

General Purpose Transistor

NPN Silicon

2N4264

CASE 29-04, STYLE 1
TO-92 (TO-226AA)

MAXIMUM RATINGS

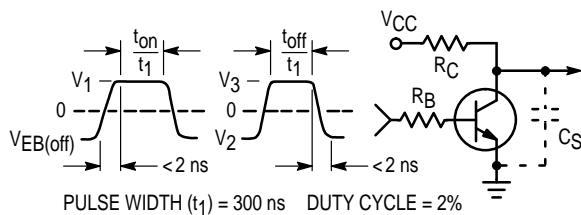
Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V_{CEO}	15	Vdc
Collector-Base Voltage	V_{CBO}	30	Vdc
Emitter-Base Voltage	V_{EBO}	6.0	Vdc
Collector Current — Continuous	I_C	200	mAdc
Total Device Dissipation @ $T_A = 25^\circ\text{C}$ Derate above 25°C	PD	350 2.8	mW mW/ $^\circ\text{C}$
Total Device Dissipation @ $T_C = 25^\circ\text{C}$ Derate above 25°C	PD	1.0 8.0	Watts mW/ $^\circ\text{C}$
Operating and Storage Junction Temperature Range	T_J, T_{stg}	-55 to +150	$^\circ\text{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	357	$^\circ\text{C/W}$
Thermal Resistance, Junction to Case	$R_{\theta JC}$	125	$^\circ\text{C/W}$

ELECTRICAL CHARACTERISTICS ($T_A = 25^\circ\text{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage ($I_C = 1.0$ mAdc, $I_B = 0$)	$V_{(BR)CEO}$	15	—	Vdc
Collector-Base Breakdown Voltage ($I_C = 10$ μ Adc, $I_E = 0$)	$V_{(BR)CBO}$	30	—	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10$ μ Adc, $I_C = 0$)	$V_{(BR)EBO}$	6.0	—	Vdc
Base Cutoff Current ($V_{CE} = 12$ Vdc, $V_{EB}(\text{off}) = 0.25$ Vdc) ($V_{CE} = 12$ Vdc, $V_{EB}(\text{off}) = 0.25$ Vdc, $T_A = 100^\circ\text{C}$)	I_{BEV}	— —	0.1 10	μ Adc
Collector Cutoff Current ($V_{CE} = 12$ Vdc, $V_{EB}(\text{off}) = 0.25$ Vdc)	I_{CEX}	—	100	nAdc


ELECTRICAL CHARACTERISTICS ($T_A = 25^\circ\text{C}$ unless otherwise noted) (Continued)

Characteristic	Symbol	Min	Max	Unit	
ON CHARACTERISTICS					
DC Current Gain ($I_C = 1.0 \text{ mA DC}$, $V_{CE} = 1.0 \text{ Vdc}$) ($I_C = 10 \text{ mA DC}$, $V_{CE} = 1.0 \text{ Vdc}$) ($I_C = 10 \text{ mA DC}$, $V_{CE} = 1.0 \text{ Vdc}$, $T_A = -55^\circ\text{C}$) ($I_C = 30 \text{ mA DC}$, $V_{CE} = 1.0 \text{ Vdc}$) ($I_C = 100 \text{ mA DC}$, $V_{CE} = 1.0 \text{ Vdc}$) ⁽¹⁾ ($I_C = 200 \text{ mA DC}$, $V_{CE} = 1.0 \text{ Vdc}$) ⁽¹⁾	h_{FE}	25 40 20 40 30 20	— 160 — — — —	—	
Collector-Emitter Saturation Voltage ($I_C = 10 \text{ mA DC}$, $I_B = 1.0 \text{ mA DC}$) ($I_C = 100 \text{ mA DC}$, $I_B = 10 \text{ mA DC}$) ⁽¹⁾	$V_{CE(\text{sat})}$	— —	0.22 0.35	Vdc	
Base-Emitter Saturation Voltage ($I_C = 10 \text{ mA DC}$, $I_B = 1.0 \text{ mA DC}$) ($I_C = 100 \text{ mA DC}$, $I_B = 10 \text{ mA DC}$) ⁽¹⁾	$V_{BE(\text{sat})}$	0.65 0.75	0.8 0.95	Vdc	
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product ($I_C = 10 \text{ mA DC}$, $V_{CE} = 10 \text{ Vdc}$, $f = 100 \text{ MHz}$)	f_T	300	—	MHz	
Input Capacitance ($V_{EB} = 0.5 \text{ Vdc}$, $I_C = 0$, $f = 1.0 \text{ MHz}$)	$C_{i\text{bo}}$	—	8.0	pF	
Output Capacitance ($V_{CB} = 5.0 \text{ Vdc}$, $I_E = 0$, $f = 1.0 \text{ MHz}$, $I_E = 0$)	$C_{o\text{bo}}$	—	4.0	pF	
SWITCHING CHARACTERISTICS					
Delay Time	$(V_{CC} = 10 \text{ Vdc}, V_{EB(\text{off})} = 2.0 \text{ Vdc},$ $I_C = 100 \text{ mA DC}$, $I_{B1} = 10 \text{ mA DC}$) (Fig. 1, Test Condition C)	t_d	—	8.0	ns
Rise Time		t_r	—	15	ns
Storage Time	$V_{CC} = 10 \text{ Vdc}$, ($I_C = 10 \text{ mA DC}$, for t_s) ($I_C = 100 \text{ mA}$ for t_f) ($I_{B1} = -10 \text{ mA}$) ($I_{B2} = 10 \text{ mA}$) (Fig. 1, Test Condition C)	t_s	—	20	ns
Fall Time		t_f	—	15	ns
Turn-On Time	$(V_{CC} = 3.0 \text{ Vdc}, V_{EB(\text{off})} = 1.5 \text{ Vdc},$ $I_C = 10 \text{ mA DC}$, $I_{B1} = 3.0 \text{ mA DC}$) (Fig. 1, Test Condition A)	t_{on}	—	25	ns
Turn-Off Time		t_{off}	—	35	ns
Storage Time	$(V_{CC} = 10 \text{ Vdc}, I_C = 10 \text{ mA},$ $I_{B1} = I_{B2} = 10 \text{ mA DC}$) (Fig. 1, Test Condition B)	t_s	—	20	ns
Total Control Charge		Q_T	—	80	pC

1. Pulse Test: Pulse Width = 300 μs , Duty Cycle = 2.0%.

Figure 1. Switching Time Equivalent Test Circuit

Test Condition	I_C	V_{CC}	R_S	R_C	$C_S(\text{max})$	$V_{BE(\text{off})}$	V_1	V_2	V_3
	mA	V	Ω	Ω	pF	V	V	V	V
A	10	3	3300	270	4	-1.5	10.55	-4.15	10.70
B	10	10	560	960	4	—	—	-4.65	6.55
C	100	10	560	96	12	-2.0	6.35	-4.65	6.55

CURRENT GAIN CHARACTERISTICS

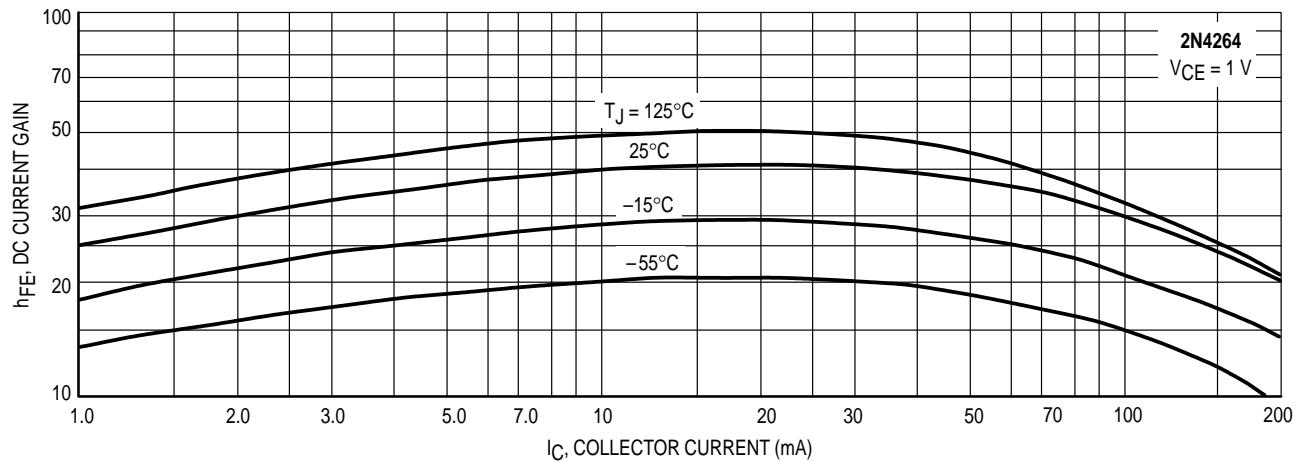


Figure 2. Minimum Current Gain

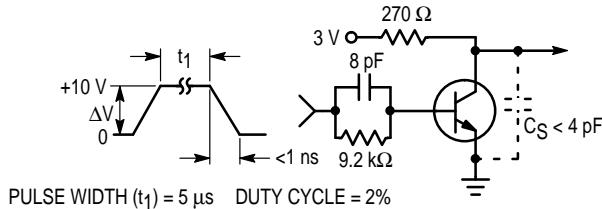
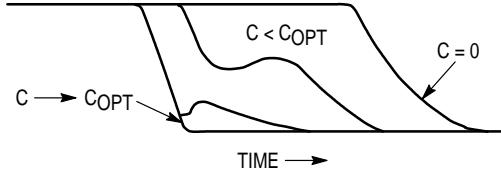


Figure 3. Q_T Test Circuit

Figure 4. Turn-Off Waveform

NOTE 1

When a transistor is held in a conductive state by a base current, I_B , a charge, Q_S , is developed or "stored" in the transistor. Q_S may be written: $Q_S = Q_1 + Q_Y + Q_X$.

Q_1 is the charge required to develop the required collector current. This charge is primarily a function of alpha cutoff frequency. Q_Y is the charge required to charge the collector-base feedback capacity. Q_X is excess charge resulting from overdrive, i.e., operation in saturation.

The charge required to turn a transistor "on" to the edge of saturation is the sum of Q_1 and Q_Y which is defined as the active region charge, Q_A . $Q_A = I_B t_r$ when the transistor is driven by a constant current step

$$(I_B 1) \text{ and } I_B 1 < \frac{I_C}{h_{FE}}$$

If I_B were suddenly removed, the transistor would continue to conduct until Q_S is removed from the active regions through an external path or through internal recombination. Since the internal recombination time is long compared to the ultimate capability of a transistor, a charge, Q_T , of opposite polarity, equal in magnitude, can be stored on an external capacitor, C , to neutralize the internal charge and considerably reduce the turn-off time of the transistor. Figure 3 shows the test circuit and Figure 4 the turn-off waveform. Given Q_T from Figure 13, the external C for worst-case turn-off in any circuit is: $C = Q_T / \Delta V$, where ΔV is defined in Figure 3.

“ON” CONDITION CHARACTERISTICS

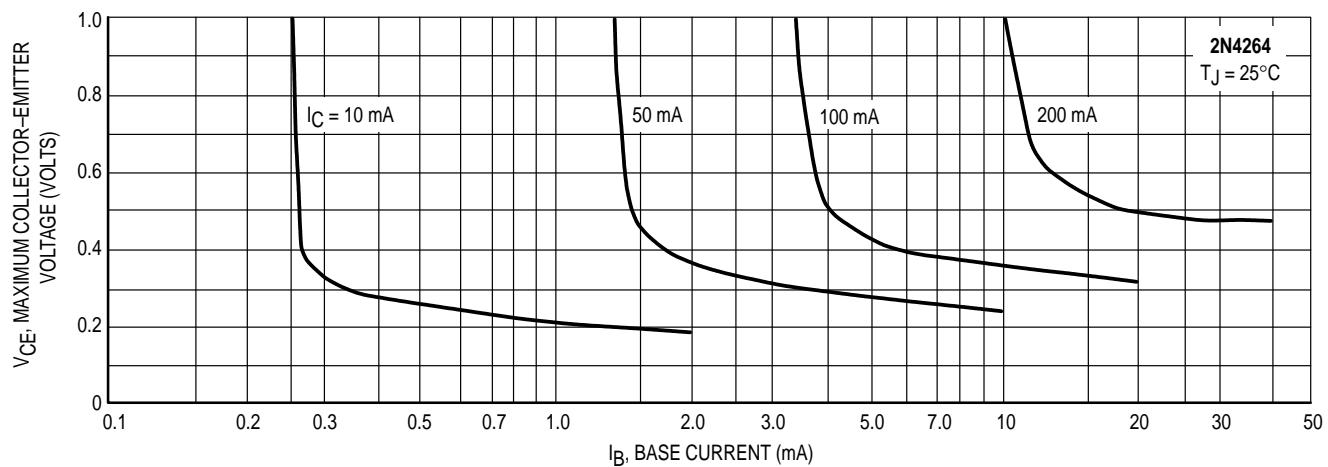


Figure 5. Collector Saturation Region

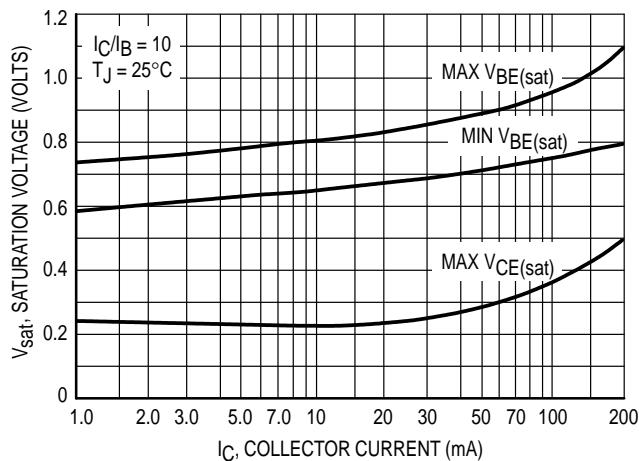


Figure 6. Saturation Voltage Limits

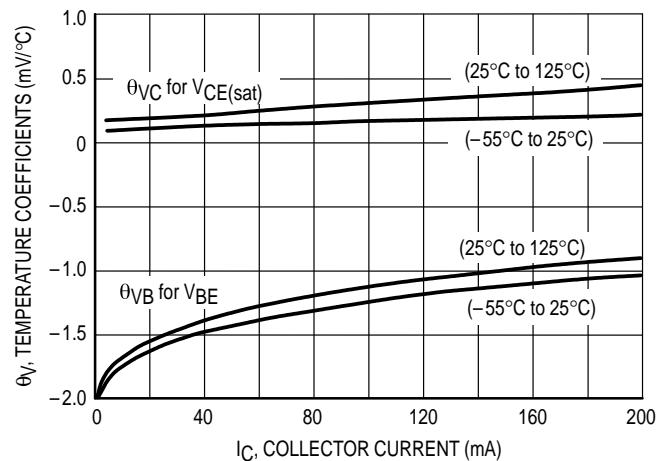


Figure 7. Temperature Coefficients

DYNAMIC CHARACTERISTICS

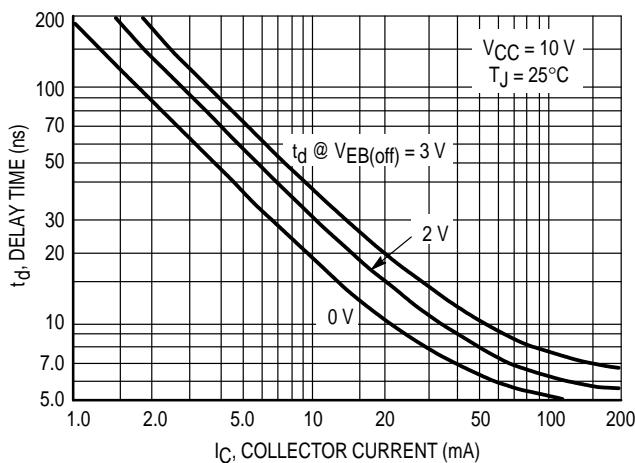


Figure 8. Delay Time

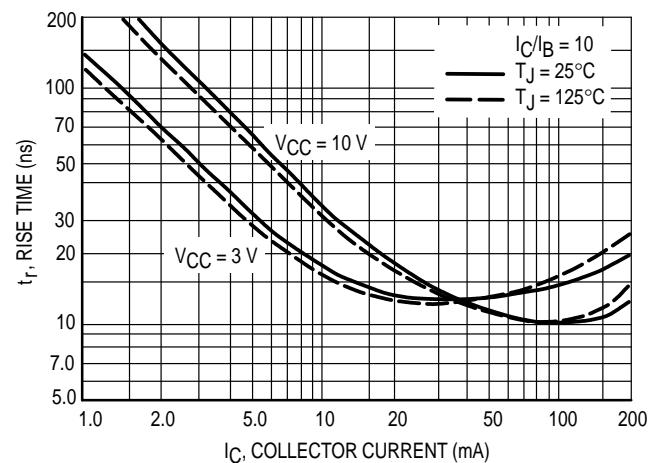


Figure 9. Rise Time

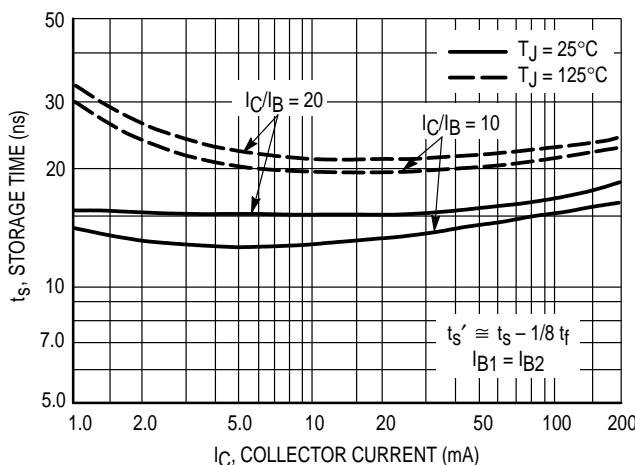


Figure 10. Storage Time

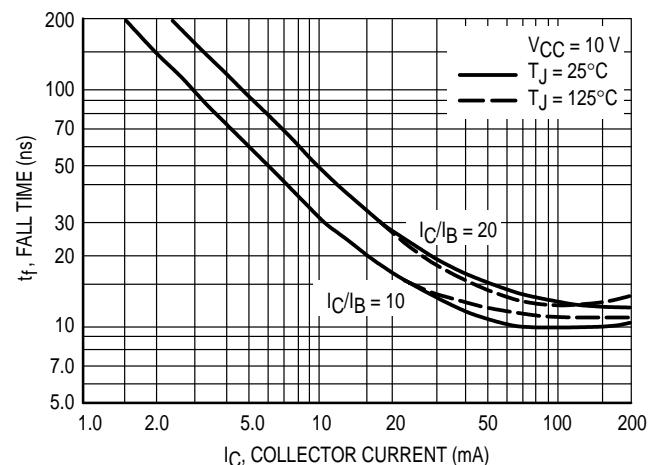


Figure 11. Fall Time

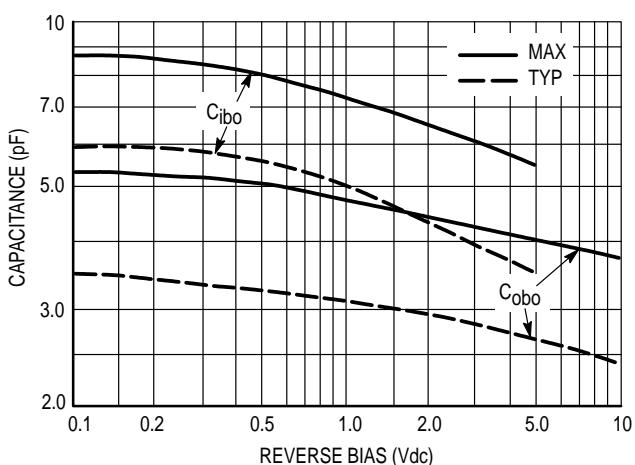


Figure 12. Junction Capacitance

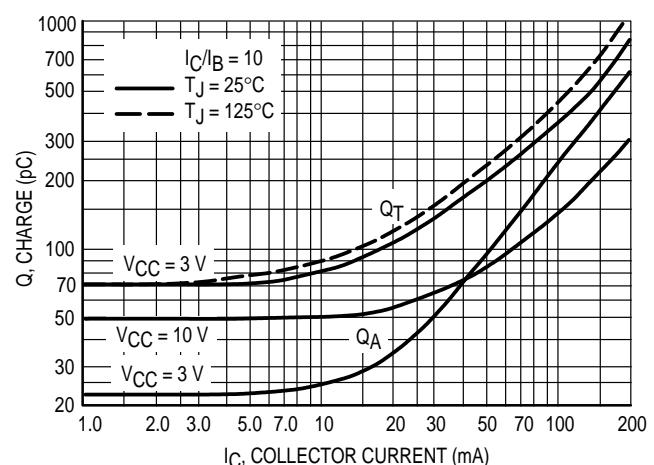
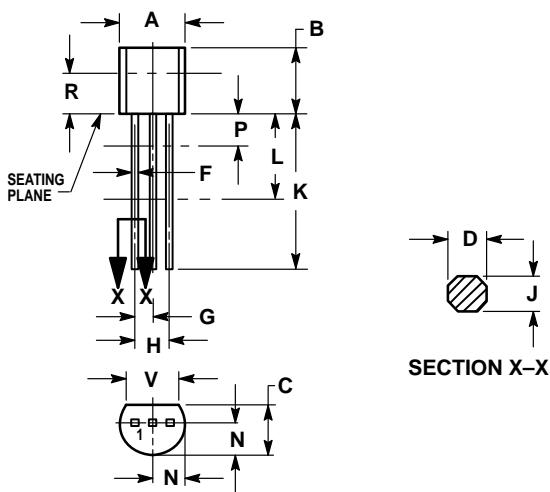



Figure 13. Maximum Charge Data

PACKAGE DIMENSIONS

**CASE 029-04
(TO-226AA)
ISSUE AD**

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.175	0.205	4.45	5.20
B	0.170	0.210	4.32	5.33
C	0.125	0.165	3.18	4.19
D	0.016	0.022	0.41	0.55
F	0.016	0.019	0.41	0.48
G	0.045	0.055	1.15	1.39
H	0.095	0.105	2.42	2.66
J	0.015	0.020	0.39	0.50
K	0.500	—	12.70	—
L	0.250	—	6.35	—
N	0.080	0.105	2.04	2.66
P	—	0.100	—	2.54
R	0.115	—	2.93	—
V	0.135	—	3.43	—

STYLE 1:
PIN 1. Emitter
2. Base
3. Collector

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Mfax is a trademark of Motorola, Inc.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 303-675-2140 or 1-800-441-2447

JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan. 81-3-5487-8488

Mfax™: RMFAX0@email.sps.mot.com – TOUCHTONE 602-244-6609

– US & Canada ONLY 1-800-774-1848

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

INTERNET: <http://motorola.com/sps>

MOTOROLA