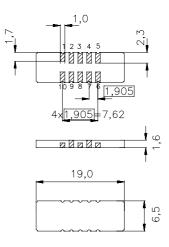


SAW Components

Data Sheet B3655

SAW Components	B3655
Low-Loss Filter	248,6 MHz

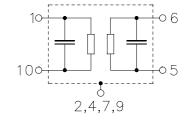
Data Sheet


Ceramic package DCC18

Features

- Low-loss IF filter for DCS base station
- Rx path
- Temperature stable
- Unbalanced or balanced operation
- Ceramic SMD package

Terminals


Gold plated

Dim. in mm, aprox. weight 0,7 g

Pin configuration

1	Input
6	Output
10	Input ground
5	Output ground
3, 8	Ground
2. 4. 7. 9	Case – ground

Туре	Ordering code	Marking and Package according to	Packing according to		
B3655	B39241-B3655-U210	C61157-A7-A54	F61074-V8069-Z000		

Electrostatic Sensitive Device (ESD)

Maximum ratings

Operable temperature range	Т	– 25/+ 75	°C
Storage temperature range	T_{stg}	- 40/+ 85	°C
DC voltage	$V_{\rm DC}$	0	V
Source power	P_{s}	10	dBm

SAW Components B3655

248,6 MHz **Low-Loss Filter**

Data Sheet

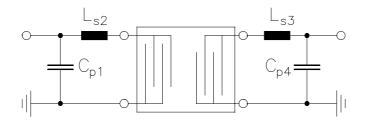
Characteristics

Operating temperature:

 $T_{\rm A} = -5 - 75 \,^{\circ}{\rm C}$ $Z_{\rm S} = 50 \,\Omega$ and matching network $Z_{\rm L} = 50 \,\Omega$ and matching network Terminating source impedance: Terminating load impedance:

			min.	typ.	max.	
Nominal frequency		f _N	_	248,6	_	MHz
Minimum insertion attenuation (including matching network)		$lpha_{\sf min}$	_	8,3	9,5	dB
Amplitude ripple (p-p)		Δα				
	$f_N \pm 95 \text{ kHz}$		_	0,4	1,0	dB
	$f_N \pm 120 \text{ kHz}$		_	0,6	1,5	dB
Passband width	$\alpha_{\text{rel}} \leq 3\text{,0 dB}$	B _{3,0dB}	240	410	_	kHz
Absolute group delay (at $f_{\rm N}$)		τ	_	2,3	3,0	μs
Group delay ripple (p-p)		Δτ				
	$f_N \pm 95 \; kHz$		_	0,3	0,7	μs
	$f_N \pm 120 \text{ kHz}$			0,4	1,0	μs
Relative attenuation (relative to α_{min})		$lpha_{rel}$				
$f_N \pm 0.33~\text{MHz} \dots f_N \pm 0.60~\text{MHz}$			11	18,5	<u> </u>	dB
${\sf f_N} \pm 0{,}60~{\sf MHz}~~{\sf f_N} \pm 0{,}80~{\sf MHz}$			22	26	_	dB
$\mathrm{f_N}\pm 0.80~\mathrm{MHz}~~\mathrm{f_N}\pm 3.00~\mathrm{MHz}$			30	36		dB
$f_N - 3,00 \text{ MHz } \dots f_N - 105 \text{ MHz}$			48	51	_	dB
f _N – 105 MHz f _N – 120 MHz			51	65	_	dB
$f_N + 3,00 \text{ MHz } \dots f_N + 13 \text{ MHz}$			48	51	-	dB
$f_N + 13 \text{ MHz } \dots f_N + 30 \text{ MHz}$			43	46	-	dB
$f_N^{} + 30 \text{ MHz} \dots f_N^{} \pm 105 \text{ MHz}$			48	51		dB
f _N + 105 MHz f _N + 120 MHz			51	56	_	dB
Temperature coefficient of	frequency 1)	TC _f	_	- 0,036	_	ppm/K ²
Turnover temperature		T_0		30	<u> </u>	°C

 $^{^{1)}}$ Temperature dependance of $f_{\rm c}$: $f_{\rm c}(T_{\rm A}) = f_{\rm c}(T_0)(1 + TC_{\rm f}(T_{\rm A} - T_0)^2)$



SAW Components B3655

Low-Loss Filter 248,6 MHz

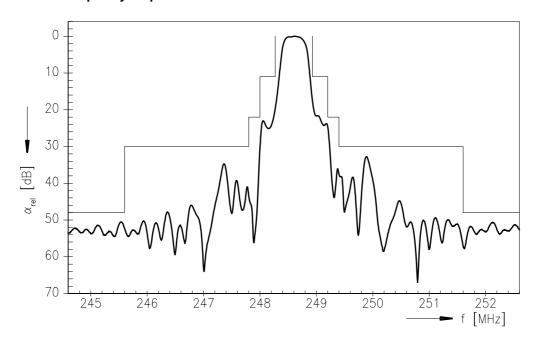
Data Sheet

Matching network

Cp1 = 22 pF

Ls2 = 22 nH

Ls3 = 22 nH


Cp4 = 22 pF

SAW Components B3655
Low-Loss Filter 248,6 MHz

Data Sheet

Normalized frequency response

Normalized frequency response (pass band)

SAW Components B3655

Low-Loss Filter 248,6 MHz

Data Sheet

Published by EPCOS AG Surface Acoustic Wave Components Division, SAW MC IS P.O. Box 80 17 09, D-81617 München

© EPCOS AG 1999. All Rights Reserved.

As far as patents or other rights of third parties are concerned, liability is only assumed for components per se, not for applications, processes and circuits implemented within components or assemblies.

The information describes the type of component and shall not be considered as assured characteristics.

Terms of delivery and rights to change design reserved.

For questions on technology, prices and delivery please contact the sales offices of EPCOS AG or the international representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our sales offices.