

CYPRESS

CY62138V MoBL™

256K x 8 Static RAM

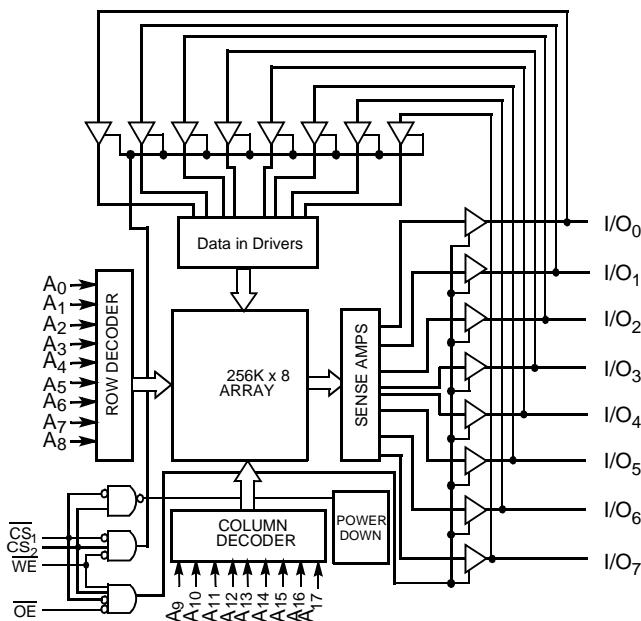
Features

- **Low voltage range:**
— 2.7–3.6V
- **Ultra-low active power**
- **Low standby power**
- **Easy memory expansion with $\overline{CS}_1/\overline{CS}_2$ and \overline{OE} features**
- **TTL-compatible inputs and outputs**
- **Automatic power-down when deselected**
- **CMOS for optimum speed/power**

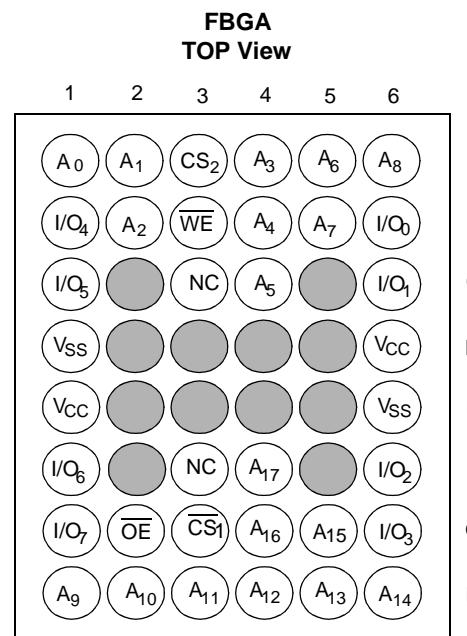
Functional Description

The CY62138V is a high-performance CMOS static RAM organized as 256K words by 8 bits. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life™ (MoBL®) in portable applications such as cellular telephones. The device also has an automatic power-down feature that reduces power

consumption by 99% when addresses are not toggling. The device can be put into standby mode when deselected (\overline{CS}_1 HIGH or \overline{CS}_2 LOW).


Writing to the device is accomplished by taking Chip Enable One (\overline{CS}_1) and Write Enable (\overline{WE}) inputs LOW and Chip Enable Two (\overline{CS}_2) HIGH. Data on the eight I/O pins (I/O₀ through I/O₇) is then written into the location specified on the address pins (A₀ through A₁₇).

Reading from the device is accomplished by taking Chip Enable One (\overline{CS}_1) and Output Enable (\overline{OE}) LOW while forcing Write Enable (\overline{WE}) and Chip Enable Two (\overline{CS}_2) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.


The eight input/output pins (I/O₀ through I/O₇) are placed in a high-impedance state when the device is deselected (\overline{CS}_1 HIGH or \overline{CS}_2 LOW), the outputs are disabled (\overline{OE} HIGH), or during a write operation (\overline{CS}_1 LOW, \overline{CS}_2 HIGH, and \overline{WE} LOW).

The CY62138V is available in a 36-ball FBGA.

Logic Block Diagram

Pin Configuration

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature -65°C to $+150^{\circ}\text{C}$

Ambient Temperature with

Power Applied -55°C to $+125^{\circ}\text{C}$

Supply Voltage to Ground Potential -0.5V to $+4.6\text{V}$

DC Voltage Applied to Outputs
in High-Z State^[1] -0.5V to $V_{\text{CC}} + 0.5\text{V}$

DC Input Voltage^[1] -0.5V to $V_{\text{CC}} + 0.5\text{V}$

Output Current into Outputs (LOW) 20 mA

Static Discharge Voltage $> 2001\text{V}$
(per MIL-STD-883, Method 3015)

Latch-up Current $> 200\text{ mA}$

Operating Range

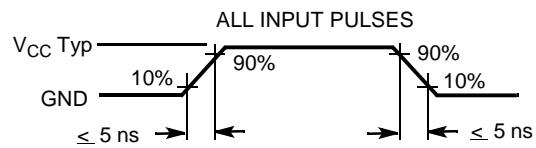
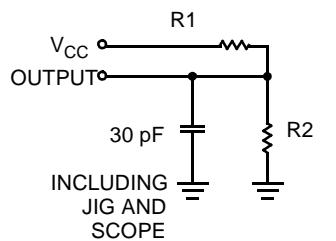
Device	Range	Ambient Temperature	V_{CC}
CY62138V	Industrial	-40°C to $+85^{\circ}\text{C}$	2.7V to 3.6V

Product Portfolio

Product	V_{CC} Range			Speed	Power Dissipation (Industrial)			
					Operating (I_{cc})		Standby (I_{SB2})	
	$V_{\text{CC(min)}}$	$V_{\text{CC(typ)}}^{[2]}$	$V_{\text{CC(max)}}$		Typ. ^[2]	Maximum	Typ. ^[2]	Maximum
CY62138V	2.7V	3.0V	3.6V	70 ns	7 mA	15 mA	1 μA	15 μA

Electrical Characteristics

 Over the Operating Range



Parameter	Description	Test Conditions		CY62138V			Unit	
				Min.	Typ. ^[2]	Max.		
V_{OH}	Output HIGH Voltage	$I_{\text{OH}} = -1.0\text{ mA}$	$V_{\text{CC}} = 2.7\text{V}$	2.4			V	
V_{OL}	Output LOW Voltage	$I_{\text{OL}} = 2.1\text{ mA}$	$V_{\text{CC}} = 2.7\text{V}$			0.4	V	
V_{IH}	Input HIGH Voltage		$V_{\text{CC}} = 3.6\text{V}$	2.2		$V_{\text{CC}} + 0.5\text{V}$	V	
V_{IL}	Input LOW Voltage		$V_{\text{CC}} = 2.7\text{V}$	-0.5		0.8	V	
I_{IX}	Input Load Current	$\text{GND} \leq V_{\text{I}} \leq V_{\text{CC}}$		-1	± 1	+1	μA	
I_{OZ}	Output Leakage Current	$\text{GND} \leq V_{\text{O}} \leq V_{\text{CC}}$, Output Disabled		-1	+1	+1	μA	
I_{cc}	V_{CC} Operating Supply Current	$I_{\text{OUT}} = 0\text{ mA}$, $f = f_{\text{MAX}} = 1/t_{\text{RC}}$, CMOS Levels	$V_{\text{CC}} = 3.6\text{V}$		7	15	mA	
		$I_{\text{OUT}} = 0\text{ mA}$, $f = 1\text{ MHz}$, CMOS Levels			1	2	mA	
I_{SB1}	Automatic CE Power-down Current—CMOS Inputs	$\overline{\text{CE}} \geq V_{\text{CC}} - 0.3\text{V}$, $V_{\text{IN}} \geq V_{\text{CC}} - 0.3\text{V}$ or $V_{\text{IN}} \leq 0.3\text{V}$, $f = f_{\text{MAX}}$				100	μA	
I_{SB2}	Automatic CE Power-down Current—CMOS Inputs	$\overline{\text{CE}} \geq V_{\text{CC}} - 0.3\text{V}$, $V_{\text{IN}} \geq V_{\text{CC}} - 0.3\text{V}$ or $V_{\text{IN}} \leq 0.3\text{V}$, $f = 0$	$V_{\text{CC}} = 3.6\text{V}$	LL		1	15	μA

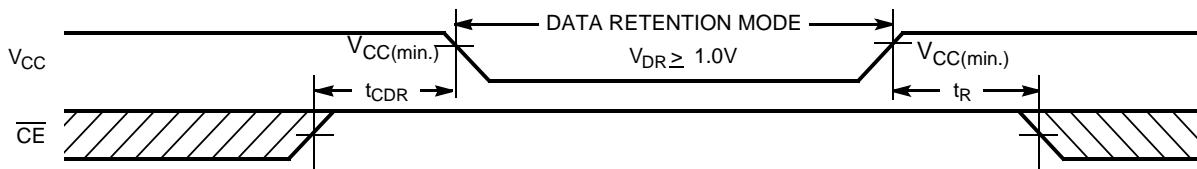
Capacitance^[3]

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$T_{\text{A}} = 25^{\circ}\text{C}$, $f = 1\text{ MHz}$, $V_{\text{CC}} = V_{\text{CC(typ)}}$	6	pF
C_{OUT}	Output Capacitance		8	pF

Notes:

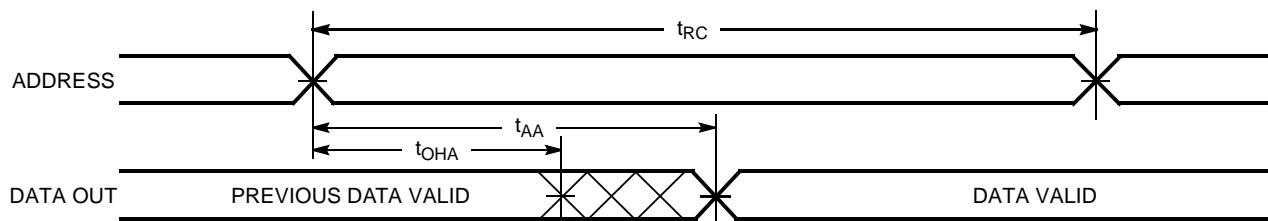
- $V_{\text{IL}}(\text{min}) = -2.0\text{V}$ for pulse durations less than 20 ns.
- Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $V_{\text{CC}} = V_{\text{CC Typ}}$, $T_{\text{A}} = 25^{\circ}\text{C}$.
- Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms


Equivalent to: THÉVENIN EQUIVALENT

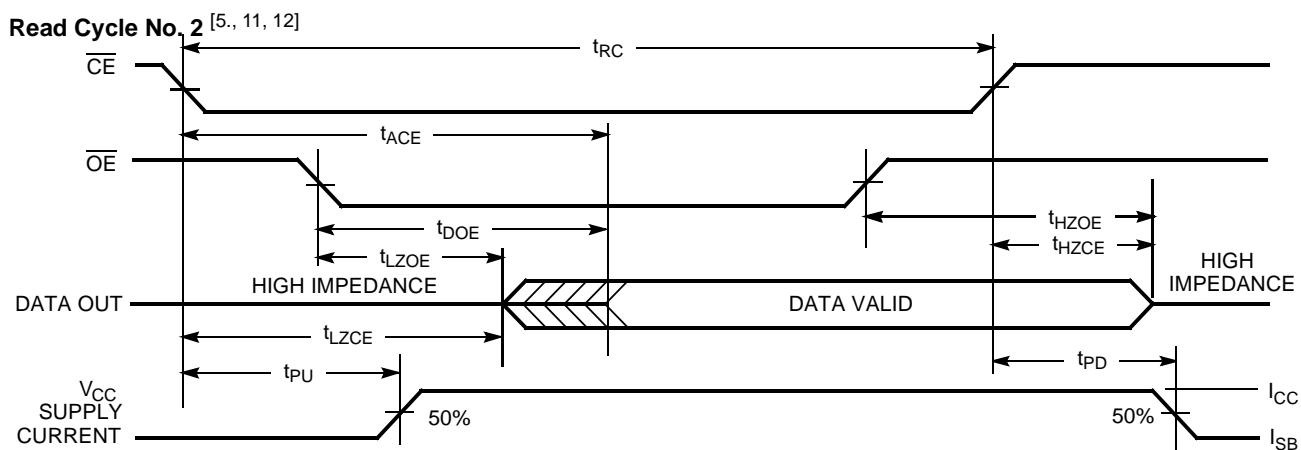
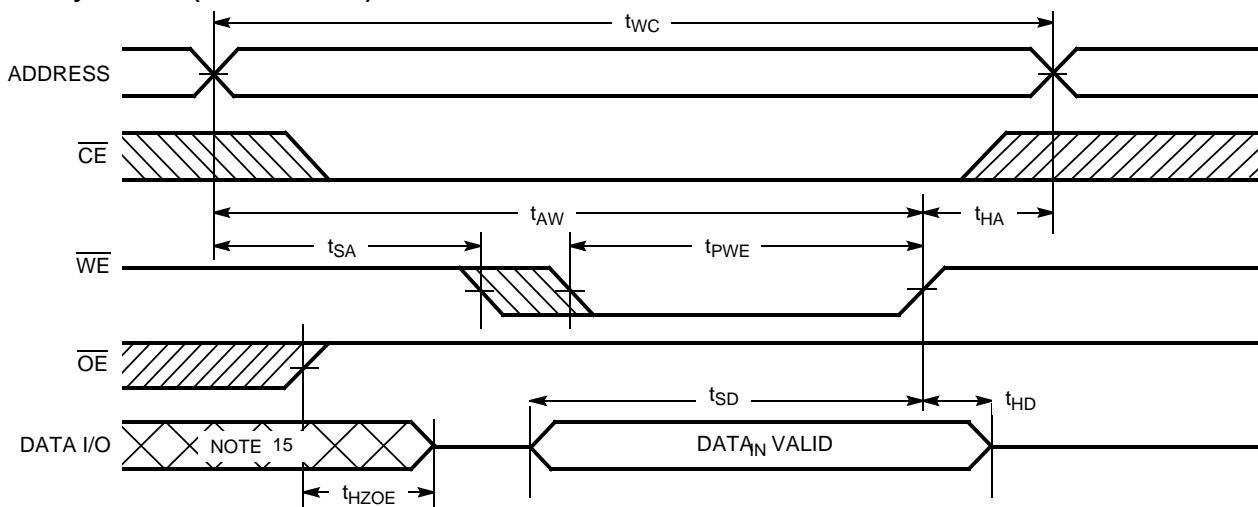
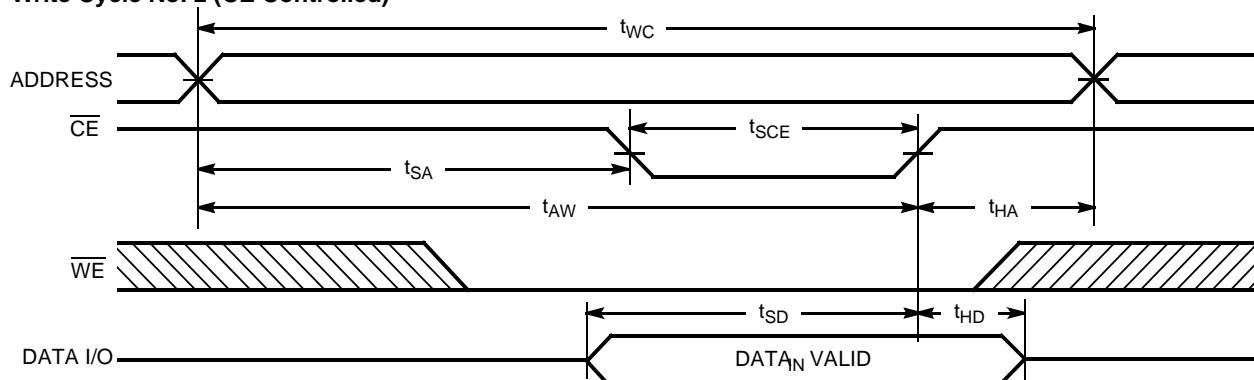
Parameters	3.0V	Unit
R1	1105	Ohms
R2	1550	Ohms
R_{TH}	645	Ohms
V_{TH}	1.75	Volts

Data Retention Characteristics (Over the Operating Range)

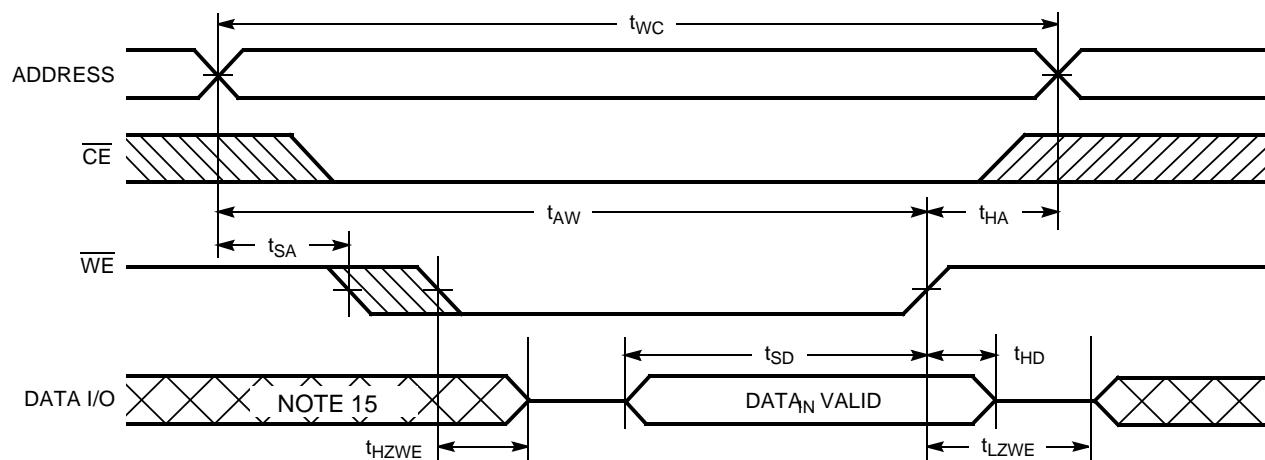
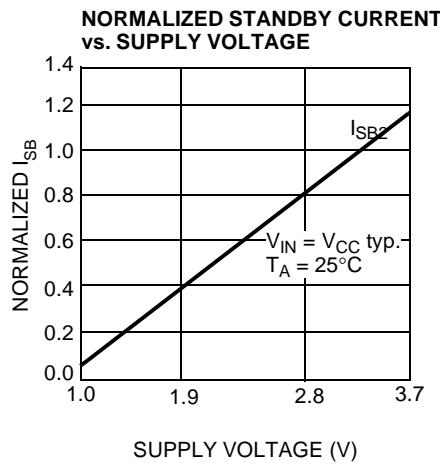
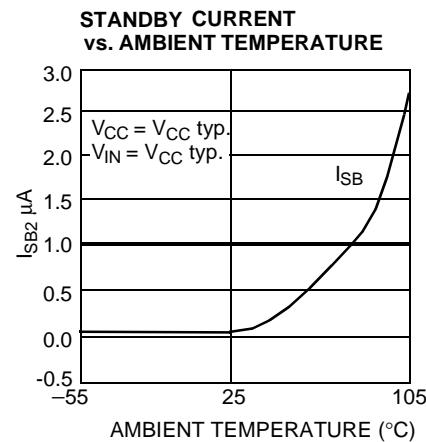
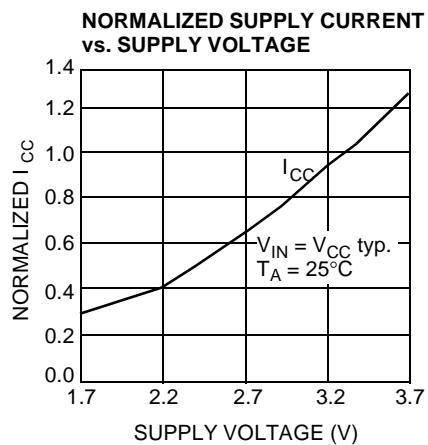

Parameter	Description	Conditions ^[4]	Min.	Typ. ^[2]	Max.	Unit
V_{DR}	V_{CC} for Data Retention		1.0		3.6	V
I_{CCDR}	Data Retention Current	$V_{CC} = 1.0\text{V}$ $CE \geq V_{CC} - 0.3\text{V}$, $V_{IN} \geq V_{CC} - 0.3\text{V}$ or $V_{IN} \leq 0.3\text{V}$ No input may exceed $V_{CC} + 0.3\text{V}$	LL		0.1	μA
$t_{CDR}^{[3]}$	Chip Deselect to Data Retention Time		0			ns
t_R	Operation Recovery Time		100			μs

Data Retention Waveform^[5]

Notes:




4. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to V_{CC} typ., and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.
5. CE is the combination of both \overline{CS}_1 and CS_2 .

Switching Characteristics Over the Operating Range^[4]





Parameter	Description	70 ns		Unit
		Min.	Max.	
Read Cycle				
t_{RC}	Read Cycle Time	70		ns
t_{AA}	Address to Data Valid		70	ns
t_{OHA}	Data Hold from Address Change	10		ns
t_{ACE}	\overline{CE} LOW to Data Valid		70	ns
t_{DOE}	\overline{OE} LOW to Data Valid		35	ns
t_{LZOE}	\overline{OE} LOW to Low-Z ^[6]	5		ns
t_{HZOE}	\overline{OE} HIGH to High-Z ^[6, 7]		25	ns
t_{LZCE}	\overline{CE} LOW to Low-Z ^[6]	10		ns
t_{HZCE}	\overline{CE} HIGH to High-Z ^[6, 7]		25	ns
t_{PU}	\overline{CE} LOW to Power-up	0		ns
t_{PD}	\overline{CE} HIGH to Power-down		70	ns
Write Cycle ^[8, 9]				
t_{WC}	Write Cycle Time	70		ns
t_{SCE}	\overline{CE} LOW to Write End	60		ns
t_{AW}	Address Set-up to Write End	60		ns
t_{HA}	Address Hold from Write End	0		ns
t_{SA}	Address Set-up to Write Start	0		ns
t_{PWE}	\overline{WE} Pulse Width	50		ns
t_{SD}	Data Set-up to Write End	30		ns
t_{HD}	Data Hold from Write End	0		ns
t_{HZWE}	\overline{WE} LOW to High-Z ^[6, 7]		25	ns
t_{LZWE}	\overline{WE} HIGH to Low-Z ^[6]	10		ns

Switching Waveforms
Read Cycle No. 1^[10, 11]

Notes:

6. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE} , t_{HZOE} is less than t_{LZOE} , and t_{HZWE} is less than t_{LZWE} for any given device.
7. t_{HZOE} , t_{HZCE} , and t_{HZWE} are specified with $C_L = 5$ pF as in (b) of AC Test Loads. Transition is measured ± 500 mV from steady-state voltage.
8. The internal write time of the memory is defined by the overlap of \overline{CE} LOW and \overline{WE} LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
9. The minimum write cycle time for write cycle #3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD} .
10. Device is continuously selected. OE, CE = V_{IL} .
11. \overline{WE} is HIGH for read cycle.

Switching Waveforms (continued)

Write Cycle No. 1 (\overline{WE} Controlled) [5, 8, 13, 14]

Write Cycle No. 2 (\overline{CE} Controlled) [5, 8, 13, 14]

Notes:

12. Address valid prior to or coincident with \overline{CE} transition LOW.
13. Data I/O is high impedance if $OE = V_{IL}$.
14. If \overline{CE} goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.
15. During this period, the I/Os are in output state and input signals should not be applied.

Switching Waveforms (continued)
Write Cycle No. 3 (WE Controlled, OE LOW)^[5, 9, 14]

Typical DC and AC Characteristics

Truth Table

CS ₁	CS ₂	WE	OE	Inputs/Outputs	Mode	Power
H	X	X	X	High-Z	Deselect/Power-down	Standby (I _{SB})
X	L	X	X	High-Z	Deselect/Power-down	Standby (I _{SB})
L	H	H	L	Data Out	Read	Active (I _{CC})
L	H	L	X	Data In	Write	Active (I _{CC})
L	H	H	H	High-Z	Deselect, Output Disabled	Active (I _{CC})

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
70	CY62138VLL-70BAI	BA36A	36-ball (7.0 mm x 7.0 mm x 1.2 mm) Fine Pitch BGA	Industrial

Package Diagram
36-ball Thin BGA BA36A

51-85099-B

More Battery Life is a trademark, and MoBL is a registered trademark, of Cypress Semiconductor. All products and company names mentioned in this document may be the trademarks of their respective holders.

Document Title: CY62138V MoBL™ 256K x 8 Static RAM
Document Number: 38-05088

REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	107348	06/12/01	SZV	Change from Spec #: 38-00729 to 38-05088
*A	114936	05/28/02	CBD	Replaced wrong package diagram with correct diagram (36-ball FBGA [see p. 7])