit is not used)
/XT2	Connecting resonator for subsystem clock oscillation
/EXCLKS	External clock input for subsystem clock
P130	Output port
P140	I/O port
/PCL	Clock output
/INTP6	External interrupt request input with specifiable valid edge
P141	I/O port
/BUZ	Buzzer output
/ INTP7	External interrupt request input with specifiable valid edge
/ BUSY0	Busy signal input for serial interface (AUTOCSI)
P142	I/O port
/SCKA0	Clock input/ output for serial interface (AUTOCSI)
P143	I/O port
/SIA0	Serial data input to serial interface (AUTOCSI)
P144	I/O port
/SOA0	Serial data output form serial interface (AUTOCSI)
P145	I/O port
/STB0	Strobe signal input to serial interface (AUTOCSI)
/5100	1 Strobe signal input to serial interface (AOTOCSI)

4. Memory space

78K0/KF2 have 64kB linear address area.

To access more than 64KB ROM area, 96KB and 128KB ROM products have BANK type ROM at address of 8000H to C000H. All BANK ROM size is 16KB.

			Common ROM	Bank R	OM
5.	Products	ROM size	Address	Address	Number of Bank
	μPD78F0547	128KB	0000H-7FFFH (32KB)	8000H-BFFFH (16KB)	6
	μPD78F0546	96KB	0000H-7FFFH (32KB)	8000H-BFFFH (16KB)	4
	μPD78F0545	60KB	0000H-EFFFH (60KB)	-	-
	μPD78F0544	48KB	0000H-BFFFH (48KB)	-	-

Clock

78K0/KF2 have 2 type internal Ring-OSC and 2 type external resonator oscillation circuit. 78K0/KF2 can be operated high-speed internal Ring-OSC only. Low-speed Ring-OSC can connect to Watch dog timer and 8bit timer (TMH1) only for high secure.

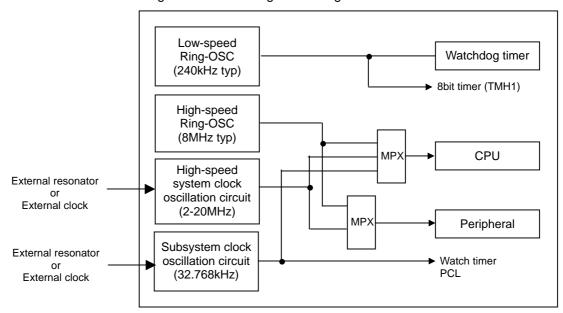


Fig. Clock connecting block image

6. Outline of Functions of KF2

		μPD78F0544	μPD78F0545	μPD78F0546	μPD78F0547			
Internal	Flash Memory	48 K	60 K	96 K	128 K			
Memory	<u> </u>							
(Byte)	Bank	-	-	4	6			
	High Speed RAM		1	K	•			
	Extend RAM	1 K	2 K	4 K	6 K			
Main System	Ceramic/Crystal	- 2 to 20 MHz: V _{DD} = 4.0	to 5.5 V		•			
Clock		- 2 to 10 MHz: V _{DD} = 2.7	to 5.5 V					
		- 2 to 5 MHz: VDD = 1.8 to	o 5.5 V					
	Internal Ring-OSC	- 8 MHz(TYP.)						
Sub System Clo	nole .	- 32.768 kHz(TYP.)						
Sub System Cit	JCK	- 32.700 KHZ(11P.)						
Internal Low Sp	eed Ring-OSC	- 240 kHz(TYP.)						
(For TMH1, WD	DT)							
Minimum Instru	ction Cycle	- 0.1 μ s (Ceramic/ Cry	stal Operation fxH = 20	MHz V _{DD} = 4.0 to 5.5 V))			
I/O		Total	:71	<u> </u>				
		- CMOS I/O	:66					
		- CMOS Out	:1					
		- N-ch O.D. :4						
Timer		- 16 Bit Timer/Event Counter:2ch						
		- 8 Bit Timer/Event Coun	ter:2ch					
		- 8 bit Timer:2ch						
		- Watch Timer:1ch						
		- Watch Dog Timer:1ch						
	Timer Output	-6(PWM:4)						
PCL output		- 156.25kHz, 312.5kHz,	615kHz, 1.25MHz, 2.5M	IHz, 5MHz, 10MHz (fprs	= 20 MHz)			
Buzzer Output		- 2.44 kHz, 4.88 kHz, 9.7	77 kHz, 19.54 kHz(fprs =	: 20 MHz)				
A/D Converter		- 10bit x 8ch						
Serial Interface		- UART (with LIN-bus):10	ch					
		- CSI/ UART:1ch						
		- CSI:1ch						
		-Auto-CSI: 1chl						
		- I ² C:1ch						
Multiplier/Divide	er	16bitx16bit, 32bit/8bit						
Interrupt	Internal	20						
	External	9						
Key Return	•	8ch						
On Chip Debug	Function	Product name is undecided.						
Voltage Range		V _{DD} = 1.8 to 5.5 V						
Operation temp	erature	Ta = -40°C to +85°C						
Package		- 80pin LQFP(12x12) 0.5	5mm pitch					
J		- 80pin QFP(14x14) 0.65mm pitch						

4. Electrical specification of KF2 (Target)

Caution These specifications show target values, which may change after device evaluation. The operating voltage range may also change.

Absolute Maximum Ratings($T_A = 25^{\circ}C$) (1/2)

Parameter	Symbol		Conditions	Ratings	
Supply voltage	VDD			-0.5 to +6.5	V
	EV _{DD}			-0.5 to +6.5	V
	Vss			-0.5 to +0.3	V
	EVss			-0.5 to +0.3	V
	AVREF			-0.5 to +6.5	V
	AVss			-0.5 to +0.3	V
Input voltage	VI1			-0.3 to V _{DD} = EV _{DD} +0.3 Note	V
	Vı2	P60-P63(N-ch open drain)		-0.3 to +6.5	V
Output voltage	Vo			-0.3 to V _{DD} = EV _{DD} +0.3 ^{Note}	V
Analog input voltage	Van			-0.3 to AVREF+0.3 Note	V
Output current, high	Іон	Per pin		-10	mA
		Total of all pins -80 mA	P00-P04, P40-P47, P120-P124, P130, P140-P145,	-25	mA
			P05-P06, P10-P17,P30-P33, P50-P57,P60-P67, P70-P77	-55	mA

Note Must be 6.5 V or lower.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Absolute Maximum Ratings($T_A = 25^{\circ}C$) (2/2)

Parameter	Symbol		Conditions	Ratings	Unit
Output current, low	Іоь	Per pin		30	mA
		Total of all	P00-P04, P40-P47,	60	mA
		pins	P120-P124, P130,		
		200 mA	P140-P145,		
			P05-P06,	140	mA
			P10-P17,P30-P33,		
			P50-P57,P60-P67,		
			P70-P77		
Operating	TA	In normal or	peration mode	-40 to +85	°C
ambient temperature		In flash mer	mory programming mode		
Storage temperature	T _{stg}			-65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

High-Speed System Clock (Crystal/Ceramic) Oscillator Characteristics

($(T_A = -40 \text{ to } +85^{\circ}C, 1)$	$1.8 \text{ V} \leq \text{Vdd} = \text{E}$	$V_{DD} \le 5.5 \text{ V}, 2.3 \text{ V}$	$/ \le AV_{REF} \le V_{DD} = EV_{DD}$, Vss	= EVs	s = A'	Vss = (J V)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator	Vss X1 X2 C1= C2=	Oscillation frequency(fxH) ^{Note}	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$ $2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}$ $1.8 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$	2.0 2.0 2.0		20.0 10.0 5.0	MHz
Crystal resonator	Vss X1 X2 C1= C2=	Oscillation frequency(fxH) ^{Note}	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$ $2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}$ $1.8 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$	2.0 2.0 2.0		20.0 10.0 5.0	MHz

Note Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

Cautions 1. When using the high-speed system clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- · Keep the wiring length as short as possible.
- · Do not cross the wiring with the other signal lines.
- . Do not route the wiring near a signal line through which a high fluctuating current flows.
- · Always make the ground point of the oscillator capacitor the same potential as Vss.
- . Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.
- 2. Since the CPU is started by the Ring-OSC after reset is released, check the oscillation stabilization time of the high-speed system clock using the oscillation stabilization time status register (OSTC). Determine the oscillation stabilization time of the OSTC register and oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark For the resonator selection and oscillator constant, customers are requested to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

Ring-OSC Oscillator Characteristics

 $(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{Vdd} = \text{EVdd} \le 5.5 \text{ V}, 2.3 \text{ V} \le \text{AVREF} \le \text{Vdd} = \text{EVdd}, \text{Vss} = \text{EVss} = \text{AVss} = 0 \text{ V})$

Resonator	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
8 MHz Ring-OSC oscillator	High-speed Ring-OSC	$2.7~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$	7.6 Note2	8.0 Note2	8.4 Note2	MHz
	Oscillation frequency(fred)Note1	$1.8~V \le V_{DD} \le 5.5~V$	T.B.D	8.0 Note2	T.B.D	
240 kHz Ring-OSC oscillator	Low-speed Ring-OSC	$2.7~V \leq V_{DD} \leq 5.5~V$	216	240	264	kHz
	Oscillation frequency(fRL)	$1.8~V \leq V_{DD} \leq 5.5~V$	T.B.D	240	T.B.D	

- Note 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.
 - 2. This is the frequency in the case of RSTS(RCM.7)=1. This is 5 MHz(TYP.) in the case of RSTS=0.

Subsystem Clock Oscillator Characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \ 1.8 \ \text{V} \leq \text{Vdd} = \text{EVdd} \leq 5.5 \ \text{V}, \ 2.3 \ \text{V} \leq \text{AVREF} \leq \text{Vdd} = \text{EVdd}, \ \text{Vss} = \text{EVss} = \text{AVss} = 0 \ \text{V})$

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator	Vss XT2 XT1 Rd C4 — C3 —	Oscillation frequency(fsub) ^{Note}		32	32.768	35	kHz

Note Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

- **Cautions 1.** When using the subsystem clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.
 - · Keep the wiring length as short as possible.
 - Do not cross the wiring with the other signal lines.
 - . Do not route the wiring near a signal line through which a high fluctuating current flows.
 - · Always make the ground point of the oscillator capacitor the same potential as Vss.
 - Do not ground the capacitor to a ground pattern through which a high current flows.
 - Do not fetch signals from the oscillator.
 - 2. The subsystem clock oscillator is designed as a low-amplitude circuit for reducing power consumption, and is more prone to malfunction due to noise than the high-speed system clock oscillator. Particular care is therefore required with the wiring method when the subsystem clock is used.
- **Remark** For the resonator selection and oscillator constant, customers are requested to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

DC Characteristics (1/4)

(TA = -40 to +85°C, 1.8 V \leq VDD = EVDD \leq 5.5 V, Vss = EVss = AVss = 0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit	
Output current, high	Іон1	Per pin of P00-P06, P10-P17,	$4.0V \leq V_{DD} \leq 5.5V$			-3.0	mA	
		P30-P33, P40-P47, P50-P57,	2.7 V ≤ V _{DD} < 4.0V			-2.5		
		P64-P67, P70-P77, P120, P130,	1.8 V ≤ V _{DD} < 2.7V			-1.0		
		P140-P145						
		Total of P00-P04, P40-P47, P120,	$4.0V \leq V_{DD} \leq 5.5V$			-20.0	mA	
		P130, P140-P145	$2.7~V \le V_{DD} < 4.0V$			-10.0		
			$1.8~V \le V_{DD} < 2.7V$			-5.0		
		Total of P05-P06, P10-P17,	$4.0 \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{V}$			-30.0	mA	
		P30-P33, P50-P57, P64-P67,	$2.7~V \leq V_{DD} < 4.0V$			-19.0		
		P70-P77	$1.8~V \leq V_{DD} < 2.7V$			-10.0		
		Total of all pins	$4.0V \leq V_{DD} \leq 5.5V$			-50.0	mA	
			$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{V}$			-29.0		
			$1.8 \text{ V} \le \text{V}_{DD} < 2.7 \text{V}$			-15.0		
	І ОН2	Per pin of P20-P27, P121-P124 Note	$1.8V \leq V_{DD} \leq 5.5V$			-0.1	mA	
Output current, low	lo _{L1}	Per pin of P00-P06, P10-P17,	$4.0 \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{V}$			8.5	mA	
		P30-P33, F	P30-P33, P40-P47, P50-P57,	$2.7 \text{ V} \leq \text{V}_{DD} < 4.0 \text{V}$			5.0	
		P64-P67, P70-P77, P120, P130,	1.8 V ≤ V _{DD} < 2.7V			2.0		
		P140-P145						
		Per pin of P60-P63	$4.0V \leq V_{DD} \leq 5.5V$			15.0	mA	
			$2.7~V \leq V_{DD} < 4.0V$			5.0		
			$1.8~V \leq V_{DD} < 2.7V$			2.0		
		Total of P00-P04, P40-P47, P120,	$4.0V \leq V_{DD} \leq 5.5V$			20.0	mA	
		P130, P140-P145	$2.7~\text{V} \leq \text{V}_{\text{DD}} < 4.0\text{V}$			15.0		
			$1.8 \text{ V} \le \text{V}_{DD} < 2.7 \text{V}$			9.0		
		Total of P05-P06, P10-P17,	$4.0V \leq V_{DD} \leq 5.5V$			45.0	mA	
		P30-P33, P50-P57, P64-P67,	$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{V}$			35.0		
		P70-P77	1.8 V ≤ V _{DD} < 2.7V			20.0		
		Total of all pins	$4.0V \leq V_{DD} \leq 5.5V$			65.0	mA	
			2.7 V ≤ V _{DD} < 4.0V			50.0		
			1.8 V ≤ V _{DD} < 2.7V			29.0		
	lo _{L2}	Per pin of P20-P27, P121-P124 Note	$1.8V \leq V_{DD} \leq 5.5V$			0.4	mA	

Note When used as digital input ports, set AVREF = VDD. = EVDD.

Caution This specification is Duty = 70% condition of IoH and IoL.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as

those of port pins.

DC Characteristics (2/4)

(TA = -40 to +85°C, 1.8 V \leq VDD = EVDD \leq 5.5 V, Vss = EVss = AVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input voltage, high	V _{IH1}	P02, P12, P13, P15, P40-P47, P50-P57, P60-P67,	0.7V _{DD}		V_{DD}	V
		P121-P124, P144-P145				
	V _{IH2}	P00, P01, P03-P06, P10-P11, P14, P16-P17, P30-P33,	0.8V _{DD}		V _{DD}	V
		P70-P77, P120, P140-P143, RESET				
	VIH3	P20-P27 Note	0.7AVREF		AVREF	V
Input voltage, low	V _{IL1}	P02, P12, P13, P15, P40-P47, P50-P57, P60-P67,	0		0.3V _{DD}	V
		P121-P124, P144-P145				
	V _{IL2}	P00, P01, P03-P06, P10-P11, P14, P16-P17, P30-P33,	0		0.2V _{DD}	V
		P70-P77, P120, P140-P143, RESET				
	VIL3	P20-P27 Note	0		0.3AV _{REF}	V

Note When used as digital input ports, set AVREF = VDD = EVDD.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

DC Characteristics (3/4)

 $(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le VDD = EVDD \le 5.5 \text{ V}, Vss = EVss = AVss = 0 \text{ V})$

Parameter	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	V _{OH1}	Iон = -3.0 mA	P00-P06, P10-P17, P30-P33, P40-P47,	$4.0 \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{V}$	V _{DD} -0.7			V
		Iон = -2.5 mA	P50-P57, P64-P67, P70-P77, P120, P130, P140-P145	$2.7~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5\text{V}$	V _{DD} -0.5			V
		Iон = -1.0 mA		$1.8~V \leq V_{DD} \leq 5.5V$	V _{DD} -0.5			V
	V _{OH2}	Iон = -0.1 mA	P20-P27	1.8 V ≤ V _{DD} ≤ 5.5 V	V _{DD} -0.5			V
			P121-P124	AVREF = VDD = EVDD				
Output voltage, low	V _{OL1}	IoL = 8.5 mA	P00-P06, P10-P17, P30-P33, P40-P47,	$4.0V \leq V_{DD} \leq 5.5V$			0.7	V
		loL = 1.0 mA	P50-P57, P64-P67, P70-P77, P120, P130,	$2.7~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5\text{V}$			0.5	V
		loL = 0.5 mA	P140-P145	1.8 V ≤ V _{DD} ≤ 5.5V			0.4	V
	V _{OL2}	loL = 0.4 mA	P20-P27	1.8 V ≤ V _{DD} ≤ 5.5 V			0.4	V
			P121-P124	AVREF = VDD = EVDD				
	Vol3	IoL = 15.0 mA	P60-P63	$4.0V \leq V_{DD} \leq 5.5V$			2.0	V
		IoL = 5.0 mA					0.4	V
		IoL = 3.0 mA		$2.7~V \leq V_{DD} \leq 5.5V$			0.4	V
		IoL = 2.0 mA		$1.8~V \leq V_{DD} \leq 5.5V$			0.4	V
Input leakage current, high	ILIH1	$V_I = V_{DD} = EV_{DD}$	P00-P06, P10-P17, P30- P64-P67, P70-P77, P120	P33, P40-P47, P50-P57,)-P124, P130, P140-P145			1	μΑ
current, riigii	I _{LIH2}	Vi = AVREF	P20-P27				1	μΑ
	Ішнз	$V_{I} = V_{DD} = EV_{DD}$	X1, X2, XT1, XT2 (When use External	oscillator)			20	μΑ
Input leakage current, low	ILIL1	Vı = Vss = EVss		-P33, P40-P47, P50-P57, 0-P124, P130, P140-P145			-1	μА
	I _{LIL2}	Vi = AVREF	P20-P27				-1	μА
	ILIL3	Vı = Vss = EVss	X1, X2, XT1, XT2				-20	μA
			(When use External	oscillator)				
Pull-up resistance value	Rυ	$V_{I} = V_{DD} = EV_{DD}$			10	20	100	kΩ
FLMD0 supply	VIL	In normal opera	tion mode		0		0.2V _{DD}	V
voltage	VIH	In flash memory	programming mode		0.8V _{DD}		V _{DD}	V

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

DC Characteristics (4/4)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{Vdd} = \text{EVdd} \le 5.5 \text{ V}, 2.3 \text{ V} \le \text{AVref} \le \text{Vdd} = \text{EVdd}, \text{Vss} = \text{EVss} = \text{AVss} = 0 \text{ V})$

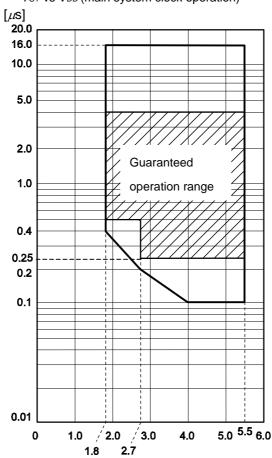
Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Supply	I _{DD1}	Operation mode	fxH = 20 MHz Note2, VDD = 5.0 V		4.7	5.8	mA
current ^{Note1}			$f_{XH} = 10 \text{ MHz}^{\text{Note}^2}, V_{DD} = 5.0 \text{ V}^{\text{Note}^3}$		2.5	3.5	mA
			$f_{XH} = 5 \text{ MHz}^{\text{Note}^2}, \text{ V}_{DD} = 3.0 \text{ V}^{\text{Note}^3}$		1.5	2.2	mA
			$f_{RH} = 8 \text{ MHz}^{\text{Note}^2}, V_{DD} = 5.0 \text{ V}$		1.9	2.7	mA
			$f_{SUB} = 32.768 \text{ kHz}^{Note2}, V_{DD} = 5.0 \text{ V}$		17	T.B.D.	μΑ
	I _{DD2}	HALT mode	$f_{XH} = 20 \text{ MHz}^{\text{Note}^2}, V_{DD} = 5.0 \text{ V}$		2.2	2.6	mA
			$f_{XH} = 10 \text{ MHz}^{\text{Note}2}, V_{DD} = 5.0 \text{ V}^{\text{Note}3}$		1.0	1.2	mA
			$f_{XH} = 5 \text{ MHz}^{\text{Note2}}, \text{ V}_{DD} = 3.0 \text{ V}^{\text{Note3}}$		0.55	0.65	mA
			$f_{RH} = 8 \text{ MHz}^{\text{Note}^2}, \text{ Vdd} = 5.0 \text{ V}$		0.6	0.65	mA
			$f_{SUB} = 32.768 \text{ kHz}^{Note2}, V_{DD} = 5.0 \text{ V}$		3.5	T.B.D.	μΑ
	I _{DD3}	STOP mode	$V_{DD} = EV_{DD} = 5.0 \text{ V}$		1	20	μΑ
	IADC	A/D converter	A/D converter operating		0.57	1.3	mA
		operating current	A/D converter not operating		T.B.D.	T.B.D.	mA
	I WDT	Watchdog Time	240 kHz Ring-OSC operating		5	10	μ A
		operating current					
	ILVI	LVI operating			9	T.B.D.	μ A
		current					

- **Notes 1.** Total current flowing through the internal power supply (VDD).
 - 2. Input square-wave
 - 3. When $\overrightarrow{AMPH}(OSCCTL.0) = 0$.

Remark 1. fxH: High-Speed System Clock oscillation frequency (X1 clock oscillation frequency or External main system clock frequency).

- 2. fr.: High-speed Ring-OSC oscillation frequency.
- **3.** fsub: Subsystem Clock oscillation frequency (XT1 clock oscillation frequency or External subsystem clock frequency).

AC Characteristics

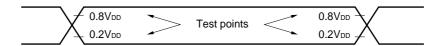

(1)Basic operation

(TA = -40 to +85°C, 1.8 V \leq VDD = EVDD \leq 5.5 V, 2.3 V \leq AVREF \leq VDD =EVDD, Vss = EVss = AVss = 0 V)

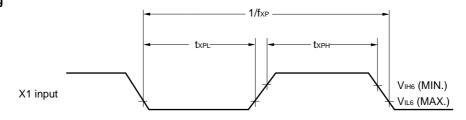
Parameter	Symbol		Condition	ons	MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Tcy	Main	High-speed	4.0 V ≤ V _{DD} ≤5.5 V	0.1		16	μS
instruction execution time)		system	system	$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}$	0.2		16	μS
		clock(fxp)	clock(fxн)	1.8 V ≤ V _{DD} < 2.7 V	0.4		16	μS
		operation						
			High-speed	$2.7 \text{ V} \leq \text{V}_{DD} < 5.5 \text{ V}$	0.25		4	μS
			Ring-OSC	$1.8 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$	0.5		4	μS
			clock(frH)					
			n clock(fsuв)opera	ation	114	122	125	μS
External main system clock	fexclk	4.0 V ≤ V _{DI}	o ≤ 5.5 V		2.0		20.0	MHz
frequency		2.7 V ≤ V _D	2.7 V ≤ V _{DD} < 4.0 V				10.0	MHz
		1.8 V ≤ V _D	o < 2.7 V		2.0		5.0	MHz
External main system clock	texclkh,				(1/fexclk			ns
input high-/low-level width	t exclkl				x 1/2) - 1			
External subsystem clock	fexclks				32	32.768	35	kHz
frequency								
External subsystem clock	texclksh,				(1/fexclks			ns
input high-/low-level width	t exclksl				x 1/2) - 5			
TI000, TI010, TI001, TI011	t тіно,	4.0 V ≤ V _D	o ≤ 5.5 V		2/f _{sam} +			μS
input high-level width,	t TILO				0.1 Note1			
low-level width		2.7 V ≤ V _D	o < 4.0 V		2/f _{sam} +			μS
					0.2 Note1			
TI50, TI51 input frequency	f _{T15}	4.0 V ≤ V _{DI}	o≤5.5 V				10	MHz
		2.7 V ≤ V _D	o < 4.0 V				10	MHz
		1.8 V ≤ V _D	o < 2.7 V				5	MHz
TI50, TI51 input high-level	t⊤ıн₅,	4.0 V ≤ V _D	o ≤ 5.5 V		50			ns
width, low-level width	tTIL5	2.7 V ≤ V _D	o < 4.0 V		50			ns
		1.8 V ≤ V _D	o < 2.7 V		100			ns
Interrupt input high-level	tinth,				1			μS
width, low-level width	tintl							
Key return input low-level	t KR				250			ns
width								
RESET low-level width	trsl				10 Note2			μS
		1						

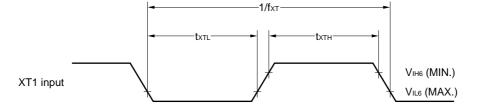
Notes 1. Selection of $f_{sam} = f_{PRS}$, f_{PRS} /4, f_{PRS} /256 or f_{PRS} , f_{PRS} /16, f_{PRS} /64 is possible using bits 0 and 1 (PRM000, PRM001 or PRM010,PRM011) of prescaler mode register 00 and 01 (PRM00,PRM01). Note that when selecting the TI000 or TI001 valid edge as the count clock, $f_{sam} = f_{PRS}$.

^{2.} Input low level signal into RESET pin until power supply voltage is stabilized in the case of the power supply voltage rise time is slowly (more than 3.4ms).

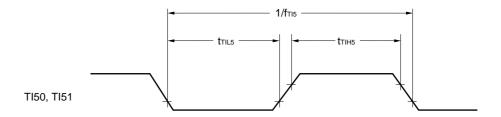

Tcy vs Vdd (main system clock operation)

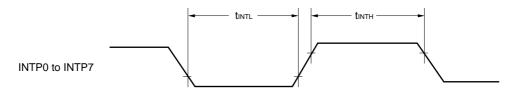
Remark The values indicated by the shaded section are only when the High-speed Ring-OSC clock is selected.


Supply voltage VDD [V]

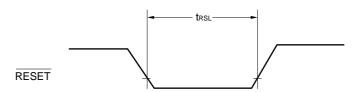


AC Timing Test Points (Excluding X1 Input)


Clock Timing



TI Timing



Interrupt Request Input Timing

RESET Input Timing

(2) Serial interface

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \ 1.8 \text{ V} \leq \text{Vdd} = \text{EVdd} \leq 5.5 \text{ V}, \ 2.3 \text{ V} \leq \text{AVref} \leq \text{Vdd} = \text{EVdd}, \ \text{Vss} = \text{EVss} = \text{AVss} = 0 \text{ V})$

(a)UART mode (UART6, dedicated baud rate generator output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate					312.5	kbps

(b) UART mode (UART0, dedicated baud rate generator output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate					312.5	kbps

(c) IIC0 mode

Parameter	Symbol	Normal mode		High spe	Unit	
		MIN.	. MAX	MIN.	. MAX	
SCL0 clock frequency	fclk	0	100	0	400	kHz
Start/restart condition setup time ^{Note1}	tsu: sta	4.8	-	0.7	-	μS
hold time	thd: STA	4.1	-	0.7	-	μS
Hold time in SCL = "L"	tLOW	5.0	-	1.25	-	μS
Hold time in SCL = "H"	tніgн	5.0	-	1.25	-	μS
Data setup time (reception)	tsu: dat	0	-	0	-	μS
Data hold time (sending) ^{Note2}	thd: dat	0.47	4.0	0.23	1.00	μS

Notes 1. The first clock pulse is generated after this period in the case of the start/restart condition.

2. The MAX of $t_{\text{HD:DAT}}$ is normal transition value. Wait is occurred in the term of ACK(acknowledge) .

Caution Specification at 1.8 $V \le V_{DD} < 2.7V$ is not fixed.

(d) 3-wire serial I/O mode (CSI10, CSI11 master mode, SCK1n...internal clock output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK1n cycle time	tkcy1	4.0 V ≤ V _{DD} ≤ 5.5 V	100			ns
		2.7 V ≤ VDD < 4.0 V	200			ns
SCK1n high-/low-level width	t кн1,		tkcy1/2 - 10 ^{Not1}			ns
	t KL1					
SI1n setup time (to SCK1n↑)	tsıkı		30			ns
SI1n hold time (to SCK1n↑)	tksi1		30			ns
Delay time from SCK1n↓ to SO1n	tkso1	C = 50 pF ^{Note2}			40	ns
output						

Notes 1. This is the value when the high-speed system clock (fxH) is operating.

2. C is the load capacitance of the SCK1n and SO1n output lines.

(e) 3-wire serial I/O mode (CSI10, CSI11 slave mode, SCK1n...external clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK1n cycle time	tkcy2		400			ns
SCK1n high-/low-level width	tĸн2,		T.B.D			ns
	t _{KL2}					
SI1n setup time (to SCK1n↑)	tsık2		80			ns
SI1n hold time (to SCK1n↑)	tksi2		50			ns
Delay time from SCK1n↓ to SO1n	t KSO2	C = 50 pF ^{Note}			120	ns
output						

Note C is the load capacitance of the SO1n output lines.

Remark n = 0, 1

Caution Specification at 1.8 $V \le V_{DD} < 2.7V$ is not fixed.

(f) 3-wire serial I/O mode with automatic transmit/ receive function (AUTOCSI SCKA0...internal clock output)

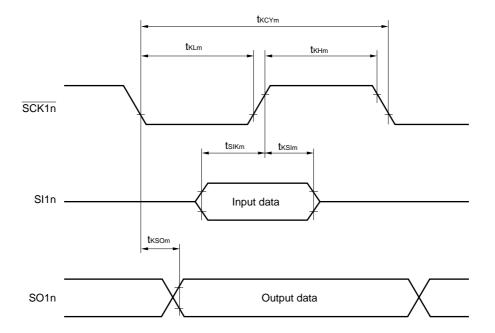
Parameter	Symbol	Со	nditions	MIN.	TYP.	MAX.	Unit
SCKA0 cycle time	tксүз	4.0 V ≤ V _{DD} ≤ 5.5	V	600			ns
		2.7 V ≤ V _{DD} < 4.0	V	1200			ns
SCKA0 high-/low-level width	tкнз	4.0 V ≤ V _{DD} ≤ 5.5	V	txcy3/2 - 50 ^{Not1}			ns
	tкLз	2.7 V ≤ V _{DD} < 4.0	2.7 V ≤ V _{DD} < 4.0 V				ns
SIA0 setup time (to SCKA0↑)	tsik3			100			ns
SIA0 hold time (to SCKA0↑)	t KSI3			300			ns
Delay time from SCKA0↓ to	tкsоз	C = 100 pF ^{Note2}	4.0 V ≤ V _{DD} ≤ 5.5 V			200	ns
SOA0			2.7 V ≤ V _{DD} < 4.0 V			300	ns
Time from SCKA0↑ to STB0↑	tsbd		-	tkcy3/2 - 100 ^{Not1}			ns
Strobe signal high level width	tssw	4.0 V ≤ V _{DD} ≤ 5.5	V	tkcy3 - 30 ^{Not1}			ns
		2.7 V ≤ V _{DD} < 4.0	V	tkcy3 - 60 ^{Not1}			ns
Busy signal setup time (to	t _{BYS}			100			ns
busy signal detection timing)							
Busy signal hold time (from	tвүн	4.0 V ≤ V _{DD} ≤ 5.5	V	100			ns
busy signal detection timing)		2.7 V ≤ V _{DD} < 4.0 V		150			ns
Time from busy inactive to SCKA0↓	tsps					21ксүз	ns

Notes 1. This is the value when the high-speed system clock (fxH) is operating.

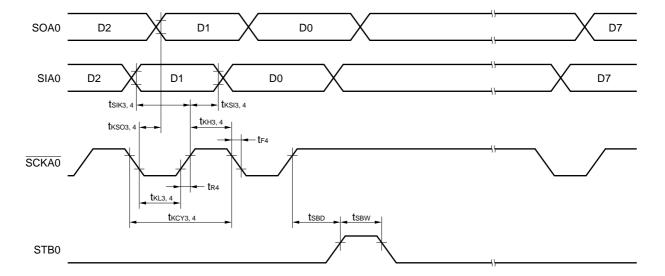
2. C is the load capacitance of the SCKA0 and SOA0 output lines.

(g) 3-wire serial I/O mode with automatic transmit/ receive function (AUTOCSI SCKA0...external clock input)

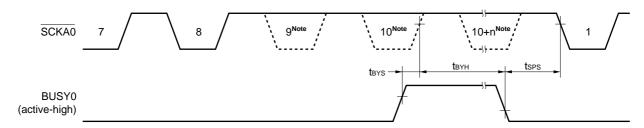
Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
SCKA0 cycle time	tkcy4	4.0 V ≤ V _{DD} ≤ 5	600			ns	
		2.7 V ≤ V _{DD} < 4	1200			ns	
SCKA0 high-/low-level width	t кн4	4.0 V ≤ V _{DD} ≤ 5	4.0 V ≤ V _{DD} ≤ 5.5 V				ns
	t _{KL4}	2.7 V ≤ V _{DD} < 4	2.7 V ≤ V _{DD} < 4.0 V				ns
SIA0 setup time (to SCKA0↑)	tsık4			100			ns
SIA0 hold time (to SCKA0↑)	tksi4			300			ns
Delay time from SCKA0↓ to	tkso4	C = 50 pF ^{Note}	4.0 V ≤ V _{DD} ≤ 5.5 V			200	ns
SOA0 output			2.7 V ≤ V _{DD} < 4.0 V			300	ns


Note C is the load capacitance of the SOA0 output lines.

Caution Specification at 1.8 V \leq VDD < 2.7V is not fixed.


Serial Transfer Timing

3-wire serial I/O mode:



3-wire serial I/O mode with automatic transmit/receive function:

3-wire serial I/O mode with automatic transmit/receive function (busy processing):

Note The signal is not actually driven low here; it is shown as such to indicate the timing.

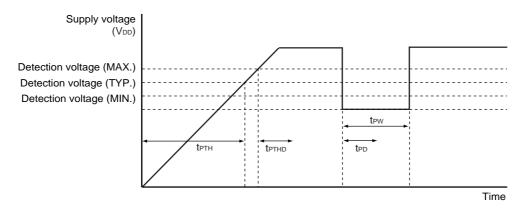
A/D Converter Characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}$, $1.8 \text{ V} \leq \text{Vdd} = \text{EVdd} \leq 5.5 \text{ V}$, $2.3 \text{ V} \leq \text{AVref} \leq \text{Vdd} = \text{EVdd}$, Vss = EVss = AVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res				10	bit
Overall error Note1,2	Ainl	4.0 V ≤ AV _{REF} ≤ 5.5 V			±0.4	%FSR
		2.7 V ≤ AV _{REF} ≤ 5.5 V			±0.6	%FSR
		AVREF < 2.7 V			T.B.D.	%FSR
Conversion time	tconv	4.0 V ≤ AV _{REF} ≤ 5.5 V	6.6		30	μs
		2.7 V ≤ AV _{REF} ≤ 5.5 V	6.6		30	μs
		AVREF < 2.7 V	11		T.B.D.	μs
Zero-scale error Note1,2	Ezs	4.0 V ≤ AV _{REF} ≤ 5.5 V			±0.4	%FSR
		2.7 V ≤ AV _{REF} ≤ 5.5 V			±0.6	%FSR
		AVREF < 2.7 V			T.B.D.	%FSR
Full-scale error Note1,2	Ers	4.0 V ≤ AVREF ≤ 5.5 V			±0.4	%FSR
		2.7 V ≤ AVREF ≤ 5.5 V			±0.6	%FSR
		AVREF <2.7 V			T.B.D.	%FSR
Integral linearity error Note1	ILE	4.0 V ≤ AV _{REF} ≤ 5.5 V			±2.5	LSB
		2.7 V ≤ AV _{REF} ≤ 5.5 V			±4.5	LSB
		AV _{REF} < 2.7 V			T.B.D.	LSB
Differential linearity error Note1	DLE	4.0 V ≤ AV _{REF} ≤ 5.5 V			±1.5	LSB
		2.7 V ≤ AVREF ≤ 5.5 V			±2.0	LSB
		AVREF < 2.7 V			T.B.D.	%FSR
Analog input voltage	Vain		AVss		AVREF	V

Notes 1. Excludes quantization error (±1/2 LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.


POC Circuit Characteristics (T_A = -40 to +85°C)

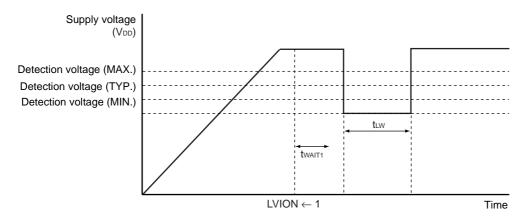
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOC		1.3	1.5	1.7	V
Power supply rise time	t PTH	V _{DD} : V _{POC} →1.8 V (MIN. value of V _{DD})		75	T.B.D	mV/ms
Minimum pulse width	tpw		T.B.D.	50		μs

Notes 1. When voltage rises, time required from detection to reset release

2. When voltage drops, time required from detection to reset occur.

POC Circuit Timing

LVI Circuit Characteristics (TA = -40 to +85°C)

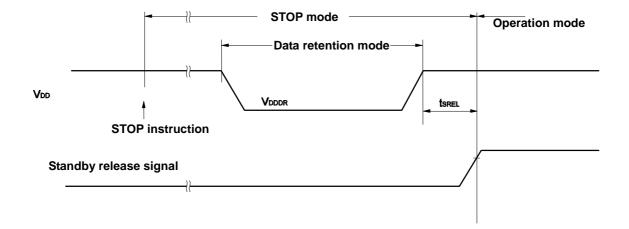

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage	VLVIO		4.10	4.20	4.30	V
voltage	level	V _L VI1		3.95	4.05	4.15	V
		V _{LVI2}		3.81	3.91	4.01	V
		VLVI3		3.66	3.76	3.86	V
		V _L VI4		3.51	3.61	3.71	V
		V _{LVI5}		3.37	3.47	3.57	V
		V _L VI6		3.22	3.32	3.42	V
		V _L VI7		3.07	3.17	3.27	V
		V _{LVI8}		2.93	3.03	3.13	V
		V _{LVI9}		2.78	2.88	2.98	V
		V _L VI10		2.63	2.73	2.83	V
		V _L VI11		2.49	2.59	2.69	V
		V _{LVI12}		2.34	2.44	2.54	V
		V _L VI13		2.19	2.29	2.39	V
		VLVI14		2.05	2.15	2.25	V
		V _L VI15		1.90	2.00	2.10	V
	External input	EXLVI	EXLVI < VDD = EVDD		1.21		V
Minimum p	1	t _{LW}		T.B.D.	50		μS
Operation time Note2	stabilization wait	TLWAIT1			10	T.B.D	μS

Note 1. Using EXLVI/P120/INTP0 pin

2. Time required from setting LVION to 1 to operation stabilization

Remark $V_{LVI(n-1)} > V_{LVIn} : n = 1-15$

LVI Circuit Timing



Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (T_A = -40 to +85°C)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.3 ^{Note}		5.5	V

Note Dependence on POC detection voltage. The data is held before POC reset, but is not held after POC reset when voltage drops.

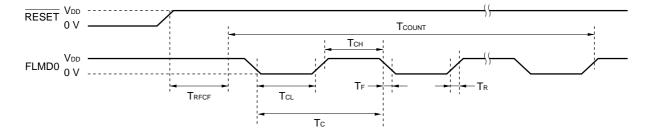
Flash Memory Programming Characteristics

 $(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, 2.3 \text{ V} \le \text{Vdd} = \text{EVdd} \le 5.5 \text{ V}, 2.3 \text{ V} \le \text{AVref} \le \text{Vdd} = \text{EVdd}, \text{Vss} = \text{EVss} = \text{AVss} = 0 \text{ V})$

(1) Basic characteristics

Para	meter	Symbol	Conditions	MIN. TYP. MAX.		Unit	
V _{DD} supply volta	age	IDD	fxP = 10 MHz (TYP.), 20 MHz (MAX.)		4.5 11.0		mA
Erase time ^{Note1}	Chip unit	Teraca			20	T.B.D	ms
	Sector unit	Terasa			20	T.B.D	ms
Write time		T _{wrwa}			50.	T.B.D.	μS
Number of rewrites per chip C		Cerwr	1 erase + 1 write after erase = 1		100		time
			rewrite ^{Note2}				

Notes 1. The prewrite time before erasure and the erase verify time (writeback time) are not included.


2. When a product is first written after shipment, "erase → write" and "write only" are both taken as one rewrite.

(2) Serial write operation characteristics

(2) Contain time operation characteristics							
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
Time from RESET↑ to FLMD0 count	TRFCF		T.B.D	10	T.B.D	ms	
start							
Count execution time	Тсоинт		T.B.D	10	T.B.D	ms	
FLMD0 counter high-/low-level width	Тсн/Тсь		Tc x 0.45			μs	
FLMD0 counter rise/fall time	T _R /T _F		12.5			μs	

Remark These values may change after evaluation.

Serial Write Operation

NOTES FOR CMOS DEVICES —

1 VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (MAX) and V_{IH} (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (MAX) and V_{IH} (MIN).

(2) HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to Vpd or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.

③ PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.

4 STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.

⑤ POWER ON/OFF SEQUENCE

In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current.

The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.

6 INPUT OF SIGNAL DURING POWER OFF STATE

Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

Windows and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

PC/AT is a trademark of International Business Machines Corporation.

HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

SuperFlash® is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.

- The information contained in this document is being issued in advance of the production cycle for the product. The parameters for the product may change before final production or NEC Electronics Corporation, at its own discretion, may withdraw the product prior to its production.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property
 rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other
 liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
 patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes
 in semiconductor product operation and application examples. The incorporation of these circuits, software and
 information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC
 Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of
 these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special", and "Specific".
 The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics products before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

M5 02.11-1