

MBRD620CT, MBRD630CT, MBRD640CT, MBRD650CT, MBRD660CT

MBRD620CT, MBRD640CT and MBRD660CT are Preferred Devices

SWITCHMODE™ Power Rectifiers

DPAK-3 Surface Mount Package

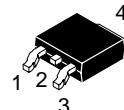
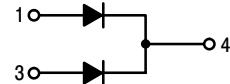
These state-of-the-art devices are designed for use in switching power supplies, inverters and as free wheeling diodes.

Features

- Extremely Fast Switching
- Extremely Low Forward Drop
- Platinum Barrier with Avalanche Guardrings
- Pb-Free Packages are Available

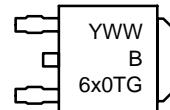
Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 0.4 Gram (Approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds



ON Semiconductor®

<http://onsemi.com>

SCHOTTKY BARRIER


RECTIFIERS

6.0 AMPERES, 20 – 60 VOLTS

**DPAK
CASE 369C**

MARKING DIAGRAM

Y = Year
WW = Work Week
B6x0T = Device Code
X = 2, 3, 4, 5, or 6
G = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

Preferred devices are recommended choices for future use and best overall value.

MBRD620CT, MBRD630CT, MBRD640CT, MBRD650CT, MBRD660CT

MAXIMUM RATINGS

Rating	Symbol	MBRD					Unit
		620CT	630CT	640CT	650CT	660CT	
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V_{RRM} V_{RWM} V_R	20	30	40	50	60	V
Average Rectified Forward Current $T_C = 130^\circ\text{C}$ (Rated V_R)	Per Diode Per Device	$I_{F(AV)}$		3	6		A
Peak Repetitive Forward Current, $T_C = 130^\circ\text{C}$ (Rated V_R , Square Wave, 20 kHz) Per Diode	I_{FRM}			6			A
Nonrepetitive Peak Surge Current – (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	I_{FSM}			75			A
Peak Repetitive Reverse Surge Current (2 μs , 1 kHz)	I_{RRM}			1			A
Operating Junction Temperature (Note 1)	T_J			–65 to +175			$^\circ\text{C}$
Storage Temperature	T_{stg}			–65 to +175			$^\circ\text{C}$
Voltage Rate of Change (Rated V_R)	dv/dt			10,000			$\text{V}/\mu\text{s}$

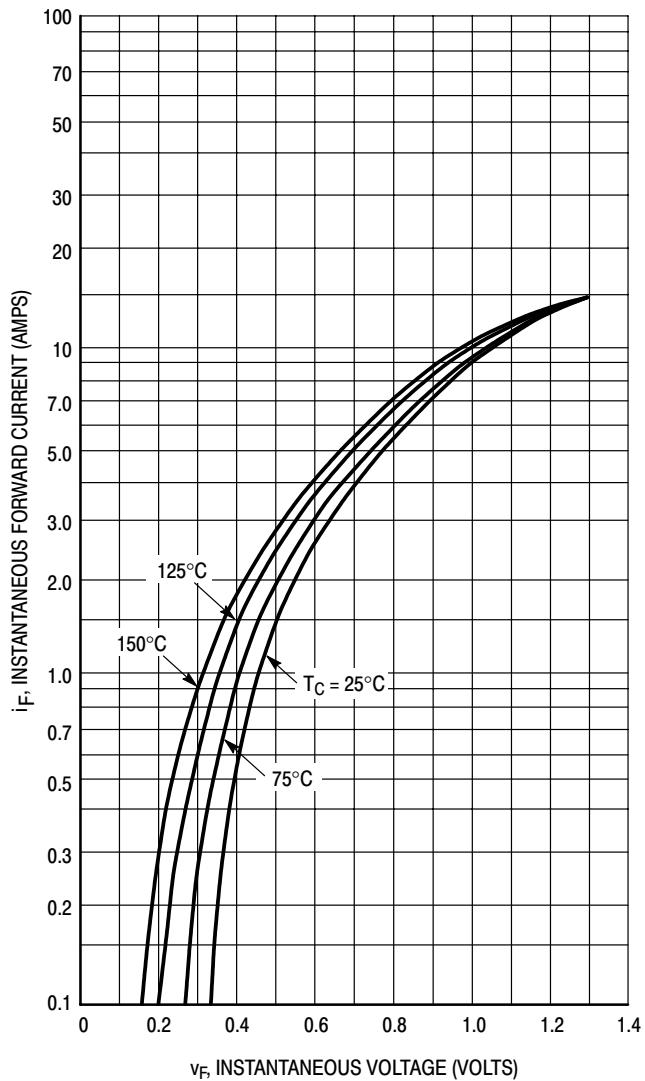
THERMAL CHARACTERISTICS PER DIODE

Rating	Symbol	Value	Unit
Maximum Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	6	$^\circ\text{C}/\text{W}$
Maximum Thermal Resistance, Junction-to-Ambient (Note 2)	$R_{\theta JA}$	80	$^\circ\text{C}/\text{W}$

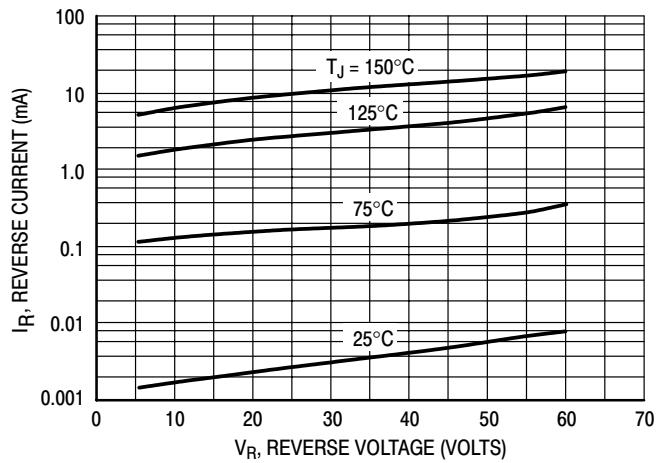
ELECTRICAL CHARACTERISTICS PER DIODE

Maximum Instantaneous Forward Voltage (Note 3) $i_F = 3$ Amps, $T_C = 25^\circ\text{C}$ $i_F = 3$ Amps, $T_C = 125^\circ\text{C}$ $i_F = 6$ Amps, $T_C = 25^\circ\text{C}$ $i_F = 6$ Amps, $T_C = 125^\circ\text{C}$	V_F	0.7 0.65 0.9 0.85	V
Maximum Instantaneous Reverse Current (Note 3) (Rated dc Voltage, $T_C = 25^\circ\text{C}$) (Rated dc Voltage, $T_C = 125^\circ\text{C}$)	i_R	0.1 15	mA

1. The heat generated must be less than the thermal conductivity from Junction-to-Ambient: $dP_D/dT_J < 1/R_{\theta JA}$.
2. Rating applies when surface mounted on the minimum pad size recommended.
3. Pulse Test: Pulse Width = 300 μs , Duty Cycle $\leq 2.0\%$.


MBRD620CT, MBRD630CT, MBRD640CT, MBRD650CT, MBRD660CT

ORDERING INFORMATION


Device	Package	Shipping [†]
MBRD620CTT4	DPAK	2500 Tape & Reel
MBRD620CTT4G	DPAK (Pb-Free)	2500 Tape & Reel
MBRD630CTT4	DPAK-3	2500 Tape & Reel
MBRD630CTT4G	DPAK (Pb-Free)	2500 Tape & Reel
MBRD640CT	DPAK-3	75 Units / Rail
MBRD640CTG	DPAK-3 (Pb-Free)	75 Units / Rail
MBRD640CTT4	DPAK-3	2500 Tape & Reel
MBRD640CTT4G	DPAK-3 (Pb-Free)	2500 Tape & Reel
MBRD650CT	DPAK-3	75 Units / Rail
MBRD650CTG	DPAK (Pb-Free)	75 Units / Rail
MBRD650CTT4	DPAK-3	2500 Tape & Reel
MBRD650CTT4G	DPAK (Pb-Free)	2500 Tape & Reel
MBRD660CT	DPAK-3	75 Units / Rail
MBRD660CTG	DPAK-3 (Pb-Free)	75 Units / Rail
MBRD660CTRL	DPAK-3	1800 Tape & Reel
MBRD660CTRLG	DPAK-3 (Pb-Free)	1800 Tape & Reel
MBRD660CTT4	DPAK-3	2500 Tape & Reel
MBRD660CTT4G	DPAK-3 (Pb-Free)	2500 Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

TYPICAL CHARACTERISTICS

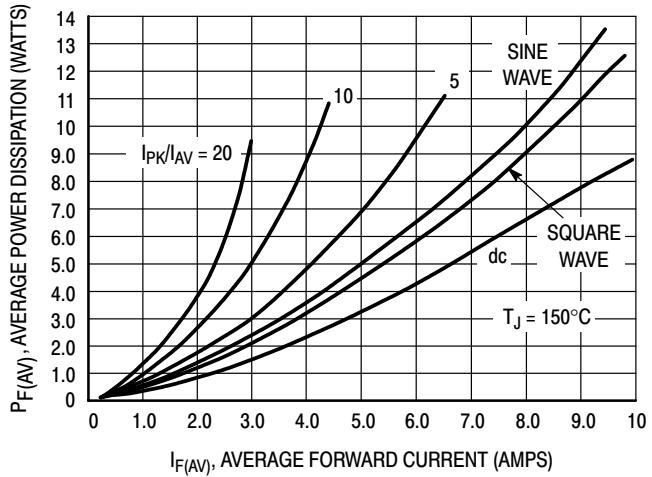


Figure 1. Typical Forward Voltage, Per Leg

*The curves shown are typical for the highest voltage device in the voltage grouping. Typical reverse current for lower voltage selections can be estimated from these curves if V_R is sufficient below rated V_R .

Figure 2. Typical Reverse Current,* Per Leg

Figure 3. Average Power Dissipation, Per Leg

MBRD620CT, MBRD630CT, MBRD640CT, MBRD650CT, MBRD660CT

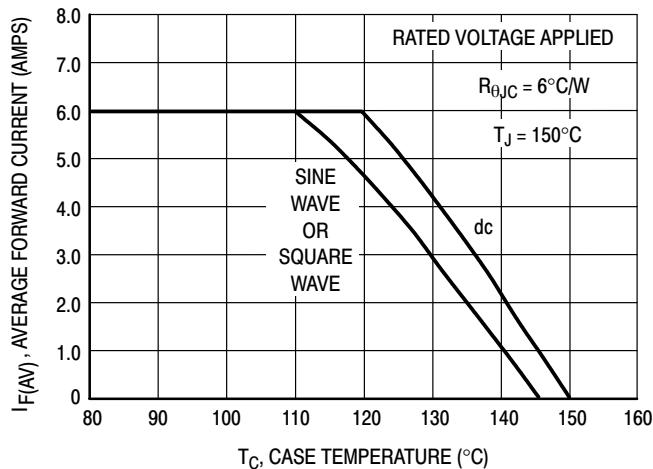


Figure 4. Current Derating, Case, Per Leg

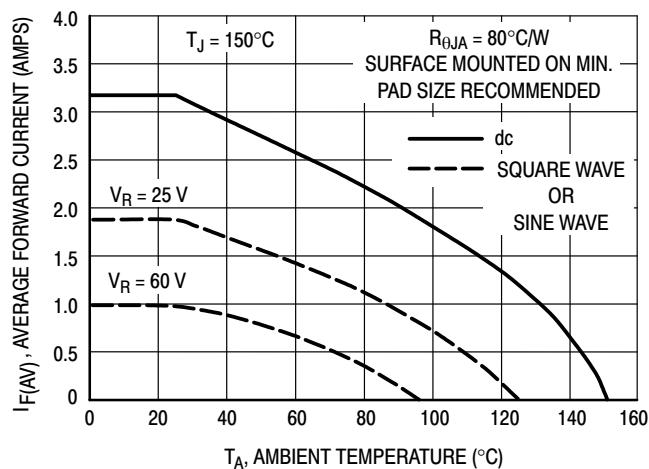


Figure 5. Current Derating, Ambient, Per Leg

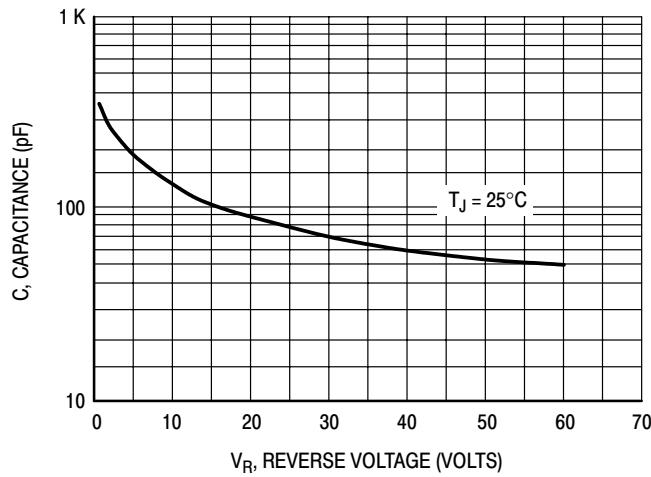
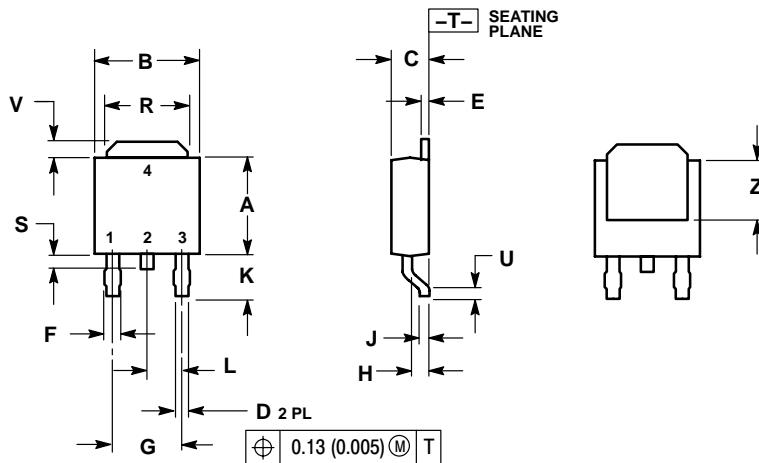
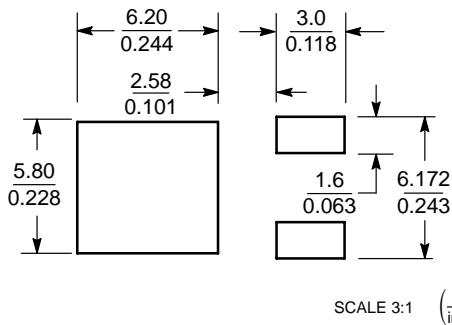



Figure 6. Typical Capacitance, Per Leg

MBRD620CT, MBRD630CT, MBRD640CT, MBRD650CT, MBRD660CT

PACKAGE DIMENSIONS

DPAK (SINGLE GAUGE) CASE 369C ISSUE O



NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.235	0.245	5.97	6.22
B	0.250	0.265	6.35	6.73
C	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
E	0.018	0.023	0.46	0.58
F	0.037	0.045	0.94	1.14
G	0.180	BSC	4.58	BSC
H	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
K	0.102	0.114	2.60	2.89
L	0.090	BSC	2.29	BSC
R	0.180	0.215	4.57	5.45
S	0.025	0.040	0.63	1.01
U	0.020	---	0.51	---
V	0.035	0.050	0.89	1.27
Z	0.155	---	3.93	---

SOLDERING FOOTPRINT*

SCALE 3:1 (mm/inches)

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

SWITCHMODE is a trademark of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor

P.O. Box 61312, Phoenix, Arizona 85082-1312 USA

Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada

Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free
USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center
2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051

Phone: 81-3-5773-3850

ON Semiconductor Website: <http://onsemi.com>

Order Literature: <http://www.onsemi.com/litorder>

For additional information, please contact your local Sales Representative.