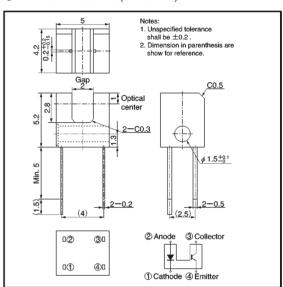
Photointerrupter, double-layer mold type RPI-246

The RPI-246 is a compact, double-layer mold photointerrupter.

Applications

Floppy disk drives Movie equipment


Cameras

Printers

Features

- 1) Compact package based on the double-mold.
- 2) Method High resolution (slit width = 0.2 mm).
- 3) Gap between emitter and detector = 2.0 mm.

External dimensions (Units: mm)

Absolute maximum ratings

Parameter		Symbol	Limits	Unit
Input(LED)	Forward current	lF	50	mA
	Reverse voltage	VR	5	V
	Power dissipation	P□	80	mW
Output (photo- (transistor)	Collector-emitter voltage	VCEO	30	V
	Emitter-collector voltage	Veco	4.5	V
	Collector current	Ic	30	mA
	Collector power dissipation	Pc	80	mW
Operating temperature		Topr	-25~ + 85	°C
Storage temperature		Tstg	−30~+85	°

Sensors RPI-246

●Electrical and optical characteristics (Tc = 25°C)

Parameter		Symbol	Min.	Тур.	Max.	Unit	Conditions
Input charac- teristics	Forward voltage	VF	_	1.3	1.6	٧	I==50mA
	Reverse current	lR	_	_	10	μΑ	V _R =5V
Output charac- teristics	Dark current	Iceo	_	_	0.5	μΑ	VcE=10V
	Peak sensitivity wavelength	λp	_	800	_	nm	_
Transfer charac- teristics	Collector current	lc	0.35	_	1.2	mA	VcE=5V, IF=20mA
	Collector-emitter saturation voltage	V _{CE(sat)}	_	_	0.4	٧	I _F =20mA, I _C =0.2mA
	Response time	tr • tf	_	10	_	μs	Vcc=5V, I==20mA, RL=100 Ω

Electrical and optical characteristic curves

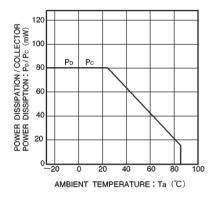


Fig.1 Power dissipation / collector power dissipation vs. ambient temperature

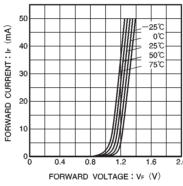


Fig.2 Forward current vs. forward voltage

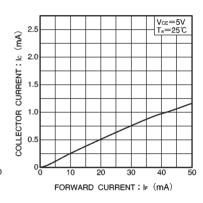


Fig.3 Collector current vs. forward current

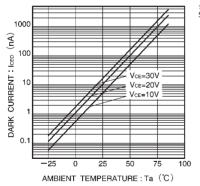


Fig.4 Dark current vs. ambient temperature

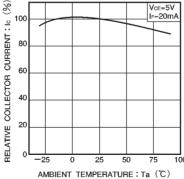


Fig.5 Relative output vs. ambient temperature

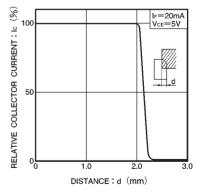


Fig.6 Relative output vs. distance

Sensors RPI-246

Fig.7 Response time vs. output current

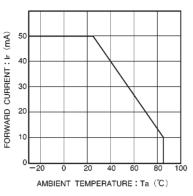


Fig.8 Forward current falloff

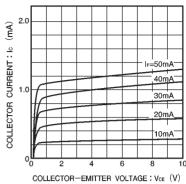
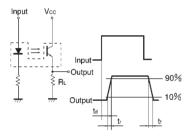



Fig.9 Output characteristics

- td: Delay time
- tri Rise time (time for output current to rise
- from 10% to 90% of peak current)
 tr Fall time (time for output current to fall from 90% to 10% of peak current)

Fig.10 Response time measurement circuit