

CONNECTION DIAGRAM

DESCRIPTION — The '93 is a 4-stage ripple counter containing a high speed flip-flop acting as a divide-by-two and three flip-flops connected as a divide-by-eight. HIGH signals on the Master Reset (MR) inputs override the clocks and force all outputs to the LOW state.

ORDERING CODE: See Section 9

ONDEMIN	TOLKING CODE. See Section 9						
	PIN	COMMERCIAL GRADE	MILITARY GRADE	PKG			
PKGS	ОПТ	$V_{CC} = +5.0 \text{ V} \pm 5\%,$ $T_A = 0^{\circ} \text{ C to} +70^{\circ} \text{ C}$	$V_{CC} = +5.0 \text{ V} \pm 10\%,$ $T_A = -55^{\circ} \text{ C to} + 125^{\circ} \text{ C}$	TYPE			
Plastic DIP (P)	А	7493APC, 74LS93PC		9A			
Ceramic DIP (D)	Α	7493ADC, 74LS93DC	5493ADM, 54LS93DM	6A			
Flatpak (F)	А	7493AFC, 74LS93FC	5493AFM, 54LS93FM	31			

LOGIC SYMBOL

V_{CC} = Pin 5 GND = Pin 10 NC = Pins 4, 6, 7, 13

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

PIN NAMES	DESCRIPTION	54/74 (U.L.) HIGH/LOW	54/74LS (U.L.) HIGH/LOW	
CP₀	÷2 Section Clock Input (Active Falling Edge)	2.0/2.0	1.0/1.5	
CP₁	÷5 Section Clock Input (Active Falling Edge)	2.0/2.0	1.0/1.0	
MR ₁ , MR ₂	Asynchronous Master Reset Inputs (Active HIGH)	1.0/1.0	0.5/0.25	
Q_0	÷2 Section Output*	20/10	10/5.0 (2.5)	
Q ₁ — Q ₃	÷8 Section Outputs	20/10	10/5.0 (2.5)	

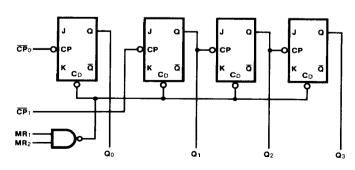
^{*}The Q0 output is guaranteed to drive the full rated fan-out plus the $\overline{\mbox{CP}}_1$ input.

FUNCTIONAL DESCRIPTION — The '93 is a 4-bit ripple type binary counter. It consists of four master/slave flip-flops which are internally connected to provide a divide-by-two section and a divide-by-eight section. Each section has a separate clock input which initiates state changes of the counter on the HIGH-to-LOW clock transition. State changes of the Q outputs do not occur simultaneously because of internal ripple delays. Therefore, decoded output signals are subject to decoding spikes and should not be used for clocks or strobes. The Q₀ output of each device is designed and specified to drive the rated fan-out plus the \overline{CP}_1 input of the device. A gated AND asynchronous Master Reset (MR₁, MR₂) is provided which overrides the clocks and resets (clears) all the flip-flops. Since the output from the divide-by-two section is not internally connected to the succeeding stages, the devices may be operated in various counting modes.

- A. 4-Bit Ripple Counter The output Q₀ must be externally connected to input \overline{CP}_1 . The input count pulses are applied to input \overline{CP}_0 . Simultaneous divisions of 2, 4, 8, and 16 are performed at the Q₀, Q₁, Q₂, and Q₃ outputs as shown in the Truth Table.
- B. 3-Bit Ripple Counter The input count pulses are applied to input $\overline{\mathbb{CP}}$ 1. Simultaneous frequency divisions of 2, 4, and 8 are available at the Q₁, Q₂, and Q₃ outputs. Independent use of the first flip-flop is available if the reset function coincides with reset of the 3-bit ripple-through counter.

MODE SELECTION

	SET PUTS		OU-	ГРИТ	'S			
MR ₁	MR ₂	ã	Q ₁	Q ₂	Q ₃			
Н	Н	٦	L	L	L			
L	LH		Count					
H	L	Count						
L	L	Count						


H = HIGH Voltage Level L = LOW Voltage Level

TRUTH TABLE

COUNT			PUTS	3
CCONT	Q ₀	Q ₁	Q ₂	Qз
0	L	L	L	٦
1	H	L	L	L
2 3	L	Н	L	L
3	н	Н	L	L
4	L	L	Н	L
5	Н	L	Н	L
6	L	Н	Н	L
7	Н	Н	Н	L
8	L	L	L	н
9	Н	L	L	н
10	L	Н	L	н
11	н	Н	L	н
12	L	L	Н	н
13	Н	L	Н	н
14	L	Н	Н	н
15	Н	Н	н_	н

NOTE: Output Q₀ connected to \overline{CP}_1 .

LOGIC DIAGRAM

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER	54	54/74		74LS	UNITS	CONDITIONS
	1 SUSWEIEI		Max	Min	Max		
lт	Input HIGH Current CP ₀ or CP ₁		1.0		0.2	mA	V _{CC} = Max, V _{IN} = 5.5 V
Icc	Power Supply Current		39		15	mA	V _{CC} = Max

AC CHARACTERISTICS: $V_{CC} = +5.0 \text{ V}$, $T_A = +25^{\circ} \text{ C}$ (See Section 3 for waveforms and load configurations)

		54/74		54/74LS			
SYMBOL	PARAMETER		$C_L = 15 pF$ $R_L = 400 \Omega$		15 pF	UNITS	CONDITIONS
		Min Ma	эx	Min	Max		
f _{max}	Maximum Count Frequency CP ₀ Input	32	Ī	32		MHz	Figs. 3-1; 3-9
f _{max}	Maximum Count Frequency CP ₁ Input	16		16		MHz	Figs. 3-1, 3-9
tPLH tPHL	Propagation Delay CP ₀ to Q ₀		6 8		16 18	ns	Figs. 3-1, 3-9
tpLH tpHL	Propagation Delay CP ₀ to Q ₃	79	0		70 70	ns	Figs. 3-1, 3-9
tPLH tPHL	Propagation Delay CP ₁ to Q ₁	1 2	- 1		16 21	ns	Figs. 3-1, 3-9
tpLH tpHL	Propagation Delay CP ₁ to Q ₂	3 3			32 35	ns	Figs. 3-1, 3-9
tPLH tPHL	Propagation Delay CP ₁ to Q ₃	5 5			51 51	ns	Figs. 3-1, 3-9
tpHL	Propagation Delay MR to Q _n	4	0		40	ns	Figs. 3-1, 3-17

AC OPERATING REQUIREMENTS: $V_{CC} = +5.0 \text{ V}$, $T_A = +25^{\circ} \text{ C}$

SYMBOL	PARAMETER	54/74	54/74LS	UNITS	CONDITIONS
	77	Min Max	Min Max		
t _w (H)	CP₀ Pulse Width HIGH	15	15	ns	Fig. 3-9
t _w (H)	CP₁ Pulse Width HIGH	30	30	ns	Fig. 3-9
t _w (H)	MR Pulse Width HIGH	15	15	ns	Fig. 3-17
t _{rec}	Recovery Time, MR to CP	25	25	ns	Fig. 3-17