

MCM10009

Advance Information

10-bit Image Capture Engine
with ADC / CDS / and digitally programmable PGA
and DC offset voltage adjust

Features:

- 4-input version of MCM10005 with reduced processing functionality
- 18 MSPS (Million Samples Per Second) maximum throughput (1 MSPS to 18 MSPS operating range)
- 10-bit, pipelined algorithmic RSD ADC (DNL \pm 0.5 LSB, INL \pm 1.0 LSB)
- 4 multiplexed analog inputs with individual DC restore circuitry
- CDS sample and hold aids suppression of low frequency noise and correlated reset noise
- 18 dB of variable gain, programmable by an 8-bit Digital Programmable Gain Amplifier (DPGA), optimizes dynamic range, and facilitates white balance and iris adjustment
- 6-bit programmable DC offset adjustment
- On-chip dark level calibration circuitry controlled by external pin
- Interfaces to CCD or CMOS imager signal levels (1 V_{pp} input)
- Fully differential analog signal processing pipeline for high noise immunity
- On-chip reference and bias voltages
- Three pin serial programming interface
- 175 mW average power @ 3.0 V supply voltage
- Standby power down mode and 3-state output enable
- Single supply, 3.0V - 3.6V range operation
- Commercial temperature operating range of 0°C to 70°C

48 LQFP

Ordering Information

Device	Package
MCM10009EB	48 LQFP

The MCM10009 is a fully integrated, high performance CMOS analog signal processing engine for color or monochrome digital imaging consumer applications, such as digital cameras, video conferencing and scanners. This part provides system designers a 10-bit ADC combined with the functional blocks required to build a complete analog signal processing pipeline.

Four multiplexed analog inputs, each with individually programmable digital gain registers, allows per pixel rate, gain balancing from user supplied data. These features combine to provide the user with a single chip solution to easily convert standard analog CCD and CMOS imaging sensor outputs to a ten bit digital signal for subsequent signal processing.

Figure 1. MCM10009 Simplified Block Diagram

This document contains information on a new product.
Specifications and information herein are subject to change without notice.

ABSOLUTE MAXIMUM RATINGS¹ (Voltages Referenced to V_{SS})

Symbol	Parameter	Value	Unit
V _{DD}	DC Supply Voltage	-0.5 to 3.8	V
V _{in}	DC Input Voltage	-0.5 to V _{DD} + 0.5	V
V _{out}	DC Output Voltage	-0.5 to V _{DD} + 0.5	V
I	DC Current Drain per Pin, Any Single Input or Output	±50	mA
I	DC Current Drain, V _{DD} and V _{SS} Pins	±100	mA
T _{STG}	Storage Temperature Range	-65 to +150	°C
T _L	Lead Temperature (10 second soldering)	300	°C

¹ Maximum Ratings are those values beyond which damage to the device may occur.

V_{SS} = AV_{SS} = DV_{SS} = V_{SS0} (DV_{SS} = V_{SS} of Digital circuit, AV_{SS} = V_{SS} of Analog Circuit)

V_{DD} = AV_{DD} = DV_{DD} = V_{DD0} (DV_{DD} = V_{DD} of Digital circuit, AV_{DD} = V_{DD} of Analog Circuit)

RECOMMENDED OPERATING CONDITIONS (to guarantee functionality, voltage referenced to V_{SS})

Symbol	Parameter	Min	Max	Unit
V _{DD}	DC Supply Voltage, V _{DD} = 3.3V (Nominal)	3.0	3.6	V
T _A	Operating Ambient Temperature	0	70	°C
T _J	Junction Temperature	0	125	°C

Notes:

- All parameters are characterized for DC conditions after thermal equilibrium has been established.
- Unused inputs must always be tied to an appropriate logic level, e.g., either V_{SS} or V_{DD}.
- This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than the maximum rated voltages to this high impedance circuit.
- For proper operation it is recommended that V_{in} and V_{out} be constrained to the range V_{SS} < (V_{in} or V_{out}) < V_{DD}.

DC ELECTRICAL CHARACTERISTICS (V_{DD} = 3.3V ± 0.3V, V_{DD} referenced to V_{SS})

Symbol	Characteristic	Condition	T _A = 0°C to 70°C		Unit
			Min	Max	
V _{IH}	Input High Voltage		2.0	V _{DD} +0.3	V
V _{IL}	Input Low Voltage		-0.3	0.8	V
I _{in}	Input Leakage Current, No Pull-up Resistor	V _{in} = V _{DD} or V _{SS}	-5	5	µA
I _{OH}	Output High Current	V _{DD} = Min, V _{OH} Min = 0.8 * V _{DD}	-3		mA
I _{OL}	Output Low Current	V _{DD} = Min, V _{OL} Max = 0.4 V	3		mA
V _{OH}	Output High Voltage	V _{DD} = Min, I _{OH} = -100µA	V _{DD} - 0.2		V
V _{OL}	Output Low Voltage	V _{DD} = Min, I _{OL} = 100µA		0.2	V
I _{OZ}	3-State Output Leakage Current	Output = High Impedance, V _{out} = V _{DD} or V _{SS}	-10	10	µA
I _{DD0}	Supply Current	Operating Mode, I _{out} = 0mA, V _{in} = V _{DD} or V _{SS}		100	mA
I _{DDS}	Standby Supply Current	Standby Mode, I _{out} = 0mA, V _{in} = V _{DD} or V _{SS}		10	mA

POWER DISSIPATION (V_{DD} = 3.0V, V_{DD} referenced to V_{SS}, T_a = 25°C)

Symbol	Parameter	Condition	Min	Typ	Max	Unit
P _{DYN}	Dynamic Power	18 MSPS		275		mW
P _{STDBY}	Standby Power	STDBY Pin Logic High		25		mW
P _{AVG}	Average Power	18 MSPS Operation (using STDBY)		175		mW

ELECTRICAL CHARACTERISTICS

DC Restore Clamp (DCR)

Symbol	Parameter	Condition	Min	Typ	Max	Unit
f_{line}^2	Required charging time				Line Rate	MHz
C_{AVIN}	AVIN External AC Coupling Capacitor		2500		pF	

² $f_{line} = f_{pixel} \times \text{imager's width in pixels}$

Correlated Double Sampler (CDS)

V_{IN}	Input Voltage Range				1.0	V_{pp}
f_{max}	Maximum Input Pixel Frequency				18	MHz
A_V	Amplifier Output Gain (fixed)				3.5 1.5	dB Voltage
C_{IN}	AVSS Input Capacitance	Includes Pad Capacitance			5.0	pF
I_{IN}	AVSS Input Current	$V(AVSS) = V_{DD}/2$	0		20	nA
	Latency				1.5	clock cycles

Line Rate Clamp (LRC)

ΔV	Voltage Drop over Sample Period		0	-0.15	-0.5	LSB
f_{max}	Maximum Operational Frequency				f_{line}	MHz
	Charge Time	10-bit Accuracy			$16/f_{pixel}$	sec
C_{IN}	Input Capacitance				3.0	pF
	Latency				0.5	clock cycles
C_{LRC}	External LRC Holding Capacitor ³			2500	5000	pF

³ LRC Capacitance to V_{SS} - see section 1.61.4

Digitally Programmable Gain Amplifier (DPGA)

Symbol	Parameter	Condition	Min	Typ	Max	Unit
A_{dB} A_V	Gain (8-bit Digitally Programmable)	Code = 00000000 ₂ = 0 ₁₀	0			dB
A_{dB} A_V			1X			Voltage
V_{pp}	Peak to Peak Output Voltage	Code = 11111111 ₂ = 255 ₁₀			18	dB
A_{LIN}	Gain Resolution			0.0273X		Voltage
A_{ERR}	Gain Error				±1.0	%
f_{max}	Maximum Input Pixel Frequency				18	MHz
	Digital Programming Code resolution		8			bits
	Latency				1	clock cycles
C_{IN}	Input Capacitance				3.0	pF

DC Offset Adjust (DOVA)

V_{OS}	Offset Adjust Voltage (6-bit Digitally Programmable) ⁴	Code = 011111 ₂ = 31 ₁₀ Code = 111111 ₂ = -31 ₁₀	-181.64		181.64	mV
V_{RES}	Resolution			5.86		mV
A_V	Amplifier Output Gain (fixed)				6 2X	dB Voltage
	Digital Programming Code Resolution		6			bits
	Latency				0.5	clock cycles
C_{IN}	Input Capacitance				3.0	pF

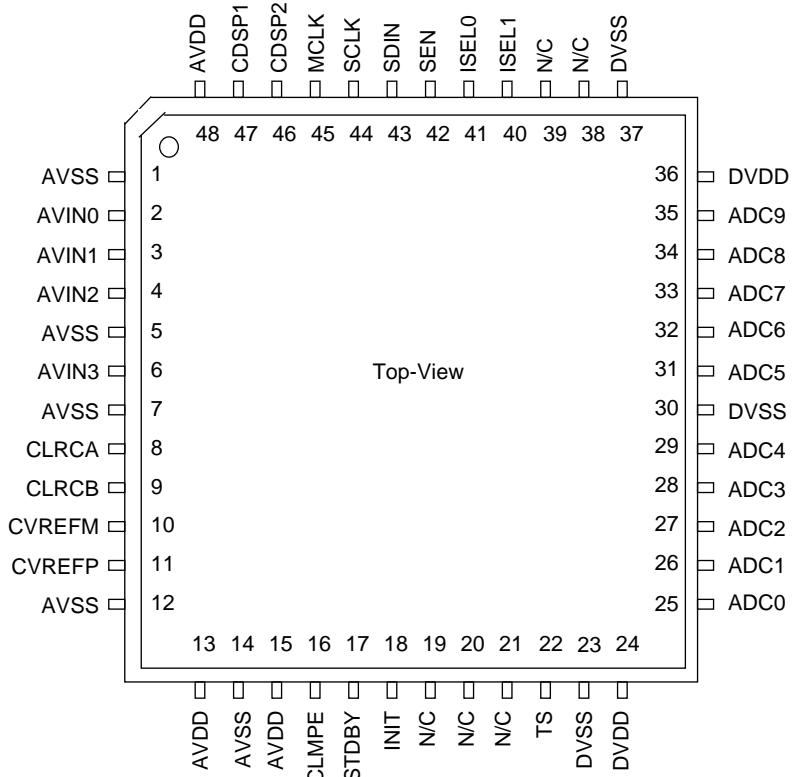
⁴ MSB sign-bit (0 = positive, 1 = negative)

ELECTRICAL CHARACTERISTICS

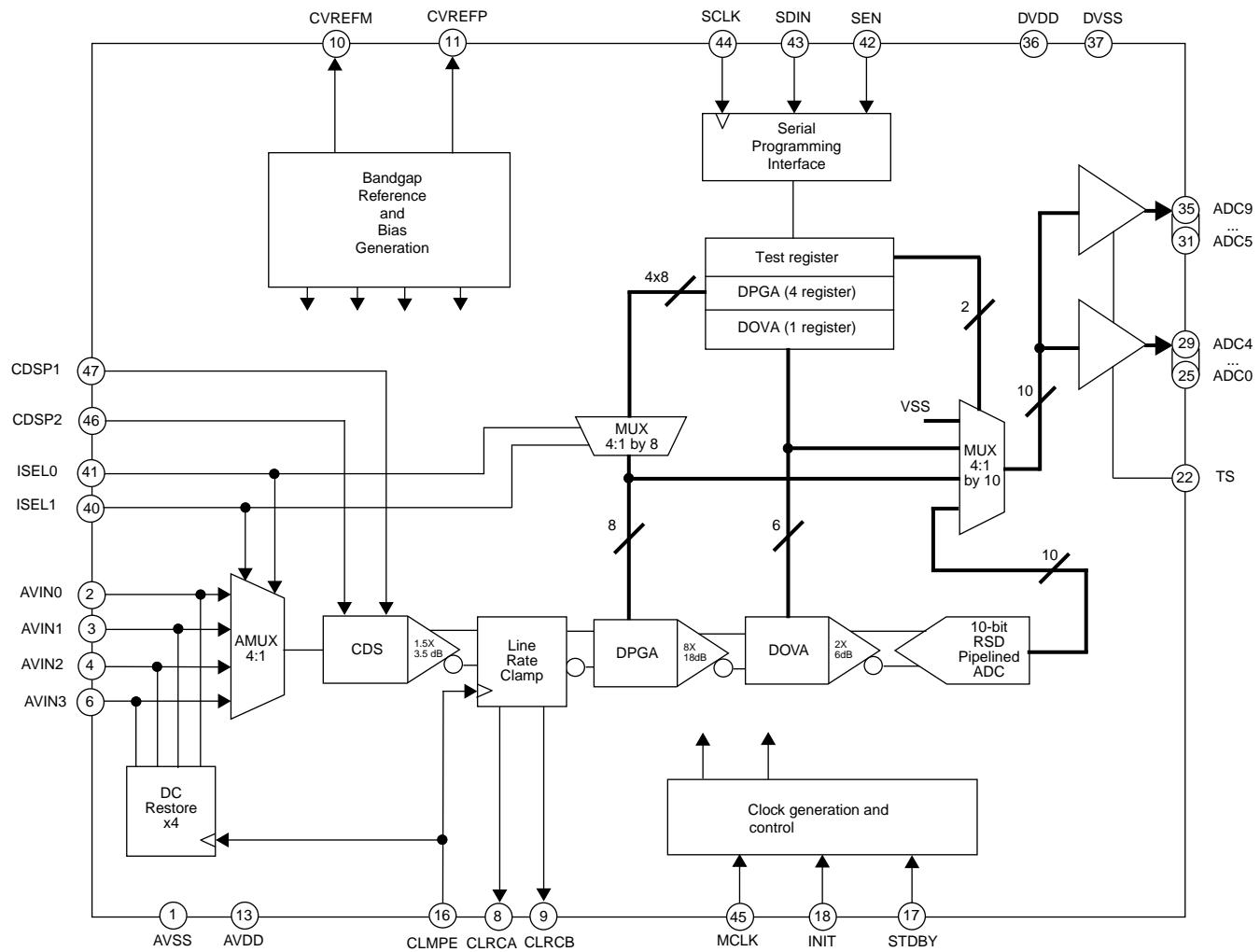
Analog to Digital Converter (ADC)

	Resolution		10			bits
V_{IN}	Input Dynamic Range ⁵				3.0	V_{pp}
INL	Integral Non-Linearity				± 1.0	LSB
DNL	Differential Non-Linearity				± 0.5	LSB
	Missing Codes		Guaranteed Zero			
f_{max}	ADC Clock Rate				18	MHz
t_{pd}	ADC Clock to Output delay	Clock to D_n Output			0.75	ns
	Latency				6.5	clock cycles
C_{IN}	Input Capacitance				3.0	pF

⁵ Effective differential signal dynamic range


SERIAL INTERFACE

f_{max}	SCLK			18	MHz
t_{suSEN}	SEN to SCLK setup time	1.0			ns
t_{hSEN}	SEN to SCLK hold time	0.5			ns
t_{suSDIN}	SDIN to SCLK setup time	1.0			ns
t_{hSDIN}	SDIN to SCLK hold time	0.5			ns


Table 1. MCM10009 Pin Listing

Pin No.	Pin Name	Description	Pin Type	Power	Pin No.	Pin Name	Description	Pin Type	Power
1	AVSS	Analog Ground	G	A	25	ADC0	Output-bit 0 = $2^0 = 1_{10}$ weight	O	
2	AVIN0	Analog Input	I		26	ADC1	Output-bit 1 = $2^1 = 2_{10}$ weight	O	
3	AVIN1	Analog Input	I		27	ADC2	Output-bit 2 = $2^2 = 4_{10}$ weight	O	
4	AVIN2	Analog Input	I		28	ADC3	Output-bit 3 = $2^3 = 8_{10}$ weight	O	
5	AVSS	Analog Ground	G	A	29	ADC4	Output-bit 4 = $2^4 = 16_{10}$ weight	O	
6	AVIN3	Analog Input	I		30	DVSS	Digital Ground	G	D
7	AVSS	Analog Ground	G	A	31	ADC5	Output-bit 5 = $2^5 = 32_{10}$ weight	O	
8	CLRCA	Line Rate Clamp Output	O		32	ADC6	Output-bit 6 = $2^6 = 64_{10}$ weight	O	
9	CLRCB	Line Rate Clamp Output	O		33	ADC7	Output-bit 7 = $2^7 = 128_{10}$ weight	O	
10	CVREFM	Bias Reference Low Output	O		34	ADC8	Output-bit 8 = $2^8 = 256_{10}$ weight	O	
11	CVREFP	Bias Reference High Output	O		35	ADC9	Output-bit 9 = $2^9 = 512_{10}$ weight	O	
12	AVSS	Analog Ground	G	A	36	DVDD	Digital Power	P	D
13	AVDD	Analog Power	P	A	37	DVSS	Digital Ground	G	D
14	AVSS	Analog Ground	G	A	38	N/C	Not Connected		
15	AVDD	Analog Power	P	A	39	N/C	Not Connected		
16	CLMPE	Line Rate Clamp Enable	I		40	ISEL1	Input and Gain MUX select "1"	I	
17	STDBY	Power Down Standby Mode Enable	I		41	ISEL0	Input and Gain MUX select "0"	I	
18	INIT	Chip Reset	I		42	SEN	Serial Programming Interface Enable	I	
19	N/C	Not Connected			43	SDIN	Serial Programming Interface Data	I	
20	N/C	Not Connected			44	SCLK	Serial Programming Interface Clock	I	
21	N/C	Not Connected			45	MCLK	Master Clock	I	
22	TS	Three State Output Enable	I		46	CDSP2	Sample&Hold Clock	I	
23	DVSS	Digital Ground	G	D	47	CDSP1	Sample&Hold Clock	I	
24	DVDD	Digital Power	P	D	48	AVDD	Analog Power	P	A

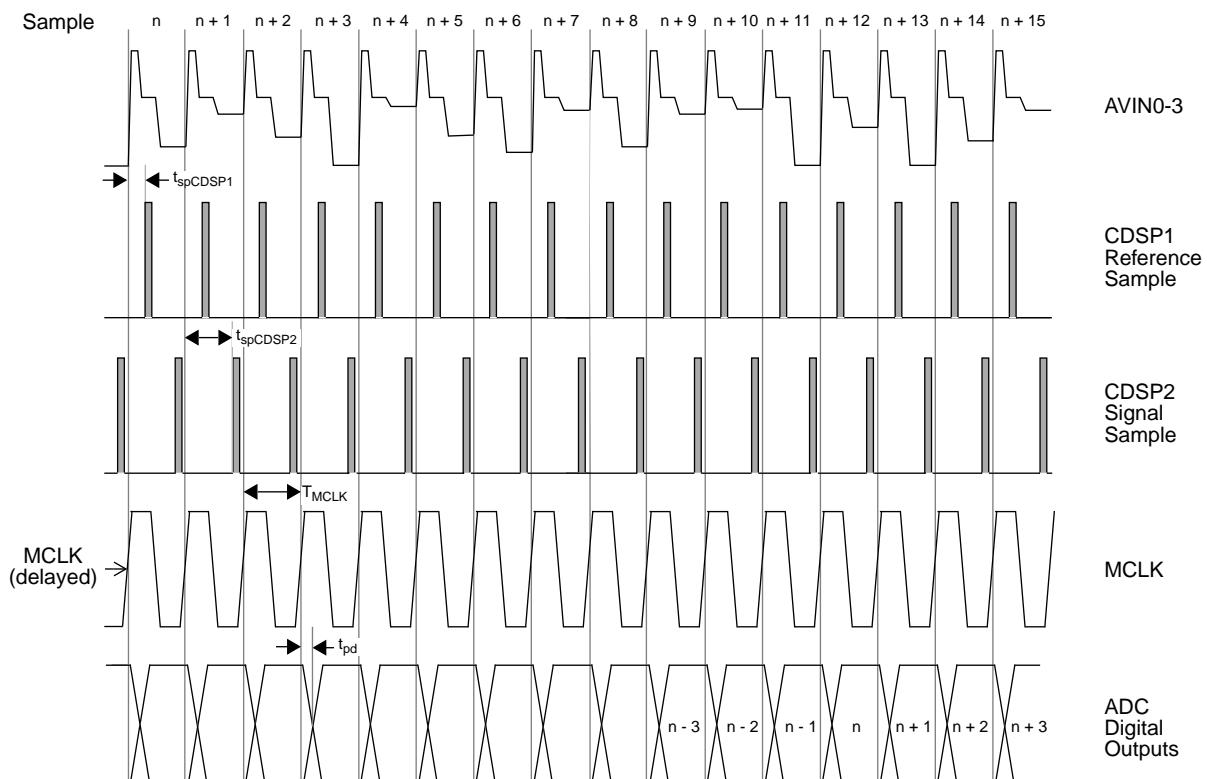
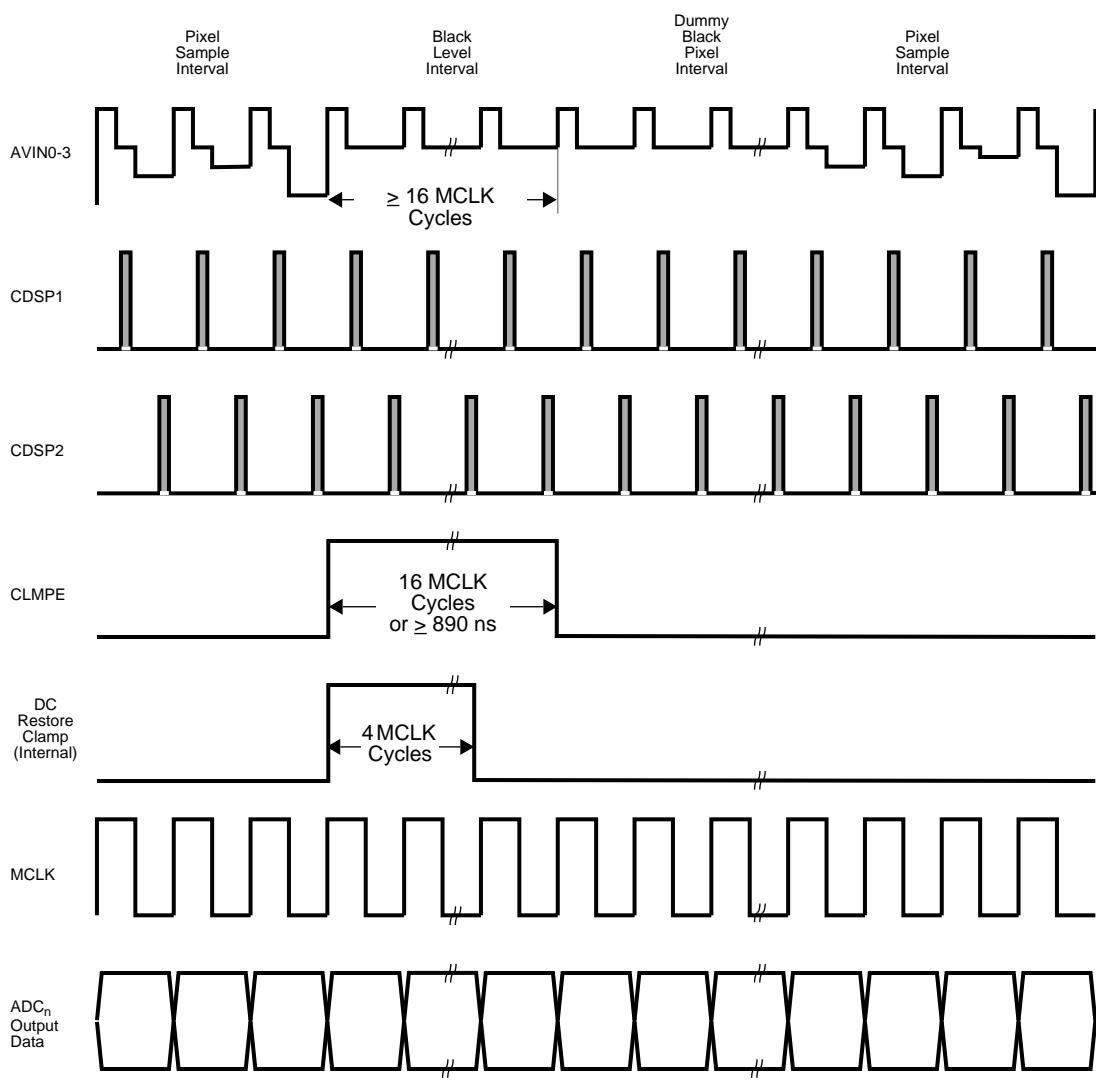

Legend:	
P = V_{DD}	
G = V_{SS}	
I = Input	
O = Output	
D = Digital	
A = Analog	

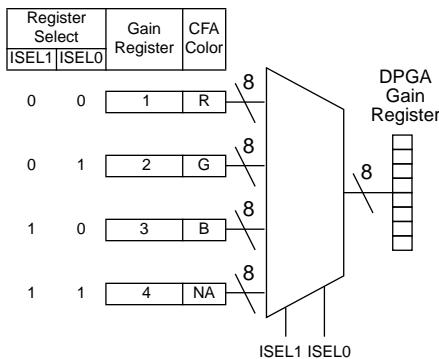
Figure 2. MCM10009 Pinout Diagram

Figure 3. MCM10009 Detailed Block Diagram

Notes:


1.

Latency	= 11 Cycles
f_{MCLK} (max)	= 18 MSPS
T_{MCLK} (min)	= 55.6 ns
t_{pd} (MCLK to ADC_n)	= 0.75 ns
MCLK (delayed)	= MCLK + 4 ns (max. internal clock delay)


2. The CDS samples on the negative edge of CDSP1 and CDSP2

3. AVIN0-3 are the video input signals from the image sensor. The system designer must provide the necessary skewing of AVIN0-3 to MCLK (delayed), as illustrated.

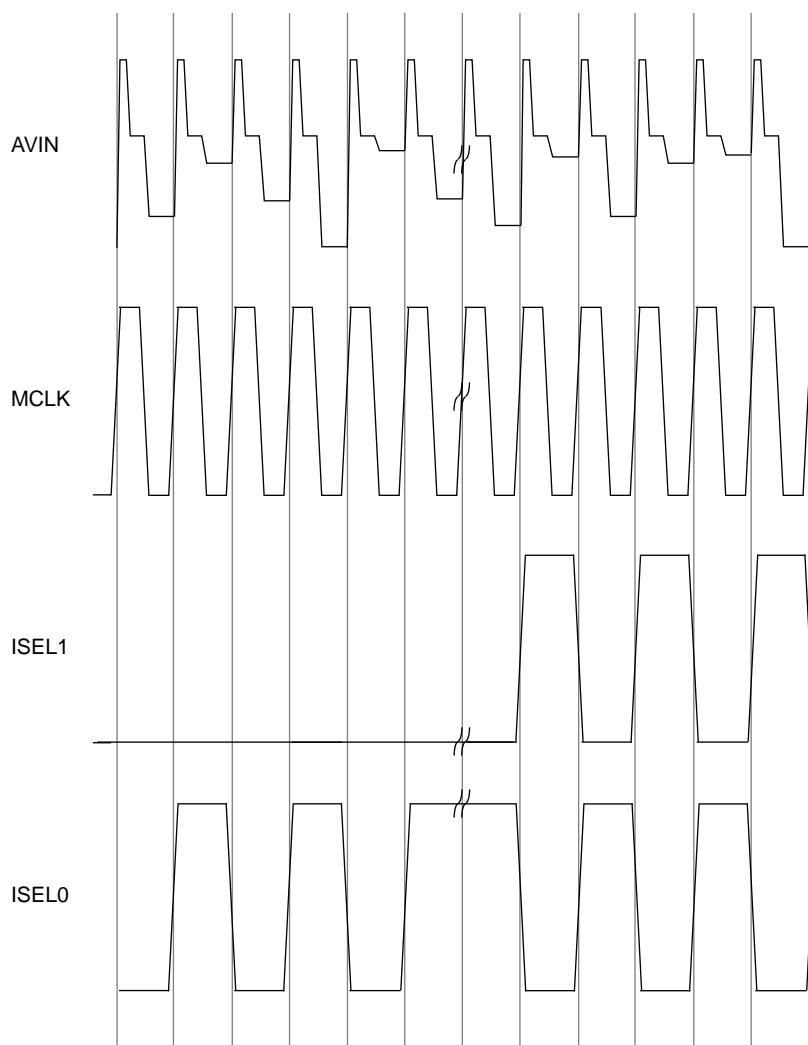
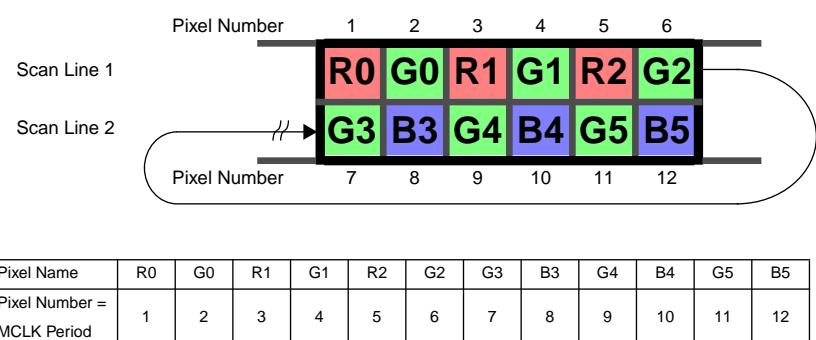
Figure 4. MCM10009 Timing Diagram

Figure 5. Typical Timing Diagram for Horizontally Blanked System

Pixel Rate Switching Multiplexer Conceptual Diagram

The high speed, pixel rate processing capability of the MCM10009 is illustrated in the timing diagram. The MCM10009 has four multiplexed sensor inputs. Each two bit input select address (ISEL0, ISEL1) is also selecting one Gain register associated with that input. In applications not using all four inputs, the MCM10009 offers the flexibility to trade off the number of inputs used vs. the number of Gain registers assigned to each input.

The MCM10009 has four multiplexed sensor inputs. Each two bit input select address (ISEL0, ISEL1) is also selecting one Gain register associated with that input. In applications not using all four inputs, the MCM10009 offers the flexibility to trade off the number of inputs used vs. the number of Gain registers assigned to each input.



In this example three analog inputs (AVIN0..2) are connected together and driven from one sensor. The fourth input, with one Gain Register, can be used for an auxiliary function, time permitting. The ISEL0 and ISEL1 input code $0_{10} \dots 2_{10}$ then becomes the Gain Register select according to the truth table above.

A simple representation of a common Color Filter Array (CFA) image sensor pixel pattern, which uses an RG/GB scan line pattern, (scan line 1 = RG, and scan line 2 = GB) is shown for the application.

Gain Register1,2 and 3 correspond to the R, G and B colors respectively, register 4 and input AVIN3 is unused in this example.

In the example, pixels 1 through 6 appear at the end of the first scan line, which consists of alternating R and G pixels R0, G0, R1, G1, R2 and G2. Pixels 7 through 12 appear at the beginning of the second scan line, which consists of alternating G and B pixels G3, B3, G4, B4, G5 and B5. In image sensors, a set of dark pixels are typically provided in each scan line. However, for ease of illustration, these pixels are omitted in the example. The discontinuity in the timing diagram between MCLK periods 6 and 7 is used to indicate the dark pixel area of operation.

The MCM10009 is designed to allow real time pixel color correction. Therefore, the R correction code, 00 (ISEL1, ISEL0) for pixel R0 should be selected for MCLK period 1, and the G correction code, 01 for pixel G0 in period 2. These codes should then alternate across scan line 1. Similarly, when processing of scan line 2 (GB) begins during MCLK period 7, the G code, 01, should be selected, followed by the B code, 10, in period 8. These codes should also alternate, until the end of scan line 2.

Pixel Number	1	2	3	4	5	6	7	8	9	10	11	12
Pixel Name	R0	G0	R1	G1	R2	G2	G3	B3	G4	B4	G5	B5
ISEL1Code	0	0	0	0	0	0	0	1	0	1	0	1
ISEL0 Code	0	1	0	1	0	1	1	0	1	0	1	0

Figure 6. Real-Time CFA gain correction application example

MCM10009 Theory of Operation

The MCM10009 integrates a fully differential analog signal processing pipeline for interface with solid state image sensors onto a single chip.

Board-level component requirements are minimized by the integration of the many individual devices comprising the signal processing chain, principally a 4:1 analog input MUX driving the Correlated Double Sampler (CDS), Line Rate Clamp (LRC), Digitally Programmable Gain Amplifier (DPGA), DC Offset Voltage Adjust (DOVA), algorithmic, Redundant Signed Digit (RSD) Analog to Digital Converter (ADC) and timing and bias generation circuits. The result is an extremely flexible, single chip solution to the image sensing and capture to digital transformation process. This allows the system designer to achieve reduced component count, board space and system cost.

Because the chip is designed for 3.3V operation, a wide variety of low power, portable applications may be addressed for consumer applications.

1.0 Analog to Digital Conversion Pipeline

The MCM10009 incorporates a DCR, CDS, DPGA, LRC, DOVA and algorithmic, RSD ADC to digitize an analog signal to a 10-bit digital word for post-processing by additional circuitry ([Figure 3](#)).

1.1 Inputs (AVIN0, AVIN1, AVIN2, AVIN3)

Analog voltages from the image sensor are input to the MCM10009 via the AVIN0, AVIN1, AVIN2, and AVIN3 pins. The voltage range must be limited to a maximum of 1.0 volt, peak to peak.

The MCM10009 is designed to operate from a single 3.0 V to 3.6V voltage supply. An external AC coupling capacitor (C_{AVIN}) is required between the imager's output and the MCM10009's AVIN0, AVIN1, AVIN2, and AVIN3 pins to remove the large DC offset component of common CCD image sensors. The recommended capacitor value is approximately 2500 pF.

Other imagers, which utilize low voltage, CMOS-based processes, may be directly compatible with the MCM10009's analog inputs, allowing direct coupling techniques to be used.

Motorola's A-series of Image sensors (MCM20007, 20008) are compatible with the MCM10009 inputs and can be connected without any capacitor or buffering.

1.2 DC Restore (DCR)

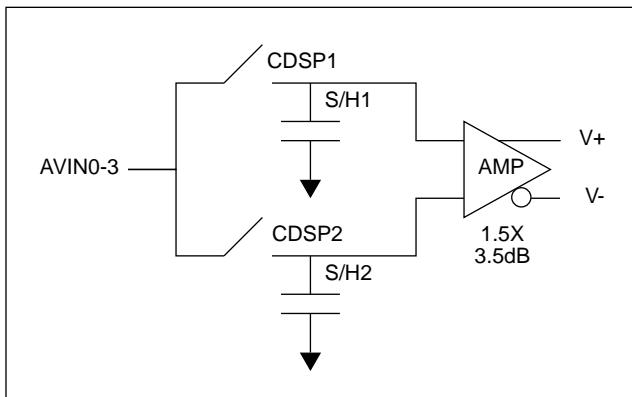
The DCR function is provided to establish the DC operating point of the analog input at AVIN0, AVIN1, AVIN2, and AVIN3 relative to the MCM10009's supply voltage.

The DCR is clocked at the imager's line rate when pin CLMPE is active (logic high).

1.3 Correlated Double Sampler (CDS)

Typical CCD imagers provide an output at a pixel rate frequency, f_{pixel} , which contains reset, reference and image analog signal information.

An approximation of a typical CCD imager's output is presented in [Figure 7](#). In the figure, the pixel's period T_{pixel} , is divided into four distinct regions.


Figure 7. CCD Imager Input Waveform

Region I results from pixel reset, and contains no useful input information. Region II is the period during which the pixel outputs a "reference" level indicative of its intrinsic dark level noise. This point provides a baseline for measurement of the pixel's analog voltage signal.

Region III occurs as a result of the pixel's transition voltage during integration. Its exponential nature is caused by the photo junction's response to the incoming light, and integration of the resulting charge over time.

Region IV, referred to here as the "signal" region, represents the stabilized pixel output voltage which occurs when the pixel has integrated charge in response to the incoming light. The output voltage is the difference of this photoresponse plus the reference voltage.

The regions of interest for evaluation are reference and signal. The CDS circuitry ([Figure 8](#)) in the MCM10009 uses switched capacitor techniques to both Sample and Hold (S/H) the incoming analog signal voltage. CDS sample timing is controlled by the CDSP1 and CDSP2 pulses ([section 1.3.1](#)), which are externally driven directly from the CDSP1 and CDSP2 pins.

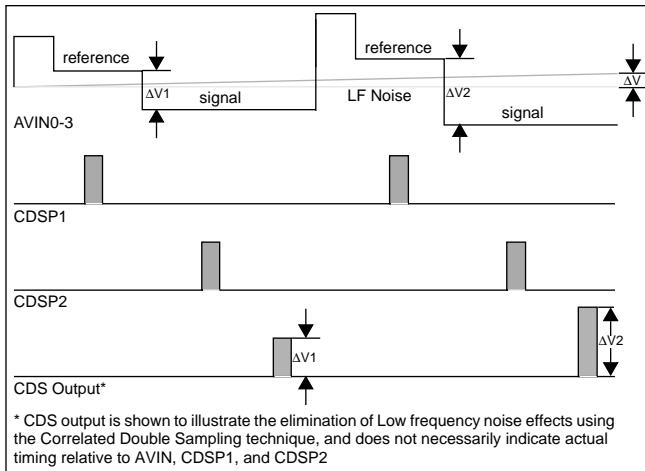


Figure 8. CDS Conceptual Block Diagram

The alternate S/H circuits each sample the pixel waveform, S/H1 in the reference region, and S/H2 in the signal region. The values are then compared against one another by the differential amplifier, thus removing the reference noise by subtraction, improving the accuracy of the measurement for subsequent signal processing.

The correlated nature of this measurement method reduces low frequency noise effects, as the reference and signal sampling points remain well correlated regardless of offset. This feature is illustrated in Figure 9. A cumulative error, ΔV , would normally result between the first and second signal samples without this feature. Reset noise is eliminated by sampling in the reference region.

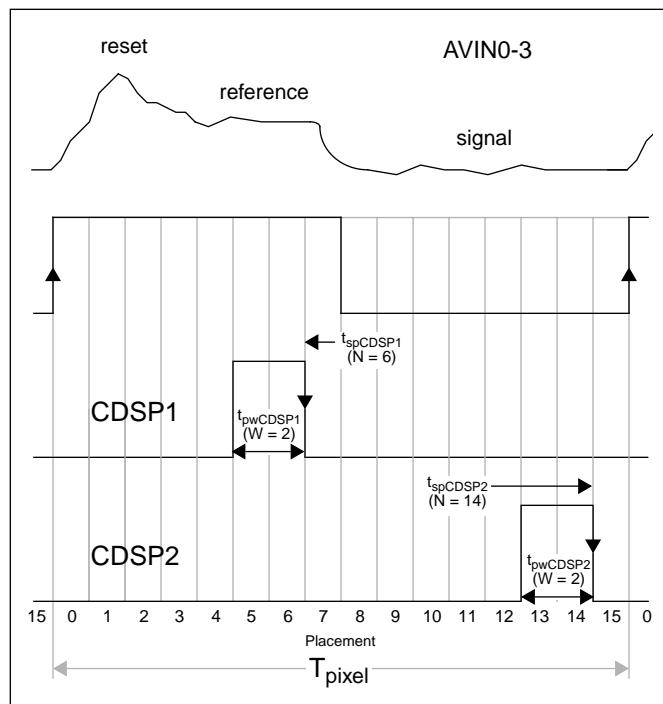

The amplifier takes the difference of the reference and signal levels, then converts the single-ended imager signal to a differential output. The amplifier also performs a fixed gain of 1.5X (3.5 dB). Together, these features improve accuracy, linearity, dynamic range and signal to noise ratio.

Figure 9. CDS Reduces LF Noise Effects

1.3.1 CDS Clocking Requirement

The CDSP1 and CDSP2 external pulses control the timing of the CDS S/H operations. The parameters used to define the CDSP1/2 waveforms are the period, T_{pixel} , aperture pulsewidth (t_{pw}) and placement (t_{sp}). An example of these terms are illustrated in Figure 10.

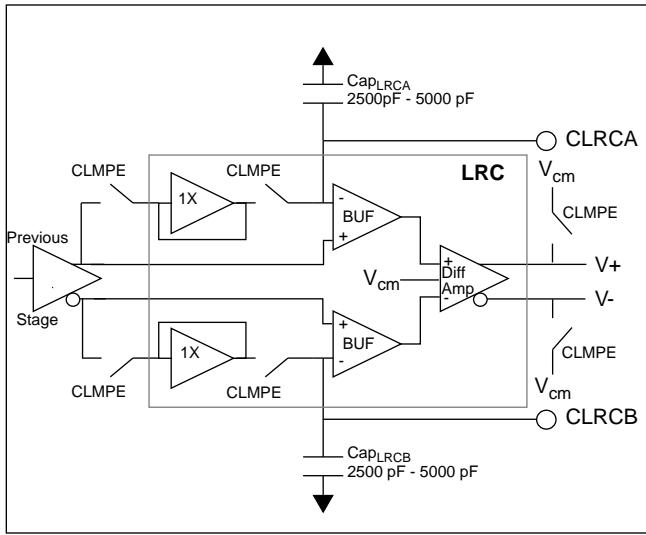


Figure 10. CDS Sampling Waveform Example

The CDS hold occurs on the negative edge of the CDSP clocks. The Minimum pulse width for the CDSP1/2 clocks are 7.5nS. The user must ensure the correct S&H clock timing relative to both the pixel rate clock and the Master clock (MCLK) to match incoming pixel data from the imager.

1.4 Line Rate Clamp (LRC)

The LRC (Figure 11) is designed to provide a feed forward dark level subtract reference level measurement technique. The optical black level reference is re-established each time the image sensor begins a new scan line. Commercially available image sensors provide optical black (dark) pixels to aid in establishing this reference.

Figure 11. LRC Conceptual Block Diagram

On the MCM10009, dark pixel input signals should be sampled for a minimum of 890 ns to allow the two 2500 pF to 5000 pF capacitors at the CLRCA and CLRCB pins sufficient time to charge for 10-bit accuracy. This guarantees that the LRC's "droop" will be maintained at $\leq 750 \mu\text{V}$, thus assuring the specified ADC 10-bit accuracy.

Therefore, at maximum operational frequency (18 MHz), the MCM10009 would require sixteen dark pixel samples to establish the dark pixel reference for subsequent active pixel processing.

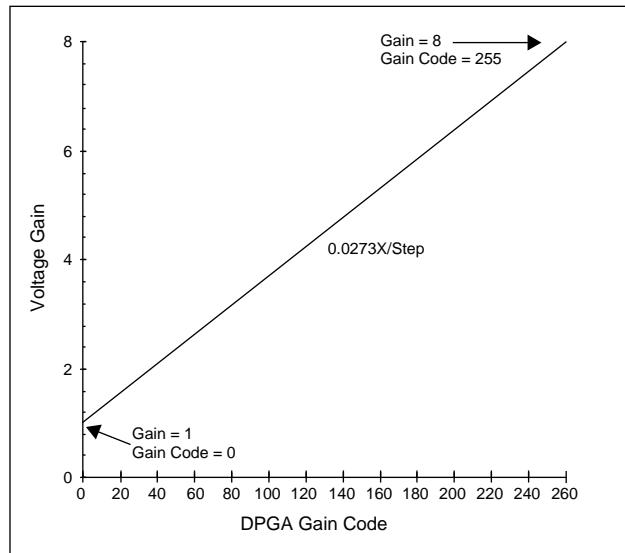
The dark pixel sample period is controlled through the CLMPE pin. When this pin is active (logic high), each dark pixel is processed and held to establish pixel reference level at the CLRCA and CLRCB pins. The DC Restore Circuit (DCRC) is also activated during this period, and the LRC's differential outputs (V_+ and V_- on the Diff Amp, Figure 11) are clamped to V_{cm} . Together, these actions help to eliminate the dark level offset, simultaneously establishing the desired zero code at the ADC output.

When the processing of active pixels begins, CLMPE is disabled, halting the charging of the Cap_{LRCA} and Cap_{LRCB} capacitors. The dark pixel reference voltage sampled and held on the capacitors, is then real-time subtracted from the active pixel voltage, yielding an analog signal which has been corrected relative to the desired ADC zero code. This process repeats for each new line scan.

1.5 Digitally Programmable Gain Amplifier (DPGA)

The DPGA circuit allows the user to program gain adjustment of the analog image data via the simple serial

interface. The MCM10009 allows up to four gain registers to be individually programmed for a gain range of 0 - 18 dB (1X - 8X) for each register.

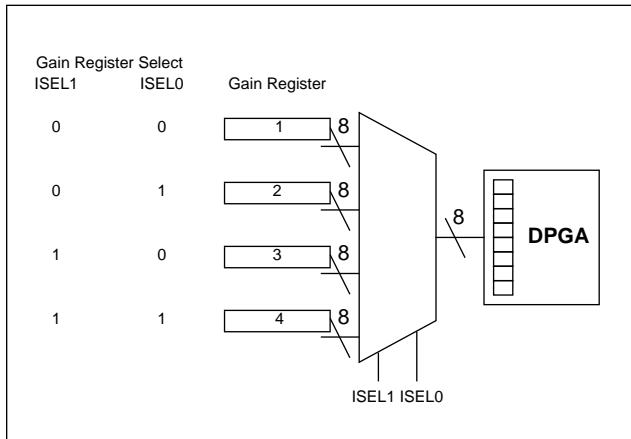

Gain is programmable via an 8-bit word.

Four independent registers (Gain Register 1 - 4) are provided to program desired gain coefficients, which are typically Red/Green/Blue (RGB) or Yellow/Cyan/Magenta/Green (Ye/Cy/Mg/G) for color image sensor applications (see [Table 2](#) and the application example in [Figure 6](#)).

Each of the four registers can provide eight-bit, incremental gain control from 1X to 8X, in 256 linear increments of 0.0273X such that:

$$G = 1 + 0.0273 * (\text{DPGA code})_{10}$$

of each register ([Figure 12](#)).


Figure 12. DPGA Gain Plot

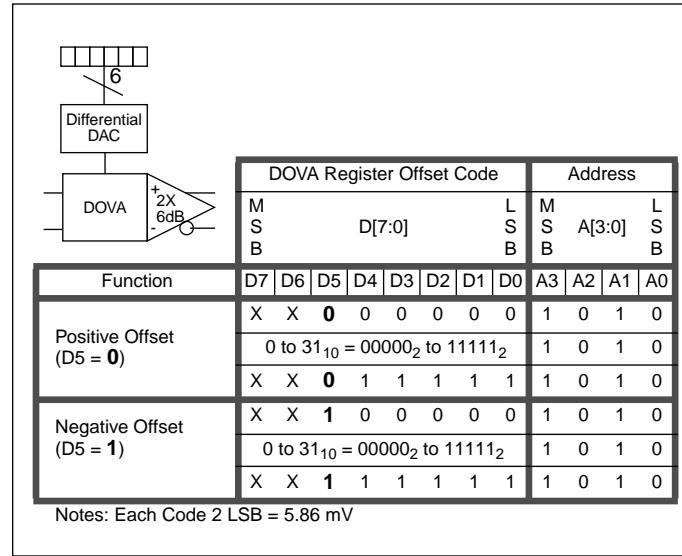
Gain register programming information for the DPGA is loaded via the simple serial interface, MSB to LSB, with the register address preceding the 8-bit gain code. The programming summary is shown in [Table 2](#).

Table 2. DPGA Gain Programming Reference

Gain Register	DPGA Gain Register Code								Address					
	M		D[7:0]						L		M		L	
	S	B							S	B	S	B	S	B
1	X	X	X	X	X	X	X	X	0	0	0	0	0	0
2	X = 0 - 255 (0 - 11111111 ₂)								0	0	0	1		
3	X = 0 results in a Gain of 1								0	0	1	0		
4	X = 255 results in a Gain of 8								0	0	1	1		

The Gain register used by the DPGA are selected via the ISEL0 and ISEL1 input pins as shown in [Figure 13](#).

Figure 13. Gain Register Select Logic


The user may perform real-time updates of any of the gain registers through the simple serial interface. However, a latency associated with the serial register clock rate should be anticipated before the new gain coefficient becomes updated into the DPGA gain register.

All of the DPGA's gain registers power up at a default gain of 1X (0 dB).

For applications which require only a single gain register and only one analog input, the ISEL0/1 pins can be hardwired to the appropriate levels.

1.6 DC Offset Voltage Adjust (DOVA)

The DOVA circuit ([Figure 14](#)) provides additional offset control fine-tuning to remove any additional residual error which may have accumulated in the analog signal path. This function may also be used to insert a desired offset of the zero code point in applications where this feature may be desirable, e.g., to adjust for a known system noise floor relative to $A_{V_{SS}}$. This function is performed directly before analog to digital conversion. A 2.0X (6.0 dB) fixed gain is also introduced in this stage.

Figure 14. DOVA Concept Diagram/Programming

The DOVA allows the user to offset the analog signal's voltage via a 6-bit, signed magnitude programming code. The MSB of the six-bit "data" portion of the code represents the sign. A zero (logic low) indicates a positive offset, and a one (logic high) negative, relative to the default zero code point.

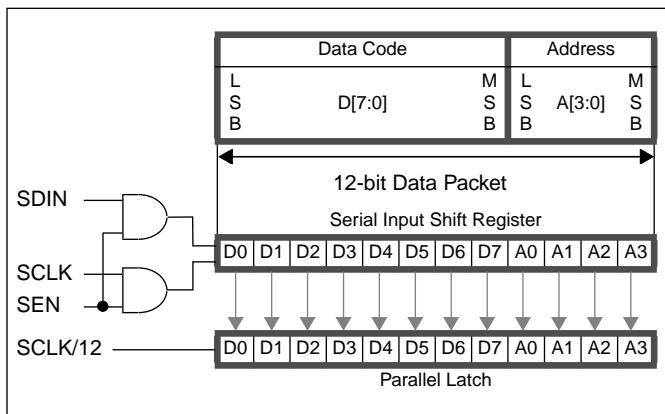
The remaining five-bits provide increments of $\pm 5.86 \text{ mV}$ ($\pm 2 \text{ LSB}$), yielding an effective range of $\pm 181.6 \text{ mV}$ ($\pm 62 \text{ LSB}$). Programming of the six-bit register is accessed through the simple serial interface.

The preset DOVA code is 000000_2 . Adjustment of the voltage offset is real-time programmable, but latency in the simple serial interface is incurred before the new offset becomes valid.

1.7 Analog to Digital Converter (ADC)

The ADC is a 18 MHz, fully differential, ten bit, low power circuit. A pipelined, Redundant Signed Digit (RSD) algorithmic technique incorporating digital error correction is used to yield an ADC with superior characteristics for imaging applications.

Integral Noise Linearity (INL) and Differential Noise Linearity (DNL) performance is specified at ± 1.0 and ± 0.5 LSB, respectively, with no missing codes. The input voltage resolution is 2.93 mV with a full-scale 3.0 V_{pp} input ($3.0 \text{ V}_{pp}/2^{10}$). Two phase clocks are used to reduce ADC latency to 6.5 clock cycles, including latching of the D9:0 outputs to offer the user complete control of the data flow.


1.8 Clocking

Both the Sample&Hold clocks (CDSP1/2) and the Master Clock (MCLK) must be provided externally.

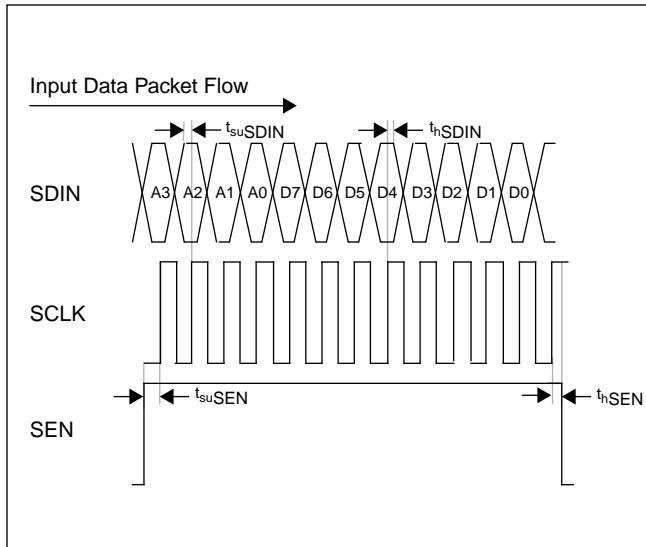
Care must be taken to insure the relative timing between these clocks in relation to the incoming analog data.

2.0 Utility Register Programming

The MCM10009 utilizes a simple serial interface (Figure 15) to program chip control codes for the utility registers, such as DPGA gain coefficients, via a twelve-bit data packet. Each packet consists of a four-bit address and eight additional control data-bits. All programmable features also have default coding or simple pin-level overrides to speed chip initialization, should the user choose to bypass any of them.

Figure 15. Simple Serial Interface Programming Conceptual Diagram

The interface is controlled by three pins, in which SEN (logic high) gates programming of the interface, SDIN is the serial data input port, and SCLK is the serial clock input ($f_{max} = 18$ MHz). Table 3 summarizes the program control addresses of the utility registers.


Table 3. Utility Register Programming Address Map

Number of data bits	Register Function								Address			
	M	S	B	D[7:0]				L	M	S	L	S
	D	D	D	D	D	D	D	B	A	A	A	B
7	6	5	4	3	2	1	0	3	3	2	1	0
8	DPGA Gain Register 1 Code								0	0	0	0
8	DPGA Gain Register 2 Code								0	0	0	1
8	DPGA Gain Register 3 Code								0	0	1	0
8	DPGA Gain Register 4 Code								0	0	1	1
	Not used								0	1	0	0
	Not used								0	1	0	1
	Not used								0	1	1	0
	Not used								0	1	1	1
	Not used								1	0	0	0
	Not used								1	0	0	1
6	DOVA Offset Voltage Adjust								1	0	1	0
8	Used for test at the factory								1	0	1	1
	Not used								1	1	0	0
	Not used								1	1	0	1
	Not used								1	1	1	0
	Not used								1	1	1	1

Programming through the simple serial interface is accomplished in three steps (Figure 16). First, the interface is enabled by a low to high transition of the SEN waveform. The SEN waveform must be logic high at least one setup time ($t_{sUSEN} = 1.0$ ns) prior to the first SCLK low to high transition, and it must remain so throughout the data input operation. This action gates the serial interface to accept the SDIN and SCLK inputs.

In the second programming step, data is input in twelve-bit packets through the SDIN pin. Each-bit in the data packet must be valid at least one setup time ($t_{suSDIN} = 1.0$ ns) before the corresponding SCLK low to high transition. Each-bit must also meet the t_{hSDIN} requirement of 0.5 ns.

Programming codes are input as a four-bit address (A3:A0) input, MSB to LSB, followed by the data (control) code (D7:D0), also MSB to LSB. Any number of registers may be programmed, but data must continue to be input in the twelve-bit format.

Figure 16. Simple Serial Interface Timing Diagram

The final step of the program register loading procedure terminates the sequence. This action requires that SEN remain high for at least one additional low to high transition of SCLK after the final data-bit has been entered. An additional hold time, $t_{hSEN} = 0.5$ ns, is also recommended.

Overall, then, SEN must remain high a minimum of $(N * 12 + 1)$ SCLK periods, where N is the number of data packets input, to ensure valid programming of all registers.

The simple serial interface may be used to reprogram the utility registers at any point during operation of the MCM10009, but the user must recognize that all changes incur a latency associated with the serial register and the particular section which is being reprogrammed.

The simple serial interface is write-only. Therefore, utility register programming must be verified in the operating mode by observing the appropriate output characteristic of the MCM10009.

The Test Register at address 1011_2 (11_{10}) is used at the factory to reduce test time and improve fault coverage during device testing. It is loaded with the user mode default value ($D[7:0] = 0_{10}$) during initialization and should not be addressed in any application.

2.1 Initialization

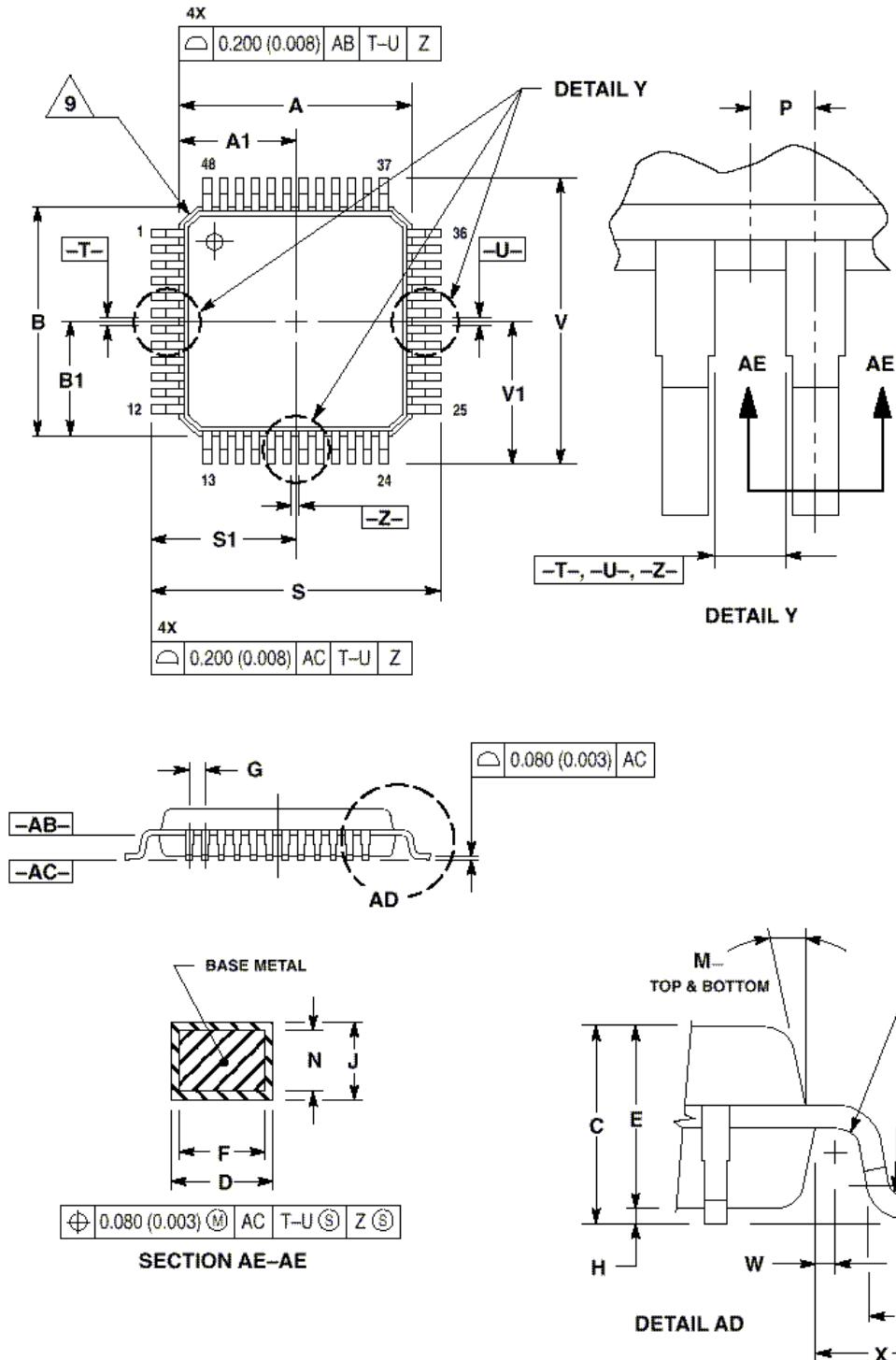
The INIT input pin controls initialization of the MCM10009 to assure controlled chip and system start-up. Control is asserted via a logic high input. This state must be held a minimum of 1 ms to assure that the start-up routines within the MCM10009 have run properly to completion, as well as guarantee that all holding and bypass capacitors, have achieved their required steady state values.

Tasks which are accomplished during start-up include reset of the utility programming registers and initialization to their default values, reset of all internal counters and latches and setup of the analog signal processing chain.

The DPGA gain is set to 0 dB and the DOVA offset is set to 0 mV.

2.2 Standby Mode

The standby mode option is implemented to allow the user to reduce system power consumption during periods which do not require operation of the MCM10009 for image capture operations in the system. This feature allows the user to extend battery life in low power applications.


By utilizing this mode, the user may reduce dynamic power consumption from 275 mW, in the active processing, 18 MSPS mode, to ≤ 25 mW in the standby mode (note that dynamic power consumption is also reduced in slower conversion speed applications).

The standby mode is activated by applying an active high signal to the STDBY pin. This function places the ADC[9:0] outputs in the three-state mode.

The user may also reduce power consumption in the active processing mode by placing the MCM10009's outputs in the three-state mode. This action may be accomplished by placing the TS pin in the active high state.

2.3 References CVREFP,CVREFM

The ADC references, CVREFP and CVREFM, are available at package pins for external decoupling for added stability. A $1\mu F$ capacitor to ground, from each pin, is recommended.

- NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER
 3. DATUM PLANE-AB IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE.
 4. DATUMS -T-, -U-, AND -Z- TO BE DETERMINED AT DATUM PLANE -AB.
 5. DIMENSIONS S AND V TO BE DETERMINED AT SEATING PLANE -AC.
 6. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.250 (0.010) PER SIDE. DIMENSIONS A AND B DO NOT INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -AB.
 7. DIMENSION O DOES NOT INCLUDE DAMBAR PROTRUSION. DAMBAR PROTRUSION SHALL NOT CAUSE THE D DIMENSION TO EXCEED 0.350 (0.014).
 8. MINIMUM SOLDER PLATE THICKNESS SHALL BE 0.0076 (0.0003).
 9. EXACT SHAPE OF EACH CORNER IS OPTIONAL.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	7.000	BSC	0.276	BSC
A1	3.500	BSC	0.138	BSC
B	7.000	BSC	0.276	BSC
B1	3.500	BSC	0.138	BSC
C	1.400	1.600	0.055	0.063
D	0.170	0.270	0.007	0.011
E	1.350	1.450	0.053	0.057
F	0.170	0.230	0.007	0.009
G	0.500	BASIC	0.020	BASIC
H	0.050	0.150	0.002	0.006
J	0.090	0.200	0.004	0.008
K	0.500	0.700	0.020	0.028
M	12°	REF	12°	REF
N	0.090	0.160	0.004	0.006
P	0.250	BASIC	0.010	BASIC
Q	1°	5°	1°	5°
R	0.150	0.250	0.060	0.010
S	9.000	BSC	0.354	BSC
S1	4.500	BSC	0.177	BSC
V	9.000	BSC	0.354	BSC
V1	4.500	BSC	0.177	BSC
W	0.200	REF	0.008	REF
X	1.000	REF	0.039	REF

Figure 17. 48 Lead LQFP (Case Outline 932-02)

Notes:

Note: For the most current information regarding this product, contact Motorola on the World Wide Web at <http://sps.motorola.com/consumer-solutions/>

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

MFax is a trademark of Motorola, Inc.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver Colorado 80217. 1-800-441-2447 or 303-675-2140

MFax™: RMFAX0@email.sps.mot.com -TOUCHTONE (602) 244-6609
HOME PAGE: <http://motorola.com/sps/>

JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 141, 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan. 81-3-5487-8488

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

MOTOROLA