PRODUCT MANUAL

PowerCore FLEX™

C-Programmable PowerCore Module
with Mass Storage and Ethernet

User’s Manual
019-0141 - 070831-E

PowerCore FLEX™ User’s Manual

Part Number 019-0141 « 070831-E « Printed in U.S.A.
©2004-2007 Rabbit Semiconductor Inc. < All rights reserved.

No part of the contents of this manual may be reproduced or transmitted in any form or by any means
without the express written permission of Rabbit Semiconductor.

Permission is granted to make one or more copies as long as the copyright page contained therein is
included. These copies of the manuals may not be let or sold for any reason without the express written
permission of Rabbit Semiconductor.

Rabbit Semiconductor reserves the right to make changes and
improvements to its products without providing notice.

Trademarks
Rabbit and Dynamic C are registered trademarks of Rabbit Semiconductor Inc.

Rabbit 3000 and PowerCore FLEX are trademarks of Rabbit Semiconductor Inc.

The latest revision of this manual is available on the Rabbit Semiconductor Web site,
www.rabbit.com, for free, unregistered download.

Rabbit Semiconductor Inc.

www.rabbit.com

PowerCore FLEX

http://www.rabbit.com/
http://www.rabbit.com/
http://www.rabbit.com/

Rabbit Semiconductor Inc.

www.rabbit.com

PowerCore FLEX

http://www.rabbit.com/
http://www.rabbit.com/

Rabbit Semiconductor Inc.

www.rabbit.com

PowerCore FLEX

http://www.rabbit.com/
http://www.rabbit.com/

TABLE OF CONTENTS

Chapter 1. Introduction 1
1.1 POWEICOIE FRATUIESueititite ittt ettt bbbttt b e bt bbb s b e e eb e bbb nn b 2
1.0.1 BASIC FRAIUIES ...ttt bttt et b e bbbttt ettt ettt e b e s bt e sbebesbebenbe e 2

I A @ o 1 o] O SRS SRRSO PSRRI 2
1.2 Standard Configurations and POWerCore FLEX OPLiONS.........ccceouririiinene e 4
1.3 POWEICOre FLEX AGVANTAGES. . .c.ccuveieiuiitiatiriestirtesie st steste ettt e bt sbestesbesbe b ese e b be e e ebeebesbesbesnesee s 5
1.4 Development and EVAlUALION TOOIS.oiiiiiiiiie e 6
O S0) 11T LT 7
1.4.2 Wi-FIi AGG-ON K.ttt ettt et s b bbb e sbebenre e 7
1.4.3 ONliNE DOCUMENTALION ...cuviiieiiectee ettt ettt ettt b et te e sbe e eaesbeebaesbe et b e sbeenbesbeeabesbeeneesaeeseeaneas 7
Chapter 2. Getting Started 9
2.1 INSEAH DYNAMIC € ..ottt ettt b e bt bbb b e e s e e s e ek e e b e bt e b e et e e b sbesbenbesben 9
2.2 Hardware CONMNEBCLIONS........cccuiiiicic ittt te st s be s te e sre s s e e be e e e steeteesbeenbeseesaeeseesreerens 10
2.2.1 Attach Module to Prototyping BOArd.............ccccoeviiiiiiiiniiiiic s 10
2.2.2 Connect Programming Cable ... e 11
2.2.3 CONNECE POWET ...ttt ettt bbbt bbbt bbbt bbb n bbbt benre e 12
2.3 Starting DYNAMIC € ...oviiuiiiiieieiteee ettt sttt et h e eb e s e b e e bt et e s b e s b e s be b sb e b en e et e e resbeebe b ene 13
2.4 RUN @ SAMPIE PIOGIAIM ...ttt eb bbbt bt b e bbb e e e bt e bbb b e 13
2.5 Where DO | GO FIOM HEIE?ooiiiicie ettt ettt e be et s be e ta e s besneesteesbestaesrenreens 14
2.5.1 Standalone Operation of the PowerCore Module ... 14

P T =Tl T Tt LIRS o] oo S 14
Chapter 3. Running Sample Programs 15
TN [oo 1 o] PO SO OO TO TSSOSO 15
3.2 SAMPIE PrOGIAMS ...vviuverieieteeseeiee et e e see s et e tesee s eseesees s eseeseeseese e s e seesestesseseesbeeeseesaeseesseseanennenrensennens 16
BL2.1 1O R bR Rt bbb bbb et enen 16
R AV B 0o 11T 1 (- SRR 18
R T B TN O 1Y/ T -] TP ORPRTOTO 22
3.2.4 USE OF SErial FIASHoviiiiieccee s 22
3.2.5 Serial COMMUNICALION.coii i iecie ittt te s et e et e reearesresnnesreaneas 23
R T I 4 - 1o SO OO PRUO PRSPPI 24
3.2.6.1 Phase-Angle TriaC CONIOl.........ccoiiiireieiceie ettt 24
3.2.6.2 Time-Proportional TriaC CONLrolccccceveieieriie et 25

BL2.7 TCP/IP ottt bbbt b b s b n bt enen 26
3.2.8 LCD/KEYPAA MOUUIE.......ccuiieiieiiiiieieieiie ettt sttt bbb e b e eneenea 26
Chapter 4. Hardware Reference 27
4.1 PowerCore Digital INpUtS and OULPULScviviiriieriieseeesie e ese s sre st e e esae e eresresresnens 28
4.1.1 Internal and EXIEMNAL BUSEScecveiiiieiieeieite ettt e ere sttt seesreeveestesraestesaesbe e s e sbaessesbeenaesresnns 32
4.1.1.1 Handling Stateful 1/O REQISIEISccvrieieiiieierise sttt 32

4.1.2 Other INPULS aNd OULPULSevvieeeieieseerrsesesiesieseeeeseesee e sseste e srestesseseesaesaeaeseesseessessessessesnens 33
G T I I LR RPRTR 33
4.2 Serial COMMUNICATION ...oviiviciiitieie ettt e e sbe st e st e s bt e be e e sbeebaesbesteesbesrbenbesreenbeereenrs 34
4.2.1 SEIIAI POMS ..uviiticiicctieie ettt sttt st b et st e st e st e e bt et e e aeesbeebeesbesbaesbessbesbeeasenbeebeenbesaeeereanes 34
4.2.2 ETNEINEE PO ..ottt b bbbttt bbbt enen 34
4.2.3 Programiming PO ..ottt bbb et se et bbb nne 35
4.3 Programming CaDIEooiiiiiic et 36
4.3.1 Changing Between Program Mode and RUN MOTEcccoviiriiniininnencscsecesee s 36

User’s Manual

L AT W I C 1= 0T U o] S 38

4.4.1 Ramp Generator Theory 0f OPeration..........cccccicevereieiieieeie e e 40
4.5 Other HANOWAIE ..otttk bbbt b s bbbt en s 42
4.5.1 CIOCK DOUBIEToviiiicieee e bbb et ettt sttt 42
4.5.2 SPECIIUM SPIBAUETceiuiitieieete ettt ettt bbbt e bbb et e b e e e ebe e b e besbenbe b s 42
1V, 4T} S 43
A.8.1 SRAM ..ottt bbb bRt be e bbb n et 43
4.6.2 FIaSh EPROMottt bbb bbbttt sttt ettt et 43
4.6.3 SEIIAI FIASN ..ottt b e bbb 43
4.6.4 DYynamic C BIOS SOUICE FlES.....cuiiieieiiecicese sttt 43
4.7 Power Supply Options and REQUITEIMENTS.ccvveivireeieieisesesesiesie e seesieae e ne e se e sresresresrenees 44
Chapter 5. Software Reference 45
5.1 More ADOUL DYNAIMIC C ..ottt ettt eb bbb bttt b s et e st et sbesbe st b 45
5.1.1 COMPIIE OPLIONS. ...ttt ettt b bt st b e et e et b e b sbe b sbe e 47
5.1.2 Using Dynamic C With INTEITUPLS.......ccceiiriiieriiecee e 47
5.1.3 USEI BIOCKiitiiiicie ittt st ettt st ettt e ebe et e be et s re e sae e b anes 47
5.2 DYNAMIC C FUNCIONS ...ttt sttt ettt b et e bt b s bt st e b s e e se e b et e e aesbesbenbeebens 48
5.2.1 DIGIAL 1O .viiiiiiiiiieiisese ettt ettt bRttt nr e 48
5.2.2 EXIEBINAL /O .ottt ettt et ettt st b ettt et e b e be e b be e ae b saes 48
5.2.3 SRAIM USE.....otiiiitiiiiti ittt bbbtk b bbb 48
5.2.4 Serial COMMUNICALION DIIVELSoviiiiiiiiiiirie ittt s a e e ebe e ebe e e 49
5.2.5 TCP/IP DIIVEIS ...ttt sttt bbbttt bt bbbttt st s 49
5.2.6 Serial FIASN DIIVETSc.civiiiieiiiieiieiiest ettt sb et 49
5.2.7 A/D Converter Ramp-Generator DIIVELScccciiiiiiiiiiiniesienie e see e 50
5.2.8 Prototyping Board FUNCLIONS.............ccceviiiiiiii s 65
5.2.8.1 B0ard INItIAHZALIONo.viviicieeecee e 65
5.2.8.2 DIGIAl IO ...ttt n s 66
5.2.8.3 LEDS ..ottt bbbt bbb 68
5.2.8.4 DJA CONVEITET ...ttt ettt ettt b ettt es et en et sttt et bt et 69
5.2.8.5 Serial COMMUNICALIONovviiiiiiiiiitiiciis st 72
5.2.8.6 RADDIINEL POITouiiiiiiitiieetecieere e bbbttt 73
5.2.8.7 THHAC CONIOL......cviiiitirieiiieeii ettt b b ane s 76

5.3 UpGrading DYNAMIC Cccviviiiieiieeeseseste s see e e e e e e eseetesnestestestesteneesteseessessesessessensessessessessensens 89
5.3.1 AdU-ON MOUUIES ...ttt bbb bbbttt 89
Chapter 6. Using the TCP/IP Features 91
6.1 TCP/IP CONNECLIONSocviiiitiiiicici et 91
6.2 TCP/IP Primer 0N IP AdAreSses ... s 93
6.2.1 IP Addresses EXPIAINed...........ccoceviiiiiiiiiiiiiii s 95
6.2.2 HOW IP AdAreSSES are USEUcouiiiiiieiieieeieiie ettt sttt bbb s 96
6.2.3 Dynamically Assigned INternet AQArESSES.eiiueiirrireeire ettt 97
6.3 Placing Your Device 0N the NEIWOIKcccccueiveieeiiece e se e e se e e snens 98
6.4 RUNNING TCP/IP SaMPIE PrOgramMS.......cveiveeieiiieetesiesiestesiesereeesreesessesestessessessessesaessessnsessessessessessens 99
6.4.1 How to Set IP Addresses in the Sample Programs..........cccovveerinrinreneriensiesnesese e seese e 100
6.4.2 How to Set Up Your Computer for DireCt CONNECEcccooiiirereiie et 101
6.5 Run the PINGME.C SamPIe PrOgram........c.ooiiiiiiiiieiieeieieiee ettt 102
6.6 Running Additional SAMPIE PrOgramsS...........coiiiririiie it s 102
6.7 WHere DO | GO FIOM HEIE? ...ttt bbb et 103
Appendix A. PowerCore Specifications 105
A.1 Electrical and Mechanical CharaCteriStiCsccouviriireirinirieisrisre e s 106
A R o T Vo S T IR o =T PR SS 111
A2 BUS LOAAING ...ttt bbb bbb e bttt b et ebe et b e nn et 112
A.3 Rabbit 3000 DC CharaCteriStICScureriruertirieriesiesiesie sttt sttt bbb eene et e e e nes 115
A.4 1/0 Buffer Sourcing and SiNKING LIMit..........ooiiiiiiise e 116
A5 JUMPET CONTIGUIATIONS ...ttt bbb ettt b e bbb e b nes 117
AB CONTOIMAI COBLING ...ttt bbbt bbb b e bbbt et besaenbenen 119

PowerCore FLEX

Appendix B. Prototyping Board 121

2300 1011 (o [0 To4 T o OO OSSPSR 122
B.1.1 Prototyping BOArd FEALUIES.........coviiieiirriierisiesesteseste e etereeeereesaste s re st sresae e e seenesnenes 123

B.2 Mechanical DImensions and LAYOUL..........c.ccviiiiriererinesesesieieseessereseste e ste e e sseseeseessesaesesnsssens 124
TG 01T U] o] o] Y/ SRS 126
B.4 Using the Prototyping BOAIU............coueiiieiiiiisiesie e sesieseseeseeeeseesse e e ssessestessessesseseessensessnsessessens 127
B.4.1 Adding Other COMPONENTS.ccviiiiereriiieriereeieseeee e ereetesresre e sresresae e seesteneesaeseenseseenesneerenees 128
B.4.2 DiIgital I/O...c.oiiiiiiiicieices ettt ettt bt 129
[N T 1o 3 - I 4] o1 129

L I o) - O 101 o] SRS 130
2 I T o @ 1 101U SO S 131
B.4.5 ANAIOG IO ... bbb e bbbttt ne e 133
B.4.5.1 A/D CONVEIEE INPUL....cuiieieieiierieieie ettt e sttt se e ene e snesresnennens 133

B.4.5.2 D/A CONVEIEE CIICUITS.....cviitiiiiire ittt steeie st e sreenresreesbesbseresaesresbeesbesteesbesrsesbeenbenns 134

B.4.6 Serial COMMUNICALIONcciiiviiieiteiee ittt ettt ettt st er e et s beeteesbeerbesbeesbeebeebesbsensesreannes 135
BL4.B.1 RS-232...eiiieiiii ittt bbb be bbbt 135

B.4.6.2 RADDIINEL POMS... oot bbb e 136

B.4.7 Other Prototyping Board MOGUIESccceiiiiieiericie et 136

B.5 Use of Rabbit 3000 Parallel POSccceoiiiiciiieccee ettt 137
Appendix C. LCD/Keypad Module 139
O ST 1= ol o7 1) TS 139
C.2 Contrast Adjustments fOr All BOAIAS..........ccceierierieiiieeieiese et srees 141
(ORI)Y/ oL Lo = 11 1T S 142
C.4 HEABT PINOULSviiuviite ettt sttt sttt ettt st et st sbe e e e sbeebaesbe e st e sbeesbesbe et e ebsentesaeeneeabeesbesbeesre e 143
C.4.1 1/O AQAress ASSIGNMENESeiueivirieieieieeestestestesteseeseesseseeeeseesessesseseessesessessessesesssesessessessenses 143

C.5 Install Connectors on Prototyping BOAId..........cccceveieiieriinieieieie s sie st se e nnas 144
C.6 Mounting LCD/Keypad Module on the Prototyping Boardccccevvevvererenene e 145
C.7 Bezel-Mount INSTAHTALION..........ciiiiiiiirce ettt 146
C.7.1 Connect the LCD/Keypad Module to Your Prototyping Board............ccoceveererenicnieivenesnennn 148

C.8 SAMPIE PIOGIAIMS ...ttt ettt re ettt bt b bt bt eb e s b e n b e sb et sbe b enbeb e e e bt ereneas 149
C.9 LCD/Keypad Module FUNCEION CallScccoiiiiiiiiii e 150
C.9.1 LCD/Keypad Module INItialization............ccocoiiiiiiiiiie e 150
.92 LEDS...... itttk e bbb b e b bbb bbb bbb 151
(O e T IO I 2 1Yo - 2SS 152
(O I) /o Lo SO OSTTUTSOU TS UTTRUPRT 188
Appendix D. Power Supply 195
D.1 POWEE SUPPIIES. ...ttt ettt ettt b e b b e b eae e e b e sttt e b e sbesb et e sae s enbenea 195
D.1.1 POWEr-SUPPIY OPLIONS ...ttt ettt bbb e et se et sbe b e 198

D.2 Battery-BackUup CIFCUILS.cui ittt sttt b bbb b e e eseesen b e e b 208
D.2.1 Replacing the BaCKUP Battery..........ccocoiiiieiiriniiieierieeee ettt s 208

D.3 RESEE GRNEIALONeititiieeiteste ettt b et b et b e b bt et sb et e s e e e eb e nn st e s b e eneane s 209
Appendix E. RabbitNet 211
E.1 General RabDItNEt DESCHIPLIONoviiiieiieiiieies sttt sne s 211
E.1.1 RabbitNEt CONMNEBCLIONS......ciiiiiieie et sb e s et e et esaeeaeesreeneas 211
E.1.2 RabbitNet PEripheral Cards ... 212

E.2 Physical IMPIEMENtAtioNccviiiiiiiiisic ettt ennene e nenneas 213
S R o £ = o To = (o U1 11 o S 213

E.3 FUNCHION CallS......coieiiiicec ettt st e et et e e st e eae et e et e sreeneesaaennas 214
EL3.L SHALUS BY O ...ttt ettt b bbb bbb bbb e bt st e bt b bt ean e nae e 226
Index 227
Schematics 231

User’s Manual

PowerCore FLEX

1. INTRODUCTION

The PowerCore is an easy-to-use core module with a networkable
microprocessor system that has an optional onboard config-
urable power supply. In addition to two standard preconfigured
models, PowerCore FLEX™ modules can be built on a quick-turn
basis based on customer-selected options. Customers can select
memory, Ethernet, power supply, and other features to suit their
individual needs without having to pay for unneeded features.

The PowerCore is designed to
plug into a motherboard
designed by the customer. A
50-pin connector brings the
various 1/Os, the 1/0 bus, and
the power supplies to the cus-
tomer’s motherboard. Three
snap-in plastic standoffs pro-
vide sturdy mechanical support.

The PowerCore is supported by
powerful Dynamic C develop-
ment platform that includes
extensive libraries to support
networking and the Internet.

PowerCore modules are programmed over a standard PC serial port through a program-
ming cable supplied with the Tool Kit, and can also be programmed through a USB port
with an RS-232/USB converter, or directly over an Ethernet link via a RabbitLink.

User’s Manual 1

1.1 PowerCore Features

1.1.1 Basic Features

Small size: 2.35" x 4.00" x 1.08"
(60 mm x 102 mm x 28 mm)

39 configurable 5 V tolerant general-purpose 1/0 lines
Three additional digital inputs, two additional digital outputs

Five 3.3 V CMOS-compatible serial ports with a maximum asynchronous baud rate up
to 6.45 Mbps. Three ports are configurable as a clocked serial port (SPI), two ports are
configurable as HDLC serial ports, and one ports is configurable as an SDLC serial port.
One of the serial ports is normally dedicated as a programming port.

512K flash memory for storing instructions
256K static RAM for data

Rabbit 3000® microprocessor running at 25.8 MHz. The Rabbit 3000 includes many
powerful 1/0O devices such as serial ports, and precision pulse generation and
measurement.

50-pin connector brings 1/0 and 1/0 bus to customer’s motherboard

Battery backable time/date clock

1.1.2 Options

Ethernet including RJ-45 connector (10/100 compatible)
Clock speed 51.6 MHz

Analog precision ramp generator that can be used in conjunction with low-cost
comparators to create rugged A/D converter inputs

Larger 512K SRAM memory for data

Second 512K flash memory

1 Mbyte serial flash memory that implements file storage

Coin cell battery to back up the SRAM and the onboard time/date clock
Onboard +5 V DC switching power supply rated at 1 A or 2 A

Triac support with AC zero-crossover detection

Wi-Fi Add-On Kit to enable Wi-Fi interface

PowerCore FLEX

o External power-supply options for PowerCore module and motherboard

» user-supplied regulated +5 V DC is supplied to the PowerCore module from the motherboard—the
+5 V is regulated down to +3.45 V for driving the nominal 3.3 V components on the PowerCore;
the motherboard can draw from the 3.45 V supply

» user-supplied unregulated DC (8—40 V) is supplied to the PowerCore module from the mother-
board or via the locking power connector at J3—requires onboard +5 V switching regulator @ 1 A
or 2 A maximum output; the +5 V is regulated down to +3.45 V for driving the nominal 3.3 V com-
ponents on the PowerCore; the motherboard can draw from both the 3.45 V and the +5 V regulated
supplies

» AC from two-lead transformer is supplied to the PowerCore module that has half-wave rectifier
and filtering capacitor, includes zero-crossover detection to synchronize software drivers for triac
support, two-lead transformer with untapped secondary winding may be used—the resulting DC
then passes to the onboard +5 V switching regulator @ 1 A or 2 A maximum output, and is further
regulated to +3.45 V; additional filtering capacitors may be needed on motherboard if high unregu-
lated DC current will be drawn

» AC from three-lead center-tapped transformer is supplied to the PowerCore module that has full-
wave rectifier and filtering capacitor, includes zero-crossover detection to synchronize software
drivers for triac support, transformer with tapped secondary winding required—the resulting DC
then passes to the onboard +5 V switching regulator @ 1 A or 2 A maximum output, and is further
regulated to +3.45 V; additional filtering capacitors may be needed on motherboard if high unregu-
lated DC current will be drawn

» AC from two-lead transformer is supplied to the PowerCore module that has full-wave bridge recti-
fier and filtering capacitor, no zero-crossover detection or triac support, transformer with untapped
secondary winding may be used—the resulting DC then passes to the onboard +5 V switching reg-
ulator @ 1 A or 2 A maximum output, and is further regulated to +3.45 V; additional filtering
capacitors may be needed on motherboard if high unregulated DC current will be drawn

User’s Manual 3

1.2 Standard Configurations and PowerCore FLEX Options

There are two preconfigured PowerCore models. Table 1 below summarizes their main

features.

Table 1. Standard PowerCore Production Models

Feature

PowerCore 3800

PowerCore 3810

Microprocessor

Rabbit 3000 running at 51.6 MHz

Rabbit 3000 running at 25.8 MHz

(mass data storage)

Ethernet 10/100 compatible 10Base-T interface
512K program (fast SRAM)
SRAM + 512K data 256K data
Flash Memory 519K
(program)
Flash Memory 1 Mbyte

(serial flash)

Current Limits for
Onboard +5V DC
\oltage Regulators

2A

If the standard models do not serve your needs, flexible PowerCore FLEX options can be
configured to meet your needs.

Appendix A provides detailed specifications for the PowerCore modules.

PowerCore FLEX

1.3 PowerCore FLEX Advantages

Fast time-to-market using a fully engineered, “ready-to-run/ready-to-program” micro-
processor core.

Competitive pricing when compared with the alternative of purchasing and assembling
individual components.

Easy C-language program development and real-time debugging with integrated
Dynamic C® environment.

Onboard regulated power supply, which can be used to power external circuits.

Program download utility (Rabbit Field Utility) and cloning board options for rapid
production loading of programs.

Generous memory size allows large programs with tens of thousands of lines of code,
and substantial data storage.

Integrated Ethernet port for network connectivity, with royalty-free TCP/IP software.

Ideal for network-enabling security and access systems, home automation, HVAC
systems, and industrial controls.

Can use either AC or DC power sources.

Onboard analog circuits (AC zero-crossover detection allows triac control, ramp gener-
ator allows 10-bit A/D conversion with temperature sensor to allow for temperature
compensation).

User’s Manual 5

1.4 Development and Evaluation Tools

The PowerCore Tool Kit contains the hardware you need to use your PowerCore module.

PowerCore Prototyping Board.
48 V AC, 1 A center-tapped transformer.

Programming cable with 10-pin header and DE9 connections, and integrated level-
matching circuitry.

Mounting standoffs.

Dynamic C CD-ROM, with complete product documentation on disk.
Getting Started instructions.

Accessory parts for use on the Prototyping Board.

Rabbit 3000 Processor Easy Reference poster.

Registration card.

Programming) ()

W (
DIAG Cable —d- it L

XN

Accessory Parts for
Prototyping Board

Center-Tapped
= Transformer

PowerCore FLEX™

Getting Started
Instructions

Figure 1. PowerCore Tool Kit

PowerCore FLEX

1.4.1 Software

PowerCore FLEX modules are programmed using version 9.20 or later of Rabbit Semi-
conductor’s Dynamic C. A compatible version is included on the Tool Kit CD-ROM.

Rabbit Semiconductor also offers for purchase add-on Dynamic C modules including the
popular uC/OS-11 real-time operating system, as well as point-to-point protocol (PPP),
Advanced Encryption Standard (AES), FAT file system, Secure Sockets Layer (SSL),
RabbitWeb, and other select libraries. In addition to the Web-based technical support
included at no extra charge, a one-year telephone-based technical support module is also
available for purchase. Visit our Web site at www.rabbit.com for further information and
complete documentation for each module, or contact your Rabbit Semiconductor sales
representative or authorized distributor.

1.4.2 Wi-Fi Add-On Kit

Rabbit Semiconductor also offers a Wi-Fi Add-On Kit for PowerCore FLEX modules
consisting of a PowerCore Interposer Board, a Wi-Fi CompactFlash card with a Compact-
Flash Wi-Fi Board, a ribbon interconnecting cable, and the software drivers and sample
programs to help you enable your PowerCore module with Wi-Fi capabilities. The Power-
Core Interposer Board is placed between the PowerCore module and the PowerCore
Prototyping Board so that the CompactFlash Wi-Fi Board, which holds the Wi-Fi Com-
pactFlash card, can be connected to the PowerCore-based system via the ribbon cable pro-
vided.

Visit our Web site at www.rabbit.com or contact your Rabbit Semiconductor sales repre-
sentative or authorized distributor for further information.

1.4.3 Online Documentation

The online documentation is installed along with Dynamic C, and an icon for the docu-
mentation menu is placed on the workstation’s desktop. Double-click this icon to reach the
menu. If the icon is missing, use your browser to find and load default.htm in the docs
folder, found in the Dynamic C installation folder.

The latest versions of all documents are always available for free, unregistered download
from our Web sites as well.

User’s Manual 7

http://www.rabbit.com/products/dc/
http://www.rabbit.com/products/dc/

PowerCore FLEX

2. GETTING STARTED

This chapter explains how to set up and use a PowerCore module
with a PowerCore Prototyping Board.

NOTE: Itisassumed that you have a Tool Kit. If you purchased a PowerCore FLEX
module by itself, you will have to adapt the information in this chapter and elsewhere to
your test and development setup.

2.1 Install Dynamic C

To develop and debug programs for PowerCore FLEX modules (and for all other and
Rabbit Semiconductor hardware), you must install and use Dynamic C.

If you have not yet installed Dynamic C version 9.20 (or a later version), do so now by
inserting the Dynamic C CD from the Tool Kit in your PC’s CD-ROM drive. If autorun is
enabled, the CD installation will begin automatically.

If autorun is disabled or the installation otherwise does not start, use the Windows
Start | Run menu or Windows Disk Explorer to launch setup . exe from the root folder
of the CD-ROM.

The installation program will guide you through the installation process. Most steps of the
process are self-explanatory.

Dynamic C uses a COM (serial) port to communicate with the target development system.
The installation allows you to choose the COM port that will be used. The default selec-
tion is COM1. You may select any available port for Dynamic C’s use. If you are not cer-
tain which port is available, select COML1. This selection can be changed later within
Dynamic C.

NOTE: The installation utility does not check the selected COM port in any way. Speci-
fying a port in use by another device (mouse, modem, etc.) may lead to a message such
as "could not open serial port" when Dynamic C is started.

Once your installation is complete, you will have up to three new icons on your PC desk-
top. One icon is for Dynamic C, one opens the documentation menu, and the third is for
the Rabbit Field Utility, a tool used to download precompiled software to a target system.

If you have purchased any of the optional Dynamic C modules, install them after installing
Dynamic C. The modules may be installed in any order. You must install the modules in
the same directory where Dynamic C was installed.

User’s Manual 9

2.2 Hardware Connections

There are three steps to connecting the PowerCore Prototyping Board for use with
Dynamic C and the sample programs:

1. Attach the PowerCore module to the Prototyping Board.

2. Connect the programming cable between the PowerCore module and the workstation PC.
3. Connect the power supply to the PowerCore module.

2.2.1 Attach Module to Prototyping Board

Turn the PowerCore module so that the notched corner is on the top left as shown in
Figure 2 below. Snap in at least one standoff as shown below and then insert the module’s
J4 header into the PC1 socket on the Prototyping Board. The notched corner at the top left
corner of the PowerCore module should face the same direction as the corresponding
notch outline below it on the Prototyping Board

Align notched
corners

xxxxx

PowerCore
module

Insert standoff
in mounting holes

Figure 2. Install the PowerCore Module on the Prototyping Board

NOTE: Itisimportant that you line up the pins on header J4 of the PowerCore module
exactly with the corresponding pins of the PC1 socket on the Prototyping Board. The
header pins may become bent or damaged if the pin alignment is offset, and the module
will not work. Permanent electrical damage to the module may also result if a mis-
aligned module is powered up.

Press the standoff into its corresponding hole and press the module’s pins firmly into the
Prototyping Board socket.

10 PowerCore FLEX

2.2.2 Connect Programming Cable

The programming cable connects the PowerCore module to the PC running Dynamic C to
download programs and to monitor the PowerCore module during debugging.

Connect the 10-pin connector of the programming cable labeled PROG to header J2 on

the PowerCore module as shown in Figure 3. There is a small dot on the circuit board next
to pin 1 of header J2. Be sure to orient the marked (usually red) edge of the cable towards
pin 1 of the connector. (Do not use the DIAG connector, which is used for a nonprogram-

ming serial connection.)

Attach the DE9 connector end of the programming cable to a COM (serial) port on the PC.

NOTE: Be sure to use the programming cable (part number 101-0542) supplied with this

Tool Kit—the programming cable has blue shrink wrap around the RS-232 converter

section located in the middle of the cable. Programming cables from other Rabbit Semi-
conductor kits might not work with PowerCore modules.

8 shrink wrap

To
PC COM port

Programming Cable

[

j

O

O

Line up
polarized
tab

A\

High voltages
may be present

[eXeXeYoYe]
OO O

Transformer

AC

Connect transformer to
PowerCore module
before plugging in
transformer.

Figure 3. Connect Programming Cable and Power Supply

NOTE: Some PCs now come equipped only with a USB port. It may be possible to use

an RS-232/USB converter (Part No. 540-0070) with the programming cable supplied

with the PowerCore FLEX Development Kit. Note that not all RS-232/USB converters

work with Dynamic C.

User’s Manual

11

2.2.3 Connect Power

When all other connections have been made, you can connect power to the PowerCore
module. In most cases where a locking power connector is stuffed at J3, connect the lock-
ing plug from the wall transformer to the J3 locking connector on the PowerCore module,
taking care to line up the polarized tab on the locking plug with the locking connector as
shown in Figure 3.

Plug in the wall transformer. The DS3 and DS4 yellow and green LEDs on the Prototyping
Board located near the RESET button should light up. The PowerCore module and the
Prototyping Board are now ready to be used.

CAUTION: Itis important that power is connected in the order specified in these
instructions—connect the locking plug from the wall transformer to the J3 locking

A connector on the PowerCore module before you plug in the wall transformer. This is
important for your safety because of the high AC voltages present and to avoid possi-
ble damage to your PowerCore module.

CAUTION: The heat sinks on the PowerCore module can become very hot. Avoid
any contact with them.

If you selected one of the FLEX configuration options (Options 1 and 2 in Appendix D.1.1)
for regulated or unregulated DC power supplied from outside the PowerCore module, no
locking connector is stuffed at J3 on the PowerCore module. Instead, either regulated +5 V
DC is supplied to the PowerCore from your motherboard via pins 5 and 6 of header J4, or
unregulated DC power is supplied via pins 1 and 5 of header J4, depending on which
option you selected. The voltage range for unregulated DC power is established by your
selection of a voltage regulator in Option 2 as explained in Appendix D.1.1.

NOTE: This provision of external DC power is not possible when you are using the
PowerCore Prototyping Board, which has no provision to supply powerto the Power-
Core module. Any external DC power must come from a motherboard of your own
design for use with one of these FLEX options.

NOTE: The RESET button is provided on the Prototyping Board to allow a hardware
reset without disconnecting power.

12 PowerCore FLEX

2.3 Starting Dynamic C

Once the PowerCore module is connected as described in the preceding pages, start
Dynamic C by double-clicking on the Dynamic C icon or by double-clicking on
dcrabXXXX.exe in the Dynamic C root directory, where XXXX are version-specific
characters. Dynamic C uses the serial port on your PC that you specified during
installation.

If you are using a USB port to connect your computer to the PowerCore module, go to the
Options > Project Options dialog box and select “Use USB to Serial Converter” on the
Communications tab.

2.4 Run a Sample Program

Use the File menu to open the sample program PONG. ¢, which is in the Dynamic C
saMpLES folder. Press function key F9 to compile and run the program. The STDIO win-
dow will open on your PC and will display a small square bouncing around in a box.

If Dynamic C appears to compile the BIOS successfully, but you then receive a communi-
cation error message when you compile and load a sample program, it is possible that your
PC cannot handle the higher program-loading baud rate. Try changing the maximum
download rate to a slower baud rate as follows.

e Locate the Serial Options dialog in the Dynamic C Options > Project Options >
Communications menu. Select a slower Max download baud rate.

If a program compiles and loads, but then loses target communication before you can
begin debugging, it is possible that your PC cannot handle the default debugging baud
rate. Try lowering the debugging baud rate as follows.

e Locate the Serial Options dialog in the Dynamic C Options > Project Options >
Communications menu. Choose a lower debug baud rate.

If Dynamic C cannot find the target system (error message "No Rabbit Processor
Detected."):

e Check that the PowerCore module is powered correctly — the red and yellow LEDs on
the Prototyping Board should be lit when the PowerCore module is mounted on the Prototyp-
ing Board and the wall transformer is plugged in.

e Check to make sure you are using the PROG connector, not the DIAG connector, on the
programming cable.

e Check both ends of the programming cable to ensure that they are firmly plugged into
the PC and the programming port on the PowerCore module.

e Ensure that the PowerCore module is firmly and correctly installed in its socket on the
Prototyping Board.

e Select a different COM port within Dynamic C. From the Options menu, select
Project Options, then select Communications. Select another COM port from the list,
then click OK. Press <Ctrl-Y> to force Dynamic C to recompile the BIOS. If Dynamic C
still reports it is unable to locate the target system, repeat the above steps until you locate
the active COM port.

User’s Manual 13

2.5 Where Do | Go From Here?

If the sample program ran fine, you are now ready to go on to other sample programs and to
develop your own applications. The source code for the sample programs is provided to allow
you to modify them for your own use. This manual also provides complete hardware refer-
ence information and describes the software function calls for the PowerCore FLEX mod-
ules, the Prototyping Board, and the optional LCD/keypad module.

For advanced development topics, refer to the Dynamic C User’s Manual and the
Dynamic C TCP/IP User’s Manual, also in the online documentation set.

2.5.1 Standalone Operation of the PowerCore Module

Once the PowerCore module has been programmed successfully, remove the program-
ming cable from the programming connector and reset the PowerCore module. The Pow-
erCore module may be reset by removing, then reapplying power, or by pressing the
RESET button on the Prototyping Board if it is connected to the Prototyping Board. The
PowerCore module may now be removed from the Prototyping Board for end-use
installation.

CAUTION: Disconnect power to the PowerCore module or other boards when
removing or installing your PowerCore module to protect against inadvertent

A shorts across the pins or damage to the PowerCore module if the pins are not
plugged in correctly. Do not reapply power until you have verified that the Power-
Core module is plugged in correctly.

2.5.2 Technical Support

NOTE: If you purchased your PowerCore through a distributor or through a Rabbit Semi-
conductor partner, contact the distributor or partner first for technical support.

If there are any problems at this point:
e Use the Dynamic C Help menu to get further assistance with Dynamic C.

e Check the Rabbit Semiconductor Technical Bulletin Board at
www.rabbit.com/support/bb/.

e Use the Technical Support e-mail form at www.rabbit.com/support/.

14 PowerCore FLEX

http://www.rabbit.com/support/bb/index.html
http://www.rabbit.com/support/questionSubmit.shtml

3. RUNNING SAMPLE PROGRAMS

To develop and debug programs for the PowerCore (and for all
other Rabbit Semiconductor hardware), you must install and use
Dynamic C.

3.1 Introduction

To help familiarize you with the PowerCore FLEX modules, Dynamic C includes several
sample programs. Loading, executing and studying these programs will give you a solid
hands-on overview of the PowerCore’s capabilities, as well as a quick start using Dynamic C
as an application development tool.

NOTE: The sample programs assume that you have at least an elementary grasp of the C
programming language. If you do not, see the introductory pages of the Dynamic C
User’s Manual for a suggested reading list.

In order to run the sample programs discussed in this chapter and elsewhere in this manual,

1. Your PowerCore module must be plugged in to the Prototyping Board as described in
Chapter 2, “Getting Started.”

2. Dynamic C must be installed and running on your PC.

3. The programming cable must connect the programming header on the PowerCore
module to your PC.

4. Power must be applied to the PowerCore module.

Refer to Chapter 2, “Getting Started,” if you need further information on these steps.
To run a sample program, open it with the File menu, and then compile and run the sample
program by selecting Run in the Run menu (or press F9). The PowerCore module must be

in Program Mode (see Figure 8) and must be connected to a PC using the programming
cable.

More complete information on Dynamic C is provided in the Dynamic C User’s Manual.

User’s Manual 15

3.2 Sample Programs

Of the many sample programs included with Dynamic C, several are specific to the
PowerCore FLEX modules. Sample programs illustrating the general operation of the
PowerCore FLEX modules, serial communication, the serial flash, A/D conversion, D/A
conversion, and hardware accessories such as a temperature sensor and triacs are provided
in the sSAMPLES\ PowerCoreFLEX folder. Each sample program has comments that
describe the purpose and function of the program. Follow the instructions at the beginning
of the sample program. Note that the PowerCore module must be installed on the Proto-
typing Board when using the sample programs described in this chapter. TCP/IP sample
programs are described in Chapter 6, “Using the TCP/IP Features,” and sample programs
for the optional LCD/keypad module are described in Appendix C.

3.2.1 1/0

The following sample programs can be found in the SAMPLES\PowerCoreFLEX\IO
folder.

e DIGIN.c—Demonstrates how to read digital inputs using the digIn function call.
Press switches S2 and S3 on the Prototyping Board to change the logic levels for INO
and IN1 as displayed in the Dynamic C STDIO window.

e DIGOUT.c—Demonstrates the control of sinking and sourcing digital outputs. Connect
100 Q load resistors from the +5 V supply at pin 6 on header J4 or from the ground at
pin 2 on header J2 as indicated in the table below.

Digital Output Load Resistor +K
+5V to OUTO
Sk OUT0 | (15Vi0a2ping) K 1045V
ning OUT1 +5V to OUT1 (J2 pin1to+5V)
(+5 V to J2 pin 4)
GND to OUT2
. ouT2 (GND to J2 pin 5) +Kto+5V
Sourcing .
OUT3 GND to OUT3 (J2 pin1to +5V)
(GND to J2 pin 6)

16 PowerCore FLEX

These connections are illustrated below.

g9 0 FFFE

5555 Zp—m.om

2|
RCM3800 SERIES
POWERCORE Rzl
PROTOTYPING —
BOARD i

Jusnj

58 8380 LCD1:JA
: & 368685 3z383;¢

3 & 5 5 3 % 3 8
000000000000
0000000000008

8383383 O 5338338

After you compile and run this program, select an output channel and logic level via the
Dynamic C STDIO window. You can see the logic level with a voltmeter connected to

the output channel you selected.

e LED.c—Demonstrates the use of the digital inputs by turning LEDs DS5 and DS6 on
the Prototyping Board on and off.

17

User’s Manual

3.2.2 A/D Converter

The following sample programs can be found in the SAMPLES\ PowerCoreFLEX\ADC
folder.

ADC_CALIB_ EXTERNAL.c—Demonstrates how to calibrate an external A/D channel
using two known voltages to generate two coefficients, gain and offset, which will be

written to the simulated EEPROM in the flash memory. The program will then display
the voltage that has been calibrated.

In order to run this sample program, you will need a separate power supply. Connect
the positive lead from the power supply to the A/D channel input located on pin 7 of
header J3 on the Prototyping Board. Connect the negative lead from the power supply
to the GND located on pin 8 of J3 on the Prototyping Board.

ADC CALIB RAMP.c—Demonstrates how to calibrate the A/D ramp-generator circuit.
The A/D ramp-generator circuit is calibrated using the 2.5 V voltage reference and the
end-of-ramp voltage point located on the PowerCore module. The calibration constants
generated by this sample program will be written to the simulated EEPROM in the
flash memory, and can then be used to calculate the voltage for the following A/D
channels.

Channel 0—2.5 V reference voltage
Channel 1—end-of-ramp voltage
Channel 2—thermistor

The program will then display the voltage of these A/D channels.

In order to run this sample program, you will need a voltmeter to measure the A/D 2.5V
voltage reference at TP10 and the end-of-ramp voltage at TP9; both test points are
located between header J4 and the edge on the bottom side of the PowerCore module.

NOTE: The above sample programs will overwrite any existing calibration constants.

18

PowerCore FLEX

e ADC MUX EXTERNALI1.c—Demonstrates how to enable the A/D interrupt MUX rou-
tine for designs with multiple external A/D channels. This sample program will also
read and display the voltage of the external A/D channel that is located on pin 7 of
header J3 on the PowerCore Prototyping Board.

Since there is only one A/D converter channel on the Prototyping Board, the MUX
control is simulated by using LED DS5 on the Prototyping Board, which is controlled
by PD5.

LED = OFF = A/D channel 0
LED = ON = A/D channel 1.

The following steps explain how to implement round-robin MUX control.

1. Define the function prototype.

void adc_mux(void) ;

2. Define ADC_MUX CNTRL as follows to call the ade_mux routine.

#define ADC_MUX CNTRL call adc_mux

3. Define the number of A/D channels. Change the default from 1 to the number of A/D channels in
your design.

#define MAX ADCHANNELS <Number Channels>

4. Create the ade_mux assembly routine as follows.

#asm root nodebug
adc_mux::
// Insert Mux control code

ret
#endasm

This routine will be called automatically by the low-level A/D converter driver.

5. Add /O initialization code at the beginning of your application program for the port pins used for
MUX control.

In order to run this sample program, you will need a separate power supply. Connect
the positive lead from the power supply to the A/D channel input located on pin 7 of
header J3 on the Prototyping Board. Connect the negative lead from the power supply
to the GND located on pin 8 of J3 on the Prototyping Board.

User’s Manual 19

ADC_MUX EXTERNAL2.c—Demonstrates how to implement MUX control to read
external A/D channels randomly in your application program. This sample program
will also read and display the voltage of the external A/D channel that is located on pin
7 of header J3 on the PowerCore Prototyping Board.

Since there is only one A/D converter channel on the Prototyping Board, the MUX con-
trol is simulated by using LED DS5 on the Prototyping Board, which is controlled by
PD5.

LED = OFF = A/D channel 0
LED = ON = A/D channel 1.

The following steps explain how to implement the MUX routine for random A/D channel
selection.

1. Define the number of A/D channels. Change the default from 1 to the number of A/D channels in
your design.

#define MAX ADCHANNELS <Number Channels>

2. Provide an application MUX function that does the following:
 A/D converter channel selection via your hardware MUX circuit.
* Change the _adec_mux_channel index to the channel selected.
« Add delay for the channel switching settling time.
* Setthe ade_conversion_ done flag to FALSE.

3. Add /O initialization code at the beginning of your application program for the port pins used for
MUX control.

4. Then:
« Call your routine with the A/D converter channel selected.
+ Wait in a nonblocking wait routine for the ade _conversion done flag to become TRUE.
* Read the A/D converter.

« Repeat the sequence.

In order to run this sample program, you will need a separate power supply. Connect
the positive lead from the power supply to the A/D channel input located on pin 7 of
header J3 on the Prototyping Board. Connect the negative lead from the power supply
to the GND located on pin 8 of J3 on the Prototyping Board.

ADC_RD EXTERNAL.c—Demonstrates how to read and display the voltage of the
external A/D converter located on the Prototyping Board. The voltage is calculated
from coefficients read from the simulated EEPROM in flash memory. The external A/D
channel is located on pin 7 of header J3 on the PowerCore Prototyping Board.

In order to run this sample program, you will need a separate power supply. Connect
the positive lead from the power supply to the A/D channel input located on pin 7 of
header J3 on the Prototyping Board. Connect the negative lead from the power supply
to the GND located on pin 8 of J3 on the Prototyping Board.

20

PowerCore FLEX

e ADC RD RAMP.c—Demonstrates how to read and display the voltage of the following

PowerCore ramp-generator A/D channels.

Channel 0—2.5 V reference voltage
Channel 1—end-of-ramp voltage
Channel 2—thermistor

The voltage is calculated using coefficients read from the simulated EEPROM in flash

memory that were written during the calibration process.

The following sample programs can be found in the SAMPLES\ PowerCoreFLEX\
TEMPERATURE folder.

e THERMISTOR.c—Demonstrates how to read the thermistor sensor on the PowerCore

module. Once you are running the sample program, you will be able to use the

Dynamic C STDIO window to observe the temperature change across the thermistor as
you apply hot or cold air to the thermistor. Note that the thermistor is on the PowerCore

circuit board, and so it will actually be measuring the temperature of the circuit board

and the air immediately above it. This temperature will likely be higher than the ambi-

ent temperature a short distance from the board.

Thermistor

CAUTION: HOT!

-og*

VBAT

e THERMOFFSET.c—Demonstrates how to add an offset to set the thermistor sensor on
the PowerCore module to an external reference temperature.

User’s Manual

21

3.2.3 D/A Converter

The following sample programs can be found in the SAMPLES\ PowerCoreFLEX\DAC
folder.

DAC_CAL.c—Demonstrates how to calibrate a D/A converter channel using two
known voltages to generate the two coefficients, gain and offset, which will be written
to the simulated EEPROM in flash memory. This sample program must be compiled to
flash memory.

In order to run this sample program, you will need a voltmeter that is connected to the
D/A converter output channels and ground located at header position J3 on the Proto-
typing Board.

NOTE: This sample program will overwrite any existing calibration constants.

DAC_VOLT.c—Outputs a voltage that can be read with a voltmeter. The output voltage
is computed using the calibration constants that are read from the simulated EEPROM
in flash memory. This sample program must be compiled to flash memory.

In order to run this sample program, you will need a voltmeter that is connected to the
selected D/A converter output channel and ground located at header position J3 on the
Prototyping Board.

3.2.4 Use of Serial Flash

The following sample programs can be found in the SAMPLES\PowerCoreFLEX\
SERIAL FLASH folder.

SFLASH PATTERN INSPECT.c—When the sample program starts running, it
attempts to initialize a serial flash chip on the PowerCore module. Once a serial flash
chip is found, the sample program writes a pattern to the first 100 pages. The Dynamic C
STDIO window will then display information about the page size. The user can then
either print out the contents of a specified page or clear (set to zero) all the bytes in a
specified page.

SFLASH TEST.c—This sample program tests a serial flash chip by performing a write
and a read. The results of the test are displayed in the Dynamic C STDIO window.

22

PowerCore FLEX

3.2.5 Serial Communication

The following sample programs can be found in the SAMPLES\PowerCoreFLEX\RS232
folder.

e PARITY.c— TIhis program demonstrates the use of parity modes by repeatedly sending
byte values 0-127 from Serial Port E to Serial Port F. The program will switch between
generating parity or not on Serial Port E. Serial Port F will always be checking parity,
so parity errors should occur during every other sequence.

Before running this sample program, jumper TXE to RXF located on pins

3 and 4 on header J1 of the Prototyping Board. TE [R
RxE|o o|TxF

NOTE: For the sequence that does get parity errors, the errors won't occur | gnolo o

for each byte received. This is because certain byte patterns and the stop J1

bit will appear to generate the correct parity for the UART.

e SIMPLE3WIRE.c— This program demonstrates basic RS-232 serial
communication whose loopback is displayed in the Dynamic C STDIO TxERXp

window. Rk B
GND|o o

Before running this sample program, jumper TXE to RXF located on pins J1
3 and 4 on header J1 of the Prototyping Board. Then jumper RXE to TXF
located on pins 5 and 6 on header J1 of the Prototyping Board.

e SIMPLESWIRE.c— This program demonstrates 5-wire RS-232 serial communication
whose loopback is displayed in the Dynamic C STDIO window.

Before running this sample program, jumper TXE to RXE located on

pins 3 and 5 on header J1 of the Prototyping Board. Then jumper RXFt0 | «cpr i

TXF located on pins 4 and 6 on header J1 of the Prototyping Board. el
GND|o o

Once you compile and run this sample program, TXF and RXF will J1

become the RTS and CTS flow control. To test the flow control, remove
the jumper on J1 pins 4 and 6, which will cause the characters to stop printing in the
Dynamic C STDIO window, and will resume printing when you reinstall the jumper.

User’s Manual 23

3.2.6 Triacs

The following sample programs can be found in the SAMPLES\PowerCoreFLEX\TRIAC
folder.

3.2.6.1 Phase-Angle Triac Control

The sample programs demonstrate phase-angle triac control for the PowerCore module
and its Prototyping Board. Phase-angle triac control provides you with the ability to fire a
triac at a given phase angle of a 50/60 Hz sine wave to provide the desired control for your
hardware application.

Once one of the following sample programs is compiled and is running, select the desired
triac and the phase angle of where to fire the selected triac in the Dynamic C STDIO
window.

You may use an oscilloscope or some other load circuit such as the incandescent lamps
provided in the Tool Kit to monitor the output. If you are using an oscilloscope, monitor
the triac control pin to see the control pin going active at the phase angle from 0 to 180
that you selected. The control pins are located on header J4 of the Prototyping Board:

Pin 41—PF2_SCR-0

Pin 40—PF3_SCR-1
If you are not using an oscilloscope, solder in the incandescent lamps provided in the Tool
Kitat DS1 and DS2 on the Prototyping Board before running any of these sample programs.
Select option 7 (ramping triacs) from the Dynamic C STDIO window to monitor the lamps
visually.

DS1—PF2_SCR-0
DS2—PF3_SCR-1

You should see lamps go from being fully ON, then dimming down to fully OFF.
e TRIAC PHASE.c—This program demonstrates basic phase-angle triac control.

e TRIAC PHASE ADC.c—This program demonstrates phase-angle triac control and
reading the A/D ramp circuit when you use the PowerCore module and its Prototyping
Board. The Dynamic C STDIO window will show the A/D ramp output voltages for the
2.5 V reference voltage, the end-of-ramp-voltage, and the thermistor.

e TRIAC PHASE FLASH.c—This program demonstrates phase-angle triac control by
writing to the flash memory (but not the serial flash memory).

24 PowerCore FLEX

3.2.6.2 Time-Proportional Triac Control

The sample programs demonstrate time-proportional triac control for the PowerCore mod-
ule and its Prototyping Board. Time-proportional triac control provides you with the abil-
ity to control a triac over a fixed number of 50/60 Hz cycles. By setting the triac ON/OFF
ratio you will be able to achieve the desired control for your hardware application.

Once one of the following sample programs is compiled and is running, set the ON/OFF
ratio of and select the triac as prompted in the Dynamic C STDIO window.

You may use an oscilloscope or some other load circuit such as the incandescent lamps
provided in the Tool Kit to monitor the output. If you are using an oscilloscope, monitor
the triac control pin to see the triacs cycle according to the ON/OFF ratio you selected.
The control pins are located on header J4 of the Prototyping Board:

Pin 41—PF2_SCR-0

Pin 40—PF3_SCR-1
If you are not using an oscilloscope, solder in the incandescent lamps provided in the Tool
Kitat DS1 and DS2 on the Prototyping Board before running any of these sample programs.
Select option 1 (ramping triacs) from the Dynamic C STDIO window to monitor the lamps
visually.

DS1—PF2_SCR-0
DS2—PF3_SCR-1

e TRIAC RATIO.c—This program demonstrates basic time-proportional triac control.

e TRIAC RATIO ADC.c—This program demonstrates time-proportional triac control
and reading the A/D ramp circuit when you use the PowerCore module and its Proto-
typing Board.

If you installed the incandescent lamps, you should see the lamps cycle ON/OFF
according to the ON/OFF ratio you selected. When you first activate the lamps, DS2
will blink twice as fast as DS1.

The Dynamic C STDIO window will show the A/D ramp output voltages for the 2.5 V
reference voltage, the end-of-ramp-voltage, and the thermistor.

e TRIAC RATIO FLASH.c—This program demonstrates time-proportional triac control
by writing to the flash memory (but not the serial flash memory).

When you run this sample program, you will be able to monitor the triacs cycling OFF
and ON, incrementing automatically over ratio ranges of 0/5 (= OFF) to 5/5 (= ON,
either DS1 or pin 41 of Prototyping Board header J4) and 0/10 (= OFF) to 10/10 (= ON,
either DS2 or pin 40 of Prototyping Board header J4).

User’s Manual 25

3.2.7 TCP/IP

TCP/IP sample programs and complete instructions on how to run them are provided in
Chapter 6, “Using the TCP/IP Features.”

3.2.8 LCD/Keypad Module

Appendix C, “LCD/Keypad Module,” provides sample programs for the optional LCD/
keypad module, and includes instructions on how to run them.

26 PowerCore FLEX

4. HARDWARE REFERENCE

Chapter 4 describes the PowerCore hardware components and princi-
pal hardware subsystems. Appendix A, “PowerCore Specifications,”
provides complete physical and electrical specifications.

Figure 4 shows the Rabbit-based subsystems designed into the PowerCore FLEX mod-
ules.

Unregulated +5V +V

AC/DC (3.45V)
32 kHz | |25.8 MHz
Ethernet || ™ cc osc
Customer-specific
applications
Fast SRAM
(program) PRABRB ® CMOS-level signals
Data V00 Zero- L
— g evel
SRAM Crossing converter
= Detection |
rogram
Flash Ramp RS-232, RS-485, IrDA
- Onboard Generator serial communication
IS=?ar;ahl Battery Backup drivers on motherboard

PowerCore Module

Figure 4. PowerCore Subsystems

User’s Manual 27

4.1 PowerCore Digital Inputs and Outputs

Figure 5 shows the PowerCore pinout for header J4.

Header J4 is a standard 2 x 25 IDC header with a nominal 0.1" pitch.

J4
AC1 DCIN1m o[JAC2
nc.|o o[] DC+
GND[_|o o[]+5V
nc.|o o[]PE7
PE6[| o o[1PE4
PE3[| o o[_]PEO
PG7[] o o[] PG6
PG5 e o[]P&4
PD5|o o[PD4
PG3[] o o[] PG2
+V[|o o[]PF7
PF6 | o o[1 PF5
PF4[|o o[] PB7
PB6 [o o[]PB5
PB4 o o[] PB3
PB2[| o o[] PA7
PA6 | o o[1PA5
PAMA[|o o[JPA3
PA2 o o[PA1
PAOC| o o[JPF3
PF2|o o[1PH
PFOL| o o[_1PCO
PC1[|o o[_1PC2
PC3[| o o[_1GND
/RES[| o o[] RAMP_OUT

n.c. = not connected

Note: These pinouts are as seen on
the Bottom Side of the module.

Figure 5. PowerCore Pinout

28

PowerCore FLEX

Figure 6 shows the use of the Rabbit 3000 microprocessor ports in the PowerCore module.

Serial
Flash

PEO,
PE3-PE4,
PE6-PE7

PFO-PF7

PC6
PB1, PC7, IRESET,
STATUS,

Port

SMODEO, SMODE1

4 Ethernet signaIsH

PAO-PAT PB2-PB7 PD4—PD5
Port D
Port A Port B (+Ethernet Port
+Ramp Generator)
pco,PC24mm portC - i T
PC1, PCamm| (SerialPorts C&D) | iy =T=] N 8
PG2-PG3 Port G 3000 Port F
PG6-PG7 (Serial Ports E & F)
Programming Real-Time Clock Port G

PG4-PG5

/RESET_IN
/RES

mitrst

(+Serial Ports
(Serial Port A) fatelitng +Ramp Generator)
11 Timers
Etl;el;l;let Slave Port Misc. I/O
© Clock Doubler
Backup Batte
RAM ey Flash

Serial Flash

Figure 6. Use of Rabbit 3000 Ports

The ports on the Rabbit 3000 microprocessor used in the PowerCore module are config-
urable, and so the factory defaults can be reconfigured. Table 2 lists the Rabbit 3000
factory defaults for the PowerCore module and the alternate configurations.

User’s Manual

29

Table 2. PowerCore Pinout Configurations

Pin Pin Name Default Use Alternate Use Notes
1 AC1_DCIN
2 AC2
3 not connected
4 DC+
5 GND
6 5V
7 not connected
8 PET Input/Output /ZCS IS/I(Zv?atrI;):r?[Z?hip Select
9 PE6 Input/Output 16 1/0 Strobe 6
10 PE4 Input/Output :iIT 0B :fersr:g?g;
11 PE3 Input/Output 13 1/0 Strobe 3
12 PEO Input/Output :ONT oA :il?ersrtl:gtbgﬁ
i 13 PG7* Input/Output RXE
=B Serial Port E
£ |14 PG6 Input/Output TXE
15 PG5* Input/Output RCLKE Serial Clock E input
16 PG4 Input/Output TCLKE Serial Clock E ouput
17 PD5 Input/Output ARXB | Alternate
18 PD4 Input/Output ATXB | Serial Port B
19 PG3 Input/Output RXF
Serial Port F
20 PG2 Input/Output TXF
21 +V 3.45V
AQD2A
22 PF7* Input/Output PV(\D/M 3
AQD2B
23 PF6 Input/Output PV(\?/MZ
24 PF5* Input/Output 'FA’\V(\D/II?/IllA
AQD1B
25 PF4 Input/Output PV?/M 0

* This pin may be used for input capture if not used for anything else.

30

PowerCore FLEX

Table 2. PowerCore Pinout Configurations (continued)

Pin Pin Name Default Use Alternate Use Notes
IA5 External Address 5
26 PB7 Input/Output .
APUESLERA ISLAVEATTN Slave Attention
27 PB6 Input/Output 1A4 External Address 4
IA3 External Address 3
28 PB5 Input/Output
npututpu SAl Slave port Address 1
A2 External Address 2
29 PB4 Input/Output
purutpu SAO0 Slave port Address 0
1Al External Address 1
30 PB3 Input/Output
nputiutpu /SRD Slave port read
IAQ External Address 0
31 PB2 Input/Output .
pubrutpu /SWR Slave port write
External data bus
IDO-ID7
32-39 | PA[7:0] Parallel 1/0 () External Data Bus
Slave port data bus
3 (SD0-SD7)
% 40 PF3* Input/Output QD2A
T
41 PF2 Input/Output QD2B
QD1A
42 PF1* Input/Output
nput/Outpu CLKC
QD1B
43 PFO Input/Output CLKD
44 PCO Output TXD
Serial Port D
45 PC1 Input RXD
46 PC2 Output TXC
Serial Port C
47 PC3 Input RXC
48 GND
49 IRES Reset input Reset output from Reset
Generator
50 RAMP_OUT | Ramp output Ramp generator output

* This pin may be used for input capture if not used for anything else.

User’s Manual

31

4.1.1 Internal and External Buses

The Rabbit 3000 address lines (A0-A19) and all the data lines (D0-D7) are routed inter-
nally to the onboard flash memory, SRAM, and Ethernet chips. These lines do not appear
on header J4. 1t would be undesirable (and unnecessary) to run these lines to the mother-
board as they must operate at high frequencies and any additional load capacitance would
be undesirable.

A completely separate 1/0 bus is implemented using eight data lines and six address lines.
Various strobes can be implemented to clock data to or from the bus. The I/O bus is an
option that can be enabled by the user’s program as explained below. The eight bidirec-
tional 1/0O lines share pins with Parallel Port A, and the six address lines share pins with
part of Parallel Port B. Although only 64 read or write addresses are available directly, it
easy to expand the register space of the bus to be as large as desired by adding additional
address bits implemented using a register loadable as one of the 64 registers. Another
approach is to use additional separate strobe lines to create additional 64-register spaces.
Rabbit 1/0O instructions are used to access the registers created on the 1/0 bus. Strobes are
enabled by software setup of individual pins on Parallel Port E. More details are available
in the Rabbit 3000 Users’ Manual.

Parallel Port A can also be used as an external 1/O data bus to isolate external 1/0 from the
main data bus. The pins on Parallel Port B used as 1/0 bus address lines can be used as
individual lines when the 1/0O bus is not enabled. Parallel Port B pins PB2-PB7 can also be
used as an auxiliary address bus.

When using the auxiliary 1/0O bus for either Ethernet or the LCD/keypad module on the
Prototyping Board, or for any other reason, you must add the following line at the begin-
ning of your program.

#define PORTA AUX IO // required to enable auxiliary I/O0 bus
4.1.1.1 Handling Stateful I/O Registers

1/0 registers are often either readable or writable, but not both in order to save hardware
expense or because the functionality does not fit a read/write model. For example, if writ-
ing a certain bit in a register causes a momentary action to take place, the bit in the register
does not really exist and there is nothing to read back.

If an 1/O register is stateful, it is a write register that holds bits that have a continuing
meaning over time. If this information has to be changed and restored at different priority
levels, for example, in a main program and in an interrupt routine, there must be a way to
read the contents of the register and restore it. One approach is to make the register read-
able, but this requires extra hardware. The other approach is to establish a shadow register
in memory that holds an echo of the register contents—the shadow register is loaded each
time the register is loaded. Care must be taken with shadow registers to ensure that an
interrupt cannot take place when the contents of the shadow register differ from those of
the 1/0 register. The Rabbit 3000 Users’ Manual provides additional information.

32 PowerCore FLEX

4.1.2 Other Inputs and Outputs

The status, /RESET_IN, SMODEOQ, and SMODEZ1 1/0 are normally associated with the
programming port. Since the status pin is not used by the system once a program has been
downloaded and is running, the status pin can then be used as a general-purpose CMOS
output. The programming port is described in more detail in Section 4.2.3.

The /RES pin on header J4 is a bidirectional signal that can be used to reset the micropro-
cessor and external peripheral devices. The ramp-generator output on header J4 can be
used for A/D measurements.

PF1, PF3, PF5, PF7, PG5, and PG7 (pins 42, 40, 24, 22, 15, and 13 on header J4) may be
used for two input capture channels if they are not being otherwise used.

4.1.3 LEDs
The PowerCore module has two status LEDs located beside the RJ-45 Ethernet jack.
The yellow LED at DS1 indicates network activity.

The green LED at DS2 indicates that the PowerCore module is connected to a working
network.

User’s Manual 33

4.2 Serial Communication

The PowerCore module does not have any serial transceivers directly on the board.
However, a serial interface may be incorporated into the board the PowerCore module is
mounted on. For example, the PowerCore Prototyping Board has RS-422 and RS-232
transceiver chips.

4.2.1 Serial Ports

There are six serial ports on the Rabbit 3000—Serial Ports A, B, C, D, E, and F. All six
serial ports can operate in an asynchronous mode up to the baud rate of the system clock
divided by 8. An asynchronous port can handle 7 or 8 data bits. A 9th bit address scheme,
where an additional bit is sent to mark the first byte of a message, is also supported.

Serial Port A is normally used as a programming port, but may be used either as an asyn-
chronous or as a clocked serial port once the PowerCore module has been programmed
and is operating in the Run Mode.

Serial Port B is used to communicate with the serial flash on the PowerCore module, and
so is not available for any other applications.

Serial Ports C and D can also be operated in the clocked serial mode. In this mode, a clock
line synchronously clocks the data in or out. Either of the two communicating devices can
supply the clock.

Serial Ports E and F can also be configured as HDLC serial ports. The IrDA protocol is
also supported in SDLC format by these two ports. Serial Port E can also be configured for
SDLC.

The three serial ports that support clocked serial communications, Serial Ports A, C, and
D, are suitable for interfacing with “SPI” devices.

4.2.2 Ethernet Port

Figure 7 shows the pinout for the RJ-45 Ethernet port (J2). Note that some Ethernet con-
nectors are numbered in reverse to the order used here.

ETHERNET
' | @ |
1. E_Tx+
2. E_Tx-
3. E_Rx+
6. E_Rx—
RJ-45 Plug RJ-45 Jack

Figure 7. RJ-45 Ethernet Port Pinout

Two LEDs are placed next to the RJ-45 Ethernet jack, one to indicate a live Ethernet link
(DS2 green) and one to indicate Ethernet activity (DS1 yellow).

34 PowerCore FLEX

4.2.3 Programming Port

The PowerCore module’s programming port is accessed using header J2 or when pro-
gramming with a RabbitLink EG2110 through the Ethernet jack. The programming port
uses the Rabbit 3000’s Serial Port A for communication. Dynamic C uses the program-
ming port to download and debug programs.

The programming port is also used for the following operations.
e Cold-boot the Rabbit 3000 on the PowerCore module after a reset.

e Remotely download and debug a program over an Ethernet connection using the
RabbitLink EG2110.

e Fast copy designated portions of flash memory from one Rabbit-based board (the
master) to another (the slave) using the Rabbit Cloning Board.

Alternate Uses of the Programming Port

All three clocked Serial Port A signals are available as

e asynchronous serial port

e an asynchronous serial port, with the clock line usable as a general CMOS input

The programming port may also be used as a serial port via the DIAG connector on the
programming cable.

In addition to Serial Port A, the Rabbit 3000 startup-mode (SMODEO, SMODEL), status,
and reset pins are available on the programming port.

The two startup mode pins determine what happens after a reset—the Rabbit 3000 is
either cold-booted or the program begins executing at address 0x0000. These two
SMODE pins can be used as general inputs once the cold boot is complete.

The status pin is used by Dynamic C to determine whether a Rabbit microprocessor is
present. The status output has three different programmable functions:

1. It can be driven low on the first op code fetch cycle.
2. It can be driven low during an interrupt acknowledge cycle.
3. It can also serve as a general-purpose CMOS output.

The /RESET_IN pin is an external input that is used to reset the Rabbit 3000 and the
PowerCore module’s onboard peripheral circuits.

Refer to the Rabbit 3000 Microprocessor User’s Manual for more information.

User’s Manual 35

4.3 Programming Cable

A special programming cable is used to connect the PowerCore module’s programming
port to a serial COM port on the PC that hosts Dynamic C. The programming cable has a
small circuit board in the cable that converts the RS-232 voltage levels used by the PC
serial port to the CMOS voltage levels used by the Rabbit 3000. An additional adapter and
software is available so that a PC USB port can be used instead of a serial port.

When the PROG connector on the programming cable is connected to header J2 on the
PowerCore module, programs can be downloaded and debugged over the serial interface.

The DIAG connector of the programming cable may be used on header J2 of the PowerCore
module with the PowerCore module operating in the Run Mode. This allows the program-
ming port to be used as a regular serial port.

4.3.1 Changing Between Program Mode and Run Mode

The PowerCore module is automatically in Program Mode when the PROG connector on
the programming cable is attached, and is automatically in Run Mode when no program-
ming cable is attached. When the Rabbit 3000 is reset, the operating mode is determined
by the status of the SMODE pins. When the programming cable’s PROG connector is
attached, the SMODE pins are pulled high, placing the Rabbit 3000 in the Program Mode.
When the programming cable’s PROG connector is not attached, the SMODE pins are
pulled low, causing the Rabbit 3000 to operate in the Run Mode.

36 PowerCore FLEX

POWERCORE FLEX
PROTOTYPING

2OC

000 000 21

X

X

rererere
QOOOC

/ wuutwg

Blue
shrink wrap

To TS
PC COM port ™

Programming Cable @)

010]0, 0.0 ¢

SOOC
YXO00C

010100

o0

RESET PowerCore module when changing mode:
Press RESET button (if using Prototyping Board), OR
Cycle power off/on

after removing or attaching programming cable.

Figure 8. Switching Between Program Mode and Run Mode

A program “runs” in either mode, but can only be downloaded and debugged when the
PowerCore module is in the Program Mode.

Refer to the Rabbit 3000 Microprocessor User’s Manual for more information on the pro-
gramming port and the programming cable.

User’s Manual

4.4 Ramp Generator

The PowerCore module has an onboard ramp generator that provides a a continuous
sawtooth function with a precision rising ramp. The calibration of the ramp is tied to an
onboard 2.5 V voltage reference. The 400 Hz ramp has a linear rise time from 0 to 3.1 V of
approximately 1.9 ms, and ramps down in approximately 0.45 ms. (The ramp actually
starts at a slightly negative voltage of approximately -0.05 V.) The ramp output has a
linearity of about 0.1% and is available for external circuits on pin 50 of header J4.

3.1V

«~——1.9ms 0.45 ms

Figure 9. PowerCore Ramp Generator Signal

The onboard 2.5 V reference circuit is shown in Figure 10.

+B5V

3.32 kQ
Ramp
Generator "WV I To
Microprocessor
+V I 2.2nF LM339 Input Capture PD3

200 ©Q

LM4040
25V

Figure 10. Onboard 2.5 V Reference

The ramp generator makes it possible to measure analog voltages using LM339 compara-
tors and the pulse capture capabilities of the Rabbit 3000 microprocessor to convert time
into voltage. One example of this analog measurement capability is the onboard ther-
mistor, which allows temperature measurements of the PowerCore circuit board.

38 PowerCore FLEX

+5V

Ramp 3.32 kQ
Generator VW To
Microprocessor
Input Capture PD3

thermistor

3 kQ

Figure 11. PowerCore Temperature-Measurement Circuit

A similar, more general A/D measurement circuit can be designed. An example is the A/D
measurement circuit on the PowerCore Prototyping Board, which is shown in Figure 12.
The circuit is designed to accept input voltages of 0-10 V.

+B5V

Ramp 332kQ
Generator — "WV

To
Microprocessor
Input Capture PG5

Analog
Input

Figure 12. PowerCore Prototyping Board A/D Acquisition Circuit

An A/D converter measurement is implemented when a signal transition from the compara-
tor is routed to an input capture on the Rabbit 3000 (for example, PD3 for the temperature-
measurement circuit and PG5 for the A/D measurement circuit on the Prototyping Board).
The counter in the Rabbit 3000 starts counting at the beginning of the ramp (PG1), and
stops when the ramp crosses the input signal (PG5). The full scale is approximately 4095
counts, which yields a measurement resolution of 12 bits. The end of the ramp activates an
interrupt to the Rabbit 3000, which then retrieves the count and stores it so that it can be
accessed by a software function call. Generally, additional channels will be measured in

User’s Manual 39

succession. The interrupt routine can be set up to average inputs and to detect out-of-range
signals.

A/D conversion can be provided sequentially on additional channels by adding a multi-
plexer between the comparators and the Rabbit 3000 PG5 input capture pin.

At the same time that an A/D conversion takes place, the PowerCore module exercises
one-third of a calibration routine where the 2.5 V reference is used to recalibrate the A/D
converter every 7.5 ms. Part of the calibration routine reads the thermistor, whose temper-
ature reading is also available.

This A/D conversion can be used to monitor slow-moving analog voltage outputs such as
those from sensors or potentiometers.

4.4.1 Ramp Generator Theory of Operation

Figure 13 shows the comparator outputs for the ramp generator and the synchronizing
signals.

Z A 31V
i ------- 2.5V ref
Y% ov
o ! START RAMP
O I I I |_
(%) .
<K PD7 | [END OF RAMP
T (B}
Q 'S PE1 END-OF-RAMP
g o) ! INTERRUPT
O : | : CALIBRATION
PD1 ¢ (C)—>{ | (2.5 V ref)
@ The input capture timer starts at this edge
The interrupt occurs at this edge
@ The input capture timer stops at this edge

Figure 13. Ramp Generator and Synchronizing Signals from Comparators

40 PowerCore FLEX

The input capture software runs as an interrupt routine that is triggered by the end-of-ramp
interrupt. The interrupt routine will read the time delay from the start of the ramp to the
signal measured and store it in a memory table. The software will then set up the next
measurement, generally by switching an n to 1 multiplexer to direct the next comparator
output to the pulse capture stop input. The reference voltage is measured to calibrate the
slope of the ramp. The pulse capture feature of the Rabbit 3000 microprocessor is used to
measure the time between the start of the ramp and when the ramp reaches the analog
input voltage that is being measured.

Ramp 3.32kQ
Generator
D—/\/\/\/—h LM339
I 2.2nF
A/D #1 +
A/D #2 +
To
MULTIPLEXERfF—T> Microprocessor
Input Capture
A/D #3 +
A/D #4 *

Figure 14. Using Multiplexer for A/D Converter Channels

In order to filter out noise picked up in the
ramp signal that results from coupling of the
PCB traces to nearby fast-switching digital \ “ Ramp delayed

signals, the ramp is filtered by an RC circuit at ‘ by fiter
each comparator package by an RC circuit <~ 7
consisting of a 3.3 kQ resistor and a 2.2 nF NG

oV

capacitor. This RC filter delays the ramp by ng’;gg’;;g;’p

about 7 ps, which is the same as 10 mV of
ramp movement. The 3 db point of the filter is
approximately 25 kHz. This is adequate to
eliminate high-frequency spikes coupled to the
PCB trace. The same filter is used for the start-
of-ramp pulse and the reference pulse, so the
delay of the ramp is canceled out. When the ramp switches direction from downward to
upward, the ramp has sufficient negative swing to allow the transient to die down before
the start-of-ramp pulse is generated.

Figure 15. Ramp Signal Offset
from RC Filter

User’s Manual 41

4.5 Other Hardware
45.1 Clock Doubler

The PowerCore takes advantage of the Rabbit 3000 microprocessor’s internal clock doubler.
A built-in clock doubler allows half-frequency crystals to be used to reduce radiated
emissions. The 51.6 MHz frequency specified for the PowerCore is generated using a
25.8 MHz crystal.

The clock doubler may be disabled if 51.6 MHz clock speeds are not required. This will
reduce power consumption and further reduce radiated emissions. The clock doubler is
disabled with a simple configuration macro as shown below.

1. Select the “Defines” tab from the Dynamic C Options > Project Options menu.
2. Add the line cLock DOUBLED=0 to always disable the clock doubler.

The clock doubler is enabled by default, and usually no entry is needed. If you need to
specify that the clock doubler is always enabled, add the line CLOCK_DOUBLED=1 t0
always enable the clock doubler.

3. Click OK to save the macro. The clock doubler will now remain off whenever you are
in the project file where you defined the macro.

The clock doubler is automatically off for 25.8 MHz modules. Fast SRAM is needed to
run programs when clock speeds are above 30 MHz.

4.5.2 Spectrum Spreader

The Rabbit 3000 features a spectrum spreader, which helps to mitigate EMI problems. By
default, the spectrum spreader is on automatically, but it may also be turned off or set to a
stronger setting. The means for doing so is through a simple configuration macro as shown
below.

1. Select the “Defines” tab from the Dynamic C Options > Project Options menu.

2. Normal spreading is the default, and usually no entry is needed. If you need to specify nor-
mal spreading, add the line

ENABLE SPREADER=1
For strong spreading, add the line
ENABLE SPREADER=2
To disable the spectrum spreader, add the line
ENABLE SPREADER=0
NOTE: The strong spectrum-spreading setting is not recommended since it may limit

the maximum clock speed or the maximum baud rate. It is unlikely that the strong
setting will be used in a real application.

3. Click OK to save the macro. The spectrum spreader will now remain off whenever you are
in the project file where you defined the macro.

TIP: If you wish to add more than one macro definition to the Global Macro Definitions
box, the macros should be separated by semi-colons.

42 PowerCore FLEX

4.6 Memory
4.6.1 SRAM

PowerCore FLEX modules running at 51.6 MHz need 512K of program-execution SRAM
at U13, which is not battery-backed. The battery-backed data SRAM at U2 on all Power-
Core modules is 256K-512K.

4.6.2 Flash EPROM
PowerCore modules also have 512K of flash EPROM installed at U3.

NOTE: Rabbit Semiconductor recommends that any customer applications should not be
constrained by the sector size of the flash EPROM since it may be necessary to change
the sector size in the future.

Writing to arbitrary flash memory addresses at run time is also discouraged. Instead, use a
portion of the “user block” area to store persistent data. The functions writeUser-
Block and readUserBlock are provided for this. Refer to the Rabbit 3000 Micropro-
cessor Designer’s Handbook for additional information.

A Flash Memory Bank Select jumper configuration option based on 0 Q surface-mounted
resistors exists at JP2 on the PowerCore module. This option is reserved for future use.

4.6.3 Serial Flash

A serial flash is an available option on PowerCore FLEX modules to store data and Web
pages. Sample programs in the SAMPLES \PowerCoreFLEX folder illustrate the use of
the serial flash. These sample programs are described in Section 3.2.4, “Use of Serial
Flash.”

4.6.4 Dynamic C BIOS Source Files

The Dynamic C BIOS source files handle different standard RAM and flash EPROM sizes
automatically.

User’s Manual 43

4.7 Power Supply Options and Requirements

Appendix D provides a complete description of the onboard power supply, and the options

and requirements for both onboard and external power supplies used with PowerCore
modules.

44 PowerCore FLEX

5. SOFTWARE REFERENCE

Dynamic C is an integrated development system for writing
embedded software. It runs on an IBM-compatible PC and is
designed for use with Rabbit Semiconductor single-board com-
puters and other devices based on the Rabbit microprocessor.
Chapter 5 describes the libraries and function calls related to the
PowerCore FLEX modules.

5.1 More About Dynamic C

Dynamic C has been in use worldwide since 1989. It is specially designed for program-
ming embedded systems, and features quick compile and interactive debugging. A com-
plete reference guide to Dynamic C is contained in the Dynamic C User’s Manual.

You have a choice of doing your software development in the flash memory or in the static
SRAM included on PowerCore FLEX modules. The flash memory and SRAM options are
selected with the Options > Compiler menu.

The advantage of working in RAM is to save wear on the flash memory, which is limited
to about 100,000 write cycles. The disadvantage is that the code and data might not both
fit in RAM.

NOTE: An application can be compiled directly to battery-backed RAM, but cannot be
run reliably out of RAM after the programming cable is disconnected. Your final code
must always be stored in flash memory for reliable operation. If your board has a fast
SRAM, which is not battery-backed, you should select the “Code and BIOS in Flash,
Run in RAM” compiler option, which stores the code in flash and copies it to the fast
SRAM at run-time to take advantage of the faster clock speed. This option optimizes
the performance of PowerCore FLEX modules running at 51.6 MHz.

NOTE: Do not depend on the flash memory sector size or type in your program logic.
PowerCore modules and Dynamic C were designed to accommodate flash devices with
various sector sizes in response to the volatility of the flash-memory market.

Developing software with Dynamic C is simple. Users can write, compile, and test C and
assembly code without leaving the Dynamic C development environment. Debugging
occurs while the application runs on the target. Alternatively, users can compile a program
to an image file for later loading. Dynamic C runs on PCs running Windows 95 or later.
Programs can be downloaded at baud rates of up to 460,800 bps after the program compiles.

User’s Manual 45

Dynamic C has a number of standard features:

Full-feature source and/or assembly-level debugger, no in-circuit emulator required.
Royalty-free TCP/IP stack with source code and most common protocols.

Hundreds of functions in source-code libraries and sample programs:

» Exceptionally fast support for floating-point arithmetic and transcendental functions.
» RS-232 and RS-485 serial communication.
» Analog and digital 1/O drivers.

» 12C, SPI, GPS, file system.
» LCD display and keypad drivers.
Powerful language extensions for cooperative or preemptive multitasking

Loader utility program to load binary images into Rabbit targets in the absence of
Dynamic C.

Provision for customers to create their own source code libraries and augment on-line
help by creating “function description” block comments using a special format for
library functions.

Execution tracing and symbolic stack tracing.
Standard debugging features:

» Breakpoints—Set breakpoints that can disable interrupts.

» Single-stepping—Step into or over functions at a source or machine code level, pC/OS-11
aware.

» Code disassembly—The disassembly window displays addresses, opcodes, mnemonics,
and machine cycle times. Switch between debugging at machine-code level and source-
code level by simply opening or closing the disassembly window.

» Wiatch expressions—Watch expressions are compiled when defined, so complex expres-
sions including function calls may be placed into watch expressions. Watch expressions
can be updated with or without stopping program execution.

» Register window—All processor registers and flags are displayed. The contents of general
registers may be modified in the window by the user.

» Stack window—shows the contents of the top of the stack.
» Hex memory dump—displays the contents of memory at any address.

» STDIO window—print £ outputs to this window and keyboard input on the host PC can
be detected for debugging purposes. print£ output may also be sent to a serial port or
file.

46

PowerCore FLEX

5.1.1 Compile Options
Dynamic C offers three compile options:

e Compile to attached target (default, used when a PowerCore module is connected to a
PC running Dynamic C via the programming cable)

e Compile defined target configuration to .bin file (see the additional information below)
e Compile to .bin file using attached target

Since the PowerCore FLEX modules permit many different configurations, a special
project file for targetless compile should be set up with the configuration specific to your
PowerCore FLEX board if you plan to compile a defined target configuration to a.bin file.
Follow the instructions included with the PowerCoreFLEX BOARD OPTIONS.c sample
program in the SAMPLES\PowerCoreFLEX folder to determine and set up the targetless
compile options for your PowerCore module.

5.1.2 Using Dynamic C with Interrupts

You must disable all interrupts you have turned on before you exit Dynamic C to avoid
getting target communication error messages. Use the exit () function call to do so as in
some of the sample programs such as ADC_RD EXTERNAL.C. The exit (exitcode)
function call returns the exitcode parameter to Dynamic C and stops the program. 0 is
used for this parameter to indicate that the function executed successfully; other values
correspond to run-time errors.

5.1.3 User Block

Certain function calls involve reading and storing calibration constants from/to the simulated
EEPROM in flash memory located at the top 2K of the reserved user block memory area
(3800-39FF). This leaves the address range 0-37FF in the user block available for your
application.

These address ranges may change in the future in response to the volatility in the flash
memory market, in particular sector size. The sample program USERBLOCK INFO.C in
the Dynamic C sAMPLES\USERBLOCK folder can be used to determine the version of the
ID block, the size of the ID and user blocks, whether or not the 1D/user blocks are mir-
rored, the total amount of flash memory used by the ID and user blocks, and the area of the
user block available for your application.

The USERBLOCK_CLEAR. C sample program shows you how to clear and write the con-
tents of the user block that you are using in your application (the calibration constants in
the reserved area and the ID block are protected).

User’s Manual 47

5.2 Dynamic C Functions
5.2.1 Digital I/0O

PowerCore FLEX modules were designed to interface with other systems, and so there are
no drivers written specifically for the digital 1/0; there are sample drivers for the triacs and
the A/D converter on the Prototyping Board described in Section 5.2.7.

The general Dynamic C read and write functions allow you to customize the parallel 1/0
to meet your specific needs. For example, use
WrPortI (PEDDR, &PEDDRShadow, 0x00);

to set all the Port E bits as inputs, or use

WrPortI (PEDDR, &PEDDRShadow, OxFF);

to set all the Port E bits as outputs.

The sample programs in the Dynamic C SAMPLES/PowerCoreFLEX folder provide further
examples.

5.2.2 External I/O
When using the auxiliary 1/0 bus on the Rabbit 3000 chip, add the line

#define PORTA AUX IO // required to enable auxiliary I/0 bus

to the beginning of any programs using the auxiliary 1/0 bus.
5.2.3 SRAM Use

The PowerCore FLEX modules have a battery-backed data SRAM and a program-execu-
tion SRAM. Dynamic C provides the protected keyword to identify variables that are to
be placed into the battery-backed SRAM. The compiler generates code that maintains two
copies of each protected variable in the battery-backed SRAM. The compiler also generates
a flag to indicate which copy of the protected variable is valid at the current time. This flag
is also stored in the battery-backed SRAM. When a protected variable is updated, the
“inactive” copy is modified, and is made “active” only when the update is 100% complete.
This assures the integrity of the data in case a reset or a power failure occurs during the
update process. At power-on the application program uses the active copy of the variable
pointed to by its associated flag.

The sample code below shows how a protected variable is defined and how its value can
be restored.

protected nf device nandFlash;

int main() {

_sysIsSoftReset(); // restore any protected variables

The bbram keyword may also be used instead if there is a need to store a variable in bat-
tery-backed SRAM without affecting the performance of the application program. Data
integrity is not assured when a reset or power failure occurs during the update process.

Additional information on bbram and protected variables is available in the Dynamic C
User’s Manual.

48 PowerCore FLEX

5.2.4 Serial Communication Drivers

Library files included with Dynamic C provide a full range of serial communications sup-
port. The Rs232.LIB library provides a set of circular-buffer-based serial functions. The
PACKET . LIB library provides packet-based serial functions where packets can be delimited
by the 9th bit, by transmission gaps, or with user-defined special characters. Both libraries
provide blocking functions, which do not return until they are finished transmitting or
receiving, and nonblocking functions, which must be called repeatedly until they are fin-
ished, allowing other functions to be performed between calls. For more information, see
the Dynamic C Function Reference Manual and Technical Note TN213, Rabbit Serial
Port Software.

Section 5.2.8.5 provides sample drivers for serial communication when using the Proto-
typing Board.

The sample programs in the Dynamic C SAMPLES/PowerCoreFLEX/RS232 folder provide
further examples.

5.2.5 TCPI/IP Drivers

The TCP/IP drivers are located in the LB\ TCcPIP folder. Complete information on these
libraries and the TCP/IP functions is provided in the Dynamic C TCP/IP User’s Manual.

5.2.6 Serial Flash Drivers

The Dynamic C serialFlash\SFLASH.LIB library is used to interface to serial flash
memory devices on an SPI bus such as the serial flash on board the PowerCore, which
uses Serial Port B as an SPI port. The library has two sets of function calls—the first is
maintained for compatibility with previous versions of the sFLasH. LIB library. The func-
tions are all blocking and only work for single flash devices. The new functions, which
should be used for the PowerCore, make use of an s£ device structure as a handle for a
specific serial flash device. This allows multiple devices to be used by an application.

More information on these function calls is available in the Dynamic C Function Refer-
ence Manual.

The sample programs in the Dynamic C SAMPLES/PowerCoreFLEX/SERIAL FLASH
folder provide further examples.

User’s Manual 49

5.2.7 A/D Converter Ramp-Generator Drivers

The functions described in this section support the PowerCore ramp generator. The source
code is in the Dynamic C LIB\PowerCoreFLEX\ADCRAMP . LIB library. This library
provides the functions for the onboard A/D converter circuit to read the PowerCore ther-
mistor, 2.5 V reference, and end-of-ramp voltages. The library also has a function call that
can also be used to read an external A/D converter voltage.

The sample programs in the Dynamic C SAMPLES/PowerCoreFLEX/ADC and SAMPLES/
PowerCoreFLEX/DAC folders provide further examples.

anaInRampInit

void anaInRampInit (void);

DESCRIPTION

Initializes the A/D converter ramp low-level driver for internal A/D operation to read
the thermistor, 2.5 V reference, and end-of-ramp voltages. Call the anaInExterna-
1Init function to enable reading an external A/D converter.

RETURN VALUE
None.

SEE ALSO

anaInRamp, anaInRampVolts, anaInCalibRamp, anaInEERdRamp, anaInEEWrRamp

50 PowerCore FLEX

anaInRamp

int anaInRamp (int channel);

DESCRIPTION

Reads the state of a ramp A/D channel. The state being read is placed in memory, and
is updated by the A/D converter interrupt. The update interval is 7.5 ms for each A/D
converter channel.

Use the following flags to read the ramp channels synchronously.

ref conversion done—2.5V reference
ramp conversion_ done—end-of-ramp voltage
temp conversion done—thermistor

The ADC_RD RAMP. c sample program provides an example.

PARAMETER

channel the analog input channel (0-2) to read.

0=2.5V reference
1 = end-of-ramp voltage
2 = thermistor

RETURN VALUE
A value (0 to 4095) corresponding to the voltage on the analog input channel.

SEE ALSO

anaInRampInit, anaInCalibRamp, anaInRampVolts, anaInEERdRamp, anaInEEWrRamp

User’s Manual

51

anaInRampVolts

float anaInRampVolts (unsigned int channel) ;

DERSCRIPTION
Reads the state of a ramp A/D channel and uses the previously set calibration constants
to convert it to volts. The state being read is placed in memory, and is updated by the
AJD converter interrupt. The update interval is 7.5 ms for each A/D converter channel.

Use the following flags to read the ramp channels synchronously.

ref conversion done—2.5V reference
ramp conversion_ done—end-of-ramp voltage
temp conversion done—thermistor

The ADC_RD RAMP. c sample program provides an example.

PARAMETER
channel the analog input channel (0-2) to read.

0=2.5V reference
1 = end-of-ramp voltage
2 = thermistor

RETURN VALUE
A value corresponding to the voltage on the analog input channel (0 to 3 V).

SEE ALSO
anaInRampInit, anaInCalibRamp, anaInRamp, anaInEERdRamp, anaInEEWrRamp

52 PowerCore FLEX

anaInCalibRamp

void anaInCalibRamp (int wvaluel, float voltsl, int value2,
float volts2);

DESCRIPTION

Calibrates the response of the analog ramp circuit as a linear function using the two con-
version points provided. The gain, offset and A/D converter resolution constants are
calculated and placed into the global table _adcCalibRamp.

PARAMETERS
valuel the first A/D converter value.
voltsl the voltage corresponding to the first A/D converter value.
value2 the second A/D converter value.
volts2 the voltage corresponding to the second A/D converter value.

RETURN VALUE

0 if successful.
-1 if not able to make calibration constants.

SEE ALSO

anaInRampInit, anaInRamp, anaInRampVolts, anaInEERdRamp, anaInEEWrRamp

anaInEERdRamp

int anaInEERdRamp (void) ;

DESCRIPTION

Reads the gain and offset calibration constants for the ramp A/D converter from the
simulated EEPROM in flash memory located at the top 2K of the reserved user block
memory area.

RETURN VALUE

0 if successful.
-1 if address is invalid or is out of range.

SEE ALSO

anaInEEWrRamp

User’s Manual

53

analnEEWrRamp

int anaInEEWrRamp (void) ;

DESCRIPTION

Writes the gain and offset calibration constants for the ramp A/D converter to the
simulated EEPROM in flash memory located at the top 2K of the reserved user block
memory area.

RETURN VALUE

0 if successful.
-1 if address is invalid or is out of range.

SEE ALSO

anaInEERdRamp

thermReading

float thermReading(int units);

DESCRIPTION

Reads the voltage across the PowerCore thermistor via the ramp A/D converter. The
value read from the A/D converter is converted to temperature in the units specified by
the units parameter.

PARAMETER
units the temperature units.
0 = Celsius
1 = Fahrenheit
2 = Kelvin

RETURN VALUE

Temperature calculated from the thermistor located on the PowerCore. The value is in
the units specified by the units parameter.

SEE ALSO

anaInRampInit, thermOffset

54 PowerCore FLEX

thermOffset

void thermOffset(int units, float reading);

DESCRIPTION

Creates an offset for any temperature difference between the thermistor and the external
reference temperature, and writes the offset data to the simulated EEPROM in flash
memory located at the top 2K of the reserved user block memory area. This offset value
is then used by the thermReading function to calculate the temperature at the ther-
mistor within the resolution specified for the thermistor’s A/D converter circuit.

PARAMETERS
units the temperature units.
0 = Celsius
1 = Fahrenheit
2 = Kelvin
reading the value of the external temperature reference in the units specified

by the units parameter.

RETURN VALUE
None.

SEE ALSO

anaInRampInit, thermReading

User’s Manual

55

anaInDisable

void anaInDisable(void) ;

DESCRIPTION

Disables A/D ramp interrupt when writing to flash memory and to exit applications while
using Dynamic C for a user interface.

RETURN VALUE
None.

SEE ALSO

anaInRamp, anaInRampVolts, anaInCalibRamp, anaInEERdRamp, anaInEEWrRamp,
anaInEnable

anaInEnable

void anaInEnable (void) ;

DESCRIPTION

Re-enables A/D ramp interrupt after the interrupt was disabled by the anaInDisable
function call.

RETURN VALUE
None.

SEE ALSO

anaInRamp, anaInRampVolts, anaInCalibRamp, anaInEERdRamp, anaInEEWrRamp,
anaInDisable

56 PowerCore FLEX

anaInExternalInit

void anaInExternalInit (int port, int pin, int edge);

DESCRIPTION

Initializes the A/D converter low-level driver to read an external A/D converter. You
must call the anaInRampInit function to initialize the A/D converter ramp circuit
before you call anaInExternalInit.

PARAMETERS

port identifies the Rabbit I/O port used for the external A/D comparator.
0 = Parallel Port C
1 = Parallel Port D
2 = Parallel Port F
3 = Parallel Port G

pin identifies the specific Rabbit parallel port pin used for the external

A/D comparator.

0=pinl
1=pin3
2=pin5
3=pin7

edge indicates which signal edge to use for the external A/D comparator.
0 =rising edge
1 = falling edge

RETURN VALUE
None.

User’s Manual

57

analn

int analIn(int channel);

DESCRIPTION

Reads the state of an external analog channel. To read the ramp channels synchronously,
use the ref conversion doneflag. Theade rd external function provides
an example.

The state being read is located in memory, and is updated by the A/D converter inter-
rupt. The update interval is as follows:

 For single-channel designs, the state of the analog channel will be updated approximately
every 2.5 ms.

e For multiple-channel designs, the update interval will depend on the number of channels
you have and the way you have implemented your MUX control (round-robin vs. random
channel selection):

the round-robin update interval will be the number of channels times 2.5 ms.

the random-channel-selection update interval will be >2.5 ms for the initial channel
selection and 2.5 ms thereafter.

There is a macro/hook in the interrupt service routine for you add your A/D converter
MUX control code. The following steps explain how to implement round-robin MUX
control.
1. Set the maximum number of external A/D converter channels:
#define MAX ADCHANNELS <new value>
2. Create a pointer to your custom MUX control routine by defining
#define ADC MUX CNTRL call adcmux

This step will insert a call to the ademux routine at the end of interrupt service routine.
This will allow the channel to be ready for the next conversion cycle.

3. Write your ademux routine to switch the hardware and ade_ mux channel index to
the next A/D converter channel. Make sure you initialize your I/O before executing the
anaInExternalInit function.

58 PowerCore FLEX

anaIn (cont’d)

The following steps explain how to implement random-channel-selection MUX control.

PARAMETER

1. Set the maximum number of external A/D converter channels:

#define MAX ADCHANNELS <new value>

2. Provide an application function that will do the following:

» Select the A/D converter channel via the hardware MUX circuit. Be sure to initialize
your 1/O before executing the anaInExternalInit and the new MUX function.

* Changethe adc mux channel index to the channel selected.
* Setthe adc conversion done flag to FALSE.
» Then call your routine with the A/D converter channel selected.

» Wait in a nonblocking wait routine for the ade _conversion_done flag to become
TRUE.

* Read the A/D converter.

* Repeat the sequence by calling your routine with the A/D converter channel selected.

channel the analog input channel (0 to MAX ADCHANNELS - 1) to read.

The MAX ADCHANNELS macro is set to a default value of 1,
which can be changed by adding the following line to your
program.

#define MAX ADCHANNELS <new value>

RETURN VALUE

A value (0-4095) corresponding to the voltage on the analog input channel. A value of
-4096 indicates an overflow or an out-of-range condition.

SEE ALSO

anaInExternalInit, analInVolts, anaInCalib

User’s Manual

59

analInVolts

float anaInVolts (int channel);

DESCRIPTION
Reads the state of an external analog channel and uses the previously set calibration
constants to convert the value to volts.

The state being read is located in memory, and is updated by the A/D converter inter-
rupt. The update interval is as follows:

» For single-channel designs, the state of the analog channel will be updated approximately
every 2.5 ms.

» For multiple-channel designs, the update interval will depend on the number of channels
you have and the way you have implemented your MUX control (round-robin vs. random
channel selection):

the round-robin update interval will be the number of channels times 2.5 ms.

the random-channel-selection update interval will be >2.5 ms for the initial channel
selection and 2.5 ms thereafter.

There is a macro/hook in the interrupt service routine for you add your A/D converter
MUX control code. The following steps explain how to implement round-robin MUX
control.
1. Set the maximum number of external A/D converter channels:
#define MAX ADCHANNELS <new value>
2. Create a pointer to your custom MUX control routine by defining
#define ADC MUX CNTRL call adcmux

This step will insert a call to the ademux routine at the end of interrupt service routine.
This will allow the channel to be ready for the next conversion cycle.

3. Write your ademux routine to switch the hardware and ade_ mux channel index to
the next A/D converter channel. Make sure you initialize your /O before executing the
anaInExternalInit function.

60 PowerCore FLEX

anaInVolts (cont’d)

The following steps explain how to implement random-channel-selection MUX control.

1. Set the maximum number of external A/D converter channels:
#define MAX ADCHANNELS <new value>
2. Provide an application function that will do the following:

» Select the A/D converter channel via the hardware MUX circuit. Be sure to initialize
your 1/O before executing the anaInExternalInit and the new MUX function.

* Changethe adc mux channel index to the channel selected.
+ Setthe ade conversion done flag to FALSE.
» Then call your routine with the A/D converter channel selected.

» Wait in a nonblocking wait routine for the ade conversion_done flag to become
TRUE.

» Read the A/D converter.

» Repeat the sequence by calling your routine with the A/D converter channel selected.

PARAMETER

channel the analog input channel (0 to MAX ADCHANNELS - 1) to read.
The MAX ADCHANNELS macro is set to a default value of 1,
which can be changed by adding the following line to your
program.

#define MAX ADCHANNELS <new value>

RETURN VALUE

A voltage value corresponding to the voltage on the analog input channel. A value of
-4096 indicates an overflow or an out-of-range condition.

SEE ALSO

anaInExternalInit, anaIn, anaInCalib

User’s Manual 61

anaInCalib

int anaInCalib (int channel, int wvaluel, float voltsl,
int value2, float wvolts2);

DESCRIPTION

Calibrates the response of the selected external A/D converter channel as a linear func-
tion using the two conversion points provided. The gain and offset constants are calcu-
lated and placed into the global table adcInCalib.

PARAMETERS

channel the analog input channel (0 to MAX ADCHANNELS - 1) to read.
The MAX ADCHANNELS macro is set to a default value of 1,
which can be changed by adding the following line to your
program.
#define MAX ADCHANNELS <new value>

valuel the first A/D converter value.

voltsl the voltage corresponding to the first A/D converter value.

value2 the second A/D converter value.

volts2 the voltage corresponding to the second A/D converter value.

RETURN VALUE

0 if successful.
-1 if not able to make calibration constants.

SEE ALSO

analInExternalInit, anaInVolts, analn

62 PowerCore FLEX

anaInEERd

int anaInEERd(int channel);

DESCRIPTION

Reads the gain and offset calibration constants for an external A/D converter from the

simulated EEPROM in flash memory located at the top 2K of the reserved user block
memory area.

PARAMETER

channel the analog input channel (0 to MAX ADCHANNELS - 1) to read.
The MAX ADCHANNELS macro is set to a default value of 1,
which can be changed by adding the following line to your
program.

#define MAX ADCHANNELS <new value>

RETURN VALUE

0 if successful.

-1 if address is invalid or is out of range.
SEE ALSO

anaInExternalInit, anaInCalib, anaInEEWr, analn, analInVolts

User’s Manual

63

analInEEWr

int anaInEEWr (int channel);

DESCRIPTION

Writes the gain and offset calibration constants for an external A/D converter to the

simulated EEPROM in flash memory located at the top 2K of the reserved user block
memory area.

PARAMETER

channel the analog input channel (0 to MAX ADCHANNELS - 1) to read.
The MAX ADCHANNELS macro is set to a default value of 1,

which can be changed by adding the following line to your
program.

#define MAX ADCHANNELS <new value>

RETURN VALUE

0 if successful.

-1 if address is invalid or is out of range.
SEE ALSO

anaInExternalInit, anaInCalib, anaInEERd, anaIn, analInVolts

64

PowerCore FLEX

5.2.8 Prototyping Board Functions

The functions described in this section are for use with the PowerCore Prototyping Board
features. The source code is in the Dynamic C SAMPLES \PowerCoreFLEX\PowerCore-
FLEX.LIB library if you need to modify it for your own board design.

The PowerCoreFLEX.LIB library automatically uses the RN CFG PowerCoreFLEX.
LIB library, which is used to configure the PowerCore for use with RabbitNet peripheral
boards on the PowerCore Prototyping Board.

Other generic functions applicable to all devices based on Rabbit microprocessors are
described in the Dynamic C Function Reference Manual.

5.2.8.1 Board Initialization

brdInit

void brdInit(void) ;

DESCRIPTION
Call this function at the beginning of your program. This function initializes Parallel
Ports A through G for use with the PowerCore Prototyping Board.

The Ethernet signals are configured according to the specific PowerCore FLEX mod-
ule—PDO0, PD2, and PE2 are initialized by the Ethernet driver for PowerCore FLEX

modules with Ethernet, and are configured as outputs for PowerCore FLEX modules

without Ethernet.

RETURN VALUE
None.

User’s Manual 65

5.2.8.2 Digital I/O

digIn

int digIn(int channel);

DESCRIPTION
Reads the input state of a digital input on the PowerCore Prototyping Board.

PARAMETER
channel the channel number corresponding to the digital input channel:
0—INO (pin 16 on header J4 or switch SW2 on the Prototyping
Board)
1—INZ1 (pin 47 on header J4 or switch SW3 on the Prototyping
Board)

RETURN VALUE
The logic state (0 or 1) of the input. A run-time error will occur if the channel
parameter is out of range.

SEE ALSO
brdInit, digoOut

66 PowerCore FLEX

digOut

void digOut (int channel, int state);

DESCRIPTION
Sets the state of digital outputs OUT00-OUTO03 on Prototyping Board header J2.

PARAMETERS
channel the digital output channel OUT00-OUTO03:
0 = OUTOO (sinking type output)
1 =0UTO01 (sinking type output)
2 = 0OUTO2 (sourcing type output)
3 = 0UTO03 (sourcing type output)
state the output logic value (0 or 1) to output:

Sinking driver
0 = connects the load to GND

1 = puts the output in a high-impedance state.

Sourcing driver
0 = puts the output in a high-impedance state
1 = connects the load to +K.

RETURN VALUE
None.

SEE ALSO
brdInit, digIn

User’s Manual

67

5.2.8.3 LEDs

ledOut

void ledOut (int led, int wvalue);

DESCRIPTION

Controls LEDs DS3 and DS4 on the PowerCore Prototyping Board.

PARAMETERS
led the LED to control:
0=DS4
1=DS3
value the value used to control the LED:;
0 = off
1=on

RETURN VALUE
None.

SEE ALSO

brdInit

68

PowerCore FLEX

5.2.8.4 D/A Converter

analOut

void anaOut (int channel, int rawdata);

DESCRIPTION
Sets the voltage on a given analog output channel on the Prototyping Board.

PARAMETERS
channel the analog output channel (0-2).
rawdata a value corresponding to the voltage on the analog output. Valid

range = 0-1024.

RETURN VALUE
None.

SEE ALSO

anaOutVolts, anaOutCalib, brdInit

anaOutVolts

void anaOutVolts (int channel, float voltage) ;

DESCRIPTION

Sets the voltage of an analog output channel on the Prototyping Board by using previ-
ously set calibration constants to calculate the correct data values.

PARAMETERS
channel the analog output channel (0-2).
voltage the voltage desired on the analog output.

RETURN VALUE
None.

SEE ALSO

anaOut, anaOutCalib, brdInit

User’s Manual 69

anaOutCalib

int anaOutCalib (int channel, int wvaluel, float wvoltsl,
int value2, float wvolts2);

DESCRIPTION

Calibrates the response of the specified D/A converter channel on the Prototyping
Board as a linear function using the two calibration points provided. Gain and offset
constants are calculated and placed into the global table daccCalib.

PARAMETERS
channel the analog output channel to be calibrated (0-2).
valuel the first D/A converter value (0-1024).
voltsl the voltage (volts) corresponding to the first D/A converter value.
value2 the second D/A converter value (0-1024).
volts2 the voltage (volts) corresponding to the second D/A converter value.

RETURN VALUE

0 if successful.
-1 if not able to make calibration constants.

SEE ALSO

anaOut, anaOutVolts, brdInit

70 PowerCore FLEX

anaOutEERd

int anaOutEERd (int channel);

DESCRIPTION

Reads the gain and offset calibration constants from the simulated EEPROM in flash
memory located at the top 2K of the reserved user block memory area.

NOTE: This function cannot be run in RAM.

PARAMETERS

channel THE ANALOG OUTPUT CHANNEL (0-2) WHOSE CALIBRATION CON-
STANTS ARE TO BE READ.
RETURN VALUE

0 if successful.
-1 if address is invalid or is out of range.

SEE ALSO

anaOutEEWr, brdInit

anaOutEEWr

int anaOutEEWr (int channel);

DESCRIPTION

Writes the gain and offset calibration constants from the simulated EEPROM in flash
memory located at the top 2K of the reserved user block memory area.

PARAMETER

channel the analog output channel (0—2) whose calibration constants are to
be written.

RETURN VALUE

0 if successful.
-1 if address is invalid or is out of range.

SEE ALSO

anaOutEERd, brdInit

User’s Manual 71

5.2.8.5 Serial Communication

serMode

void serMode (int mode) ;

DESCRIPTION

Sets up serial communication lines for the PowerCore FLEX modules.

Remember to call the serXopen () function before running this function before you

start using any of the serial ports.

PARAMETER
mode the defined serial port configuration.
Serial Port
Mode
E F
0 RS-232, 3-wire RS-232, 3-wire
1 RS-232, 5-wire RTS/CTS

RETURN VALUE
0 if valid mode; 1 if not.

SEE ALSO
serX functions located in SERIAL.LIB.

72

PowerCore FLEX

5.2.8.6 RabbitNet Port

The function calls described in this section are used to configure the RabbitNet port on the
PowerCore Prototyping Board for use with RabbitNet peripheral cards. The user’s manual
for the specific peripheral card you are using contains additional function calls related to
the RabbitNet protocol and the individual peripheral card. Appendix E provides additional
information about the RabbitNet.

These RabbitNet peripheral cards are available at the present time.

e Digital I/0 Card (RN1100) e Relay Card (RN1400)
e A/D Converter Card (RN1200) e Keypad/Display Interface (RN1600)
e D/A Converter Card (RN1300)

Before using the RabbitNet port, add the following lines at the start of your program.

#define RN MAX DEV 10 // max number of devices
#define RN MAX DATA 16 // max number of data bytes in any transaction
#define RN MAX PORT 1 // max number of serial ports

Set the following bits in RNSTATUSABORT to abort transmitting data after the status byte is

returned. This does not affect the status byte, which still can be interpreted. Set any bit
combination to abort:

bit 7—device busy is hard-coded into driver
bit 5—identifies router or slave

bits 4,3,2—peripheral-board-specific bits
bit 1—command rejected

bit 0—watchdog timeout

#define RNSTATUSABORT 0x80
// hard-coded driver default to abort if the peripheral board is busy

rn_sp_info

void rn sp info();

DESCRIPTION

Provides rn_init () with the serial port control information needed for PowerCore
FLEX modules.

RETURN VALUE
None.

User’s Manual 73

rn sp close

void rn_sp_close(int port);

DESCRIPTION

Deactivates the PowerCore Prototyping Board RabbitNet port as a clocked serial port.
This call isalso used by rn_init ().

PARAMETER

portnum =0

RETURN VALUE
None

rn_ sp enable

void rn sp enable(int portnum) ;

DESCRIPTION

This is a macro that enables or asserts the RabbitNet port chip select on the PowerCore
Prototyping Board prior to data transfer.

PARAMETER

portnum =0

RETURN VALUE
None

74 PowerCore FLEX

rn_sp disable

void rn_sp disable(int portnum);

DESCRIPTION

This is a macro that disables or deasserts the RabbitNet port chip select on the Power-
Core Prototyping Board to invalidate data transfer.

PARAMETER

portnum =0

RETURN VALUE
None.

User’s Manual

75

5.2.8.7 Triac Control

The functions described in this section support the triacs on the PowerCore Prototyping
Board. The library can also be used in conjunction with other triac installations that incor-
porate a zero-crossing crossover detection circuit. The source code is in the Dynamic C
LIB\PowerCoreFLEX\TRIAC.LIB library.

The sample programs in the Dynamic C SAMPLES/PowerCoreFLEX/TRIAC folder provide
further examples.

76 PowerCore FLEX

Phase-Angle Triac Control

triac PhaselInit

void triac PhaseInit(int ext interrupt, int interrupt pin);

DESCRIPTION

Initializes the triac phase-angle control interrupt. Phase-angle triac control provides
you with the ability to fire a triac at a given phase angle of a positive and negative 50/
60 Hz A/C sine wave, thus providing you with the control required by your application.

A run-time error will occur if the triac PhaseInit function has not executed.

To initialize the triac driver completely, you must also run the triac_PhaseCntr-
1pin function for each triac to be used in your application. You will need to initialize
the port pin(s) you select for triac control before calling any of the triac API functions
when using the triac PhaseCntr1Pin function. For multiple triacs, the control
pins must be on the same port—this limits the number of triacs to 8, the maximum num-
ber of pins on a port. You will also need to write a custom 1/O driver for the control pins.
(Seethe triac_gate onand triac_gate off routinesinthe TRIAC PHASE.
c sample program for an example.) The triac driver will calibrate automatically to the
incoming 50/60 Hz A/C waveform being used. Note that high-frequency calibration oc-
curs 100% of the time, whereas low-frequency calibration occurs every n’th time spec-
ified by the TRIAC LOW FREQ CAL macro.

Add the following lines in your application to set up the driver properly.

// Define phase-angle triac control method for proper
// library compilation.

#define PHASECONTROL

// Set the max number of triacs (max. is 8) for your application.
#define MAX TRIACS <number of triacs>

// Define the triac control function names.

#define TRIAC GATE ON triac gate_on
#define TRIAC GATE OFF triac gate off

// #use the triac 1lib

#use "triac.lib"

Note that the interrupt priority level is preset to level 3.

User’s Manual 77

triac PhaseInit (cont’d)

PARAMETERS

ext interrupt selects the external interrupt vector.
0 = external interrupt O
1 = external interrupt 1
interrupt pin selects the external interrupt 1/0 pin.

0 = 1/0 pin PEO, only valid for external interrupt 0
1 =1/O pin PE4, only valid for external interrupt O
2 = 1/0 pin PEL, only valid for external interrupt 1
3 = 1/0 pin PE5, only valid for external interrupt 1

RETURN VALUE
None.

SEE ALSO

triac_ PhaseCntrlPin, triac PhaseCntrl, triac PhaseLock, triac_ PhaseUnlock,
triac_PhaseEnable, triac_PhaseDisable

78 PowerCore FLEX

triac PhaseInitPWM

int triac_PhaseInitPWM(int channel, int pwm level, int duty_

cycle, int options, unsigned long frequency);

DESCRIPTION
Initializes a PWM channel for triac gate-signal power reduction.

PARAMETERS
channel the PWM channel (0-3) to use for triac gate-power reduction.
pwm level the PWM static output state for the triac gate signal. When triac

gate-power reduction is disabled,
0 = sets PWM output low
1 = sets PWM output high.

duty cycle selects the duty cycle (0-1024) to be used for triac gate-power
reduction.

options sets the PWM control options. Use the following macro bit masks
to enable the selected option:

PWM_SPREAD sets pulse spreading. The duty cycle is spread over four separate pulses, and

will increase the frequency by a factor of 4.

PWM_OPENDRAIN sets the PWM output pin to be an open-drain output instead of a normal

push-pull logic output.

0 sets the PWM for a normal push-pull logic output with no pulse spreading.

frequency the PWM base frequency (in Hz). The base frequency is the fre-
guency without pulse spreading. Pulse spreading (see options
parameter) will increase the base frequency by a factor of 4.

RETURN VALUE
0=0K.
-1 =an invalid channel number is used.
-2 = an invalid duty cycle was requested.
-3 = frequency requested is out of range or invalid.

User’s Manual

79

triac PhaseCntrlPin

void triac_ PhaseCntrlPin(int triac, int port, int bit, int pin_
state) ;

DESCRIPTION
Initializes the port and the I/O pin that is going to be used by the specified triac.

For multiple triacs, the control pins must be on the same port—the maximum number
of pins is 8. You will also need to write a custom 1/O driver for the control pins. (See
the triac _gate onand triac gate off routinesinthe TRIAC PHASE.c

sample program for an example.)

A run-time error will occur if the triac PhaseInit function has not executed or if
the maximum number of 8 triacs is exceeded.

PARAMETERS
triac selects the triac (0 to MAX TRIACS -1).
port specifies the 1/0 port used to control the triac. Use one of these
predefined 1/0 macros.
PADR, PBDR, PCDR, PDDR, PEDR, PFDR, Or PGDR
io pin the bit number of the 1/0 pin to be used for triac control.
pin_ state the value used to set the 1/O pin to its initial state.

RETURN VALUE
None.

SEE ALSO

triac_PhaseInit, triac PhaseCntrl, triac PhaseLock, triac_ PhaseUnlock,
triac_PhaseEnable, triac_PhaseDisable

80 PowerCore FLEX

triac_ PhaseLock

void triac_ PhaseLock(void) ;

DESCRIPTION
Locks the triac update buffer for synchronous operation of multiple triacs. The se-
quence is as follows.

1. Lock buffer via triac_PhaseLock—a low-level driver will use the last triac state until
the buffer is unlocked via a call to triac PhaseUnlock.

2. Update triacs viaa call to triac_PhaseCntrl.

3. Unlock the buffer via triac_PhaseUnlock. The new triac setting will take effect at
this time.

RETURN VALUE
None.

SEE ALSO

triac_ PhaseInit, triac PhaseCntrlPin, triac PhaseCntrl, triac_ PhaseUnlock,
triac_ PhaseEnable, triac PhaseDisable

triac_ PhaseUnlock

void triac PhaseUnlock(void) ;

DESCRIPTION
Unlocks the triac update buffer for synchronous operation of multiple triacs. The
sequence is as follows.

1. Lock buffer via triac_ PhaseLock—a low-level driver will use the last triac state until
the buffer is unlocked via a call to triac PhaseUnlock.

2. Update triacs with a call to triac_PhaseCntrl.

3. Unlock the buffer via triac_PhaseUnlock. The new triac setting will take effect at
this time.

RETURN VALUE
None.

SEE ALSO

triac PhaseInit, triac PhaseCntrlPin, triac PhaseCntrl, triac PhaseLock,
triac_PhaseEnable, triac_PhaseDisable

User’s Manual 81

triac PhaseDisable

int triac PhaseDisable(void);

DESCRIPTION

Disables the triac control interrupt to allow your application to do flash-write opera-
tions. Call the triac PhaseInit function before calling this function.

Remember to call triac PhaseDisable before doing any flash-write operations.
Once you have completed the flash-write operations, you must call triac
PhaseEnable to restart the triac driver. This requirement also applies to any other
operation that disables all interrupts

RETURN VALUE

0 = triac driver is in the process of being disabled.
1 = triac driver is disabled.

SEE ALSO

triac PhaseInit, triac PhaseCntrlPin, triac PhaseCntrl, triac PhaseLock,
triac_PhaseUnLock, triac PhaseEnable

triac PhaseEnable

int triac_ PhaseEnable (void);

DESCRIPTION

Re-enables the triac control interrupt after a flash-write operation has been completed.
Call the triac_PhaseInit and the triac PhaseDisable functions before
calling this function.

RETURN VALUE

0 = triac driver is not ready.
1 = triac driver is ready.

SEE ALSO

triac PhaseInit, triac PhaseCntrlPin, triac PhaseCntrl, triac PhaseLock,
triac_PhaseUnLock, triac_PhaseDisable

82 PowerCore FLEX

triac PhaseCntrl

void triac PhaseCntrl(int triac, int onOff, int phaseAngle,
int pwm cntrl);

DESCRIPTION

Sets the sine-wave phase angle at which to fire the specified triac. Phase-angle triac
control provides you with the ability to fire a triac at a given phase angle of a positive
and negative 50/60 Hz A/C sine wave, thus providing you with the control required by
your application.

A run-time error will occur if the triac PhaseInitorthe triac PhaseCntr-
1pin functions have not executed.

PARAMETERS
triac selects the triac (0 to MAX TRIACS - 1).
onOff enables/disables the triac.
0 = disable triac
1 = enable triac.
phaseAngle sets the sine-wave phase angle of when to fire the triac (valid range
= 0-179°).
pwm_ctrl sets the triac gate-signal PWM power-reduction option.

0 = disable PWM for gate signal
1 = enable PWM for gate signal

RETURN VALUE
None.

SEE ALSO

triac_PhaseInit, triac PhaseCntrlPin, triac PhaseLock, triac PhaseUnLock,
triac_PhaseEnable, triac PhaseDisable

User’s Manual 83

Time-Proportional Triac Control

triac TimePropInit

void triac TimePropInit(int ext interrupt, int interrupt pin);

DESCRIPTION
Initializes the triac time-proportional control interrupt. Time-proportional triac control
provides control of a triac for a fixed period of time, with the application setting the ON
and OFF times within this fixed time period to provide the desired ratio of ON/OFF
times.

To initialize the triac driver completely, you mustalso run the triac TimePropCn-
trlPin function for each triac to be used in your application. You will need to initial-
ize the port pin(s) you select for triac control before calling any of the triac API
functions when using the triac TimePropCntrlPin function. For multiple tri-
acs, the control pins can be on any combination of ports. You will also need to write a
custom 1/O driver for the control pins. (See the triac gate onand triac
gate off routines in the TRIAC_RATIO.c sample program for an example.)

Add the following lines in your application to set up the driver properly.

// Define time-proportional triac control method for
// proper library compilation.

#define TIMEPROPORTIONAL
// Set the max number of triacs for control
#define MAX TRIACS <number of triacs>

// Define the triac custom function ON/OFF function
// names for proper library compilation. (see sample
program triac ratio.c for an example)

#define TRIAC GATE ON triac_gate_on
#define TRIAC GATE OFF triac gate off

// Use the common ISR library for the triac and the
// ADC ramp circuit.

#use "adctriac_ isr.lib"
// Use the triac library
#use "triac.lib"

Note that the interrupt priority level is preset to level 1.

84 PowerCore FLEX

triac TimePropInit (cont’d)

PARAMETERS

ext interrupt selects the external interrupt vector.
0 = external interrupt O
1 = external interrupt 1
interrupt pin selects the external interrupt 1/0 pin.

0 = 1/0 pin PEO, only valid for external interrupt 0
1 =1/O pin PE4, only valid for external interrupt 0
2 = 1/0 pin PEL, only valid for external interrupt 1
3 = 1/0 pin PE5, only valid for external interrupt 1

RETURN VALUE
None.

SEE ALSO

triac TimePropCntrl

User’s Manual

85

triac TimePropCntrlPin

void triac TimePropCntrlPin(int triac, int port, int io pin,
int pin state);

DESCRIPTION
Initializes the port and the I/O pin that is going to be used by the specified triac.

For multiple triacs, the control pins can be on any combination of ports. You will also
need to write a custom 1/O driver for the control pins. (See the triac_gate onand
triac gate off routines in the TRIAC RATIO.c sample program for an
example.)

A run-time error will occur if the triac_TimePropInit function has not executed
or if the maximum triac limit is exceeded.

PARAMETERS
triac selects the triac (0 to MAX TRIACS -1).
port specifies the 1/0 port used to control the triac. Use one of these
predefined 1/0 macros.
PADR, PBDR, PCDR, PDDR, PEDR, PFDR, Or PGDR
io pin the bit number of the 1/0 pin to be used for triac control.
pin_ state the value used to set the 1/O pin to its initial state.

RETURN VALUE

0 if successful.
-1 if address is invalid or is out of range.

SEE ALSO

triac_ TimePropCntrl

86 PowerCore FLEX

triac TimePropDisable

int triac TimePropDisable (void) ;

DESCRIPTION

Disables the triac control interrupt to allow your application to do flash-write opera-
tions. Call the triac TimePropInit function before calling this function.

Remember to call triac_TimePropDisable before doing any flash-write opera-
tions. Once you have completed the flash-write operations, you must call triac_
TimePropEnable to restart the triac driver. This requirement also applies to any oth-
er operation that disables all interrupts.

RETURN VALUE

0 = triac driver is in the process of being disabled.
1 = triac driver is disabled.

triac TimePropEnable

int triac TimePropEnable (void) ;

DESCRIPTION

Re-enables the triac control interrupt after a flash-write operation has been completed.
Call the triac_TimePropInit andthe triac_ PhaseDisable functions be-
fore calling this function.

RETURN VALUE

0 = triac driver is not ready.
1 = triac driver is ready.

User’s Manual

triac TimePropCntrl

void triac TimePropCntrl (int triac, int onCycles,
int totalCycles);

DESCRIPTION

Sets the on time of the specified triac initialized for time-proportional control. The
specified triac will be turned on at the zero-crossing point of the 50/60 Hz A/C power
cycles, and will remain on for the number of cycles you have specified.

The off-time is calculated by finding the difference between the total cycles and the on-
time provided in this function.

A run-time error will occur if the triac_TimePropInit function has not executed.

PARAMETERS
triac selects the triac (0 to MAX TRIACS - 1).
onCycles the number of 50/60 Hz cycles of on-time for the selected triac.

Valid range = 0-32767.

totalCycles sets the total number of 50/60 Hz cycles needed for control. Valid
range = 0-32767.

RETURN VALUE
None.

SEE ALSO

triac_ TimePropInit

88 PowerCore FLEX

5.3 Upgrading Dynamic C

Dynamic C patches that focus on bug fixes are available from time to time. Check the Web
site www.rabbit.com/support/ for the latest patches, workarounds, and bug fixes.

5.3.1 Add-On Modules

Dynamic C installations are designed for use with the board they are included with, and
are included at no charge as part of our low-cost kits. Rabbit Semiconductor offers for pur-
chase add-on Dynamic C modules including the popular nC/OS-II real-time operating
system, as well as PPP, Advanced Encryption Standard (AES), FAT file system, Secure
Sockets Layer (SSL), Rabbit\Web, and other select libraries.

Each Dynamic C add-on module has complete documentation and sample programs to
illustrate the functionality of the software calls in the module. Visit our Web site at www.
rabbit.com for further information and complete documentation for each module.

In addition to the Web-based technical support included at no extra charge, a one-year
telephone-based technical support module is also available for purchase.

User’s Manual 89

http://www.rabbit.com/support/
http://www.rabbit.com/products/dc/
http://www.rabbit.com/products/dc/

90

PowerCore FLEX

6. USING THE TCP/IP FEATURES

6.1 TCP/IP Connections

Programming and development can be done with the PowerCore FLEX modules without
connecting the Ethernet port to a network. However, if you will be running the sample
programs that use the Ethernet capability or will be doing Ethernet-enabled development,
you should connect the PowerCore FLEX module’s Ethernet port at this time.

Before proceeding you will need to have the following items.

¢ If you don’t have Ethernet access, you will need at least a 10Base-T Ethernet card
(available from your favorite computer supplier) installed in a PC.

e Two RJ-45 straight through Ethernet cables and a hub, or an RJ-45 crossover Ethernet
cable.

The Ethernet cables and a 10Base-T Ethernet hub are available from Rabbit Semiconduc-
tor in a TCP/IP tool kit. More information is available at www.rabbit.com.

1. Connect the AC transformer and the programming cable as shown in Chapter 2, “Get-
ting Started.”

2. Ethernet Connections

There are four options for connecting the PowerCore FLEX module to a network for
development and run-time purposes. The first two options permit total freedom of
action in selecting network addresses and use of the “network,” as no action can inter-
fere with other network users. We recommend one of these options for initial develop-
ment.

e No LAN — The simplest alternative for desktop development. Connect the Power-
Core module’s Ethernet port directly to the PC’s network interface card using an RJ-45
crossover cable. A crossover cable is a special cable that flips some connections
between the two connectors and permits direct connection of two client systems. A
standard RJ-45 network cable will not work for this purpose.

e Micro-LAN — Another simple alternative for desktop development. Use a small
Ethernet 10Base-T hub and connect both the PC’s network interface card and the
PowerCore module’s Ethernet port to it using standard network cables.

User’s Manual 91

http://www.rabbit.com/

The following options require more care in address selection and testing actions, as
conflicts with other users, servers and systems can occur:

LAN — Connect the PowerCore module’s Ethernet port to an existing LAN, preferably
one to which the development PC is already connected. You will need to obtain IP
addressing information from your network administrator.

WAN — The PowerCore is capable of direct connection to the Internet and other Wide
Area Networks, but exceptional care should be used with IP address settings and all
network-related programming and development. We recommend that development and
debugging be done on a local network before connecting a PowerCore FLEX system to
the Internet.

TIP: Checking and debugging the initial setup on a micro-LAN is recommended before
connecting the system to a LAN or WAN.

The PC running Dynamic C does not need to be the PC with the Ethernet card.

. Apply Power

Plug in the AC transformer. The PowerCore module and its Prototyping Board are now
ready to be used.

92

PowerCore FLEX

6.2 TCP/IP Primer on IP Addresses

Obtaining IP addresses to interact over an existing, operating, network can involve a number
of complications, and must usually be done with cooperation from your ISP and/or network
systems administrator. For this reason, it is suggested that the user begin instead by using a
direct connection between a PC and the PowerCore module using an Ethernet crossover
cable or a simple arrangement with a hub. (A crossover cable should not be confused with
regular straight through cables.)

In order to set up this direct connection, the user will have to use a PC without networking,
or disconnect a PC from the corporate network, or install a second Ethernet adapter and set
up a separate private network attached to the second Ethernet adapter. Disconnecting your
PC from the corporate network may be easy or nearly impossible, depending on how it is
set up. If your PC boots from the network or is dependent on the network for some or all
of its disks, then it probably should not be disconnected. If a second Ethernet adapter is
used, be aware that Windows TCP/IP will send messages to one adapter or the other,
depending on the IP address and the binding order in Microsoft products. Thus you should
have different ranges of IP addresses on your private network from those used on the cor-
porate network. If both networks service the same IP address, then Windows may send a
packet intended for your private network to the corporate network. A similar situation will
take place if you use a dial-up line to send a packet to the Internet. Windows may try to
send it via the local Ethernet network if it is also valid for that network.

The following IP addresses are set aside for local networks and are not allowed on the
Internet: 10.0.0.0 to 10.255.255.255, 172.16.0.0 to 172.31.255.255, and 192.168.0.0 to
192.168.255.255.

The PowerCore module uses a 10/100-compatible 10Base-T Ethernet interface, which is
the most common scheme. The RJ-45 connectors are similar to U.S. style telephone con-
nectors, except they are larger and have 8 contacts.

An alternative to the direct connection using a crossover cable is a direct connection using
a hub. The hub relays packets received on any port to all of the ports on the hub. Hubs are
low in cost and are readily available. The PowerCore module uses a 10/100-compatible
10Base-T Ethernet interface, so the hub or Ethernet adapter can be a 10 Mbps unit, a 100
Mbps unit, or a 10/100 Mbps unit.

In a corporate setting where the Internet is brought in via a high-speed line, there are typi-
cally machines between the outside Internet and the internal network. These machines are
often referred to as the “gateway,” and include a combination of proxy servers and firewalls
that filter and multiplex the Internet traffic. In the configuration below, the PowerCore
module could be given a fixed address so any of the computers on the local network would
be able to contact it. It may be possible to configure the firewall or proxy server to allow
hosts on the Internet to directly contact the controller, but it would probably be easier to
place the controller directly on the external network outside of the firewall. This avoids
some configuration complications by sacrificing some security.

User’s Manual 93

T1lin

Adapter

Ethernet

Firewall
Proxy
Server

Hub(s)

Ethernet

Typical Corporate Network

]

— |

y Network
L

PowerCore
System

If your system administrator can give you an Ethernet cable along with its IP address, the
netmask and the gateway address, then you may be able to run the sample programs without
having to set up a direct connection between your computer and the PowerCore module.
You will also need the IP address of the nameserver, the name or IP address of your mail
server, and your domain name for some of the sample programs.

94

PowerCore FLEX

6.2.1 IP Addresses Explained

IP (Internet Protocol) addresses are expressed as 4 decimal numbers separated by periods,
for example:

216.103.126.155
10.1.1.6

Each decimal number must be between 0 and 255. The total IP address is a 32-bit number
consisting of the 4 bytes expressed as shown above. A local network uses a group of adja-

cent IP addresses. There are always 2N IP addresses in a local network. The netmask (also
called subnet mask) determines how many IP addresses belong to the local network. The
netmask is also a 32-bit address expressed in the same form as the IP address. An example
netmask is:

255.255.255.0

This netmask has 8 zero bits in the least significant portion, and this means that 28 addresses
are a part of the local network. Applied to the IP address above (216.103.126.155), this
netmask would indicate that the following IP addresses belong to the local network:

216.103.126.0
216.103.126.1
216.103.126.2
etc.
216.103.126.254
216.103.126.255

The lowest and highest address are reserved for special purposes. The lowest address
(216.102.126.0) is used to identify the local network. The highest address (216.102.126.255)
is used as a broadcast address. Usually one other address is used for the address of the
gateway out of the network. This leaves 256 - 3 = 253 available IP addresses for the
example given.

User’s Manual 95

6.2.2 How IP Addresses are Used

The actual hardware connection via an Ethernet uses Ethernet adapter addresses (also
called MAC addresses). These are 48-bit addresses and are unique for every Ethernet
adapter manufactured. In order to send a packet to another computer, given the IP address
of the other computer, it is first determined if the packet needs to be sent directly to the
other computer or to the gateway. In either case, there is an Ethernet address on the local
network to which the packet must be sent. A table is maintained to allow the protocol
driver to determine the MAC address corresponding to a particular IP address. If the table
is empty, the MAC address is determined by sending an Ethernet broadcast packet to all
devices on the local network asking the device with the desired IP address to answer with
its MAC address. In this way, the table entry can be filled in. If no device answers, then
the device is nonexistent or inoperative, and the packet cannot be sent.

Some IP address ranges are reserved for use on internal networks, and can be allocated
freely as long as no two internal hosts have the same IP address. These internal IP
addresses are not routed to the Internet, and any internal hosts using one of these reserved
IP addresses cannot communicate on the external Internet without being connected to a
host that has a valid Internet IP address. The host would either translate the data, or it
would act as a proxy.

Each PowerCore module has its own unique MAC address, which consists of the prefix
0090C2 followed by a code that is unique to each PowerCore module. For example, a
MAC address might be 0090C2C002C0.

TIP: You can always obtain the MAC address on your board by running the sample
program DISPLAY MAC.C from the SAMPLES\TCPIP folder.

96 PowerCore FLEX

6.2.3 Dynamically Assigned Internet Addresses

In many instances, devices on a network do not have fixed IP addresses. This is the case
when, for example, you are assigned an IP address dynamically by your dial-up Internet
service provider (ISP) or when you have a device that provides your IP addresses using
the Dynamic Host Configuration Protocol (DHCP). The PowerCore modules can use such
IP addresses to send and receive packets on the Internet, but you must take into account
that this IP address may only be valid for the duration of the call or for a period of time,
and could be a private IP address that is not directly accessible to others on the Internet.
These addresses can be used to perform some Internet tasks such as sending e-mail or
browsing the Web, but it is more difficult to participate in conversations that originate
elsewhere on the Internet. If you want to find out this dynamically assigned IP address,
under Windows 98 you can run the winipc£fg program while you are connected and look
at the interface used to connect to the Internet.

Many networks use IP addresses that are assigned using DHCP. When your computer
comes up, and periodically after that, it requests its networking information from a DHCP
server. The DHCP server may try to give you the same address each time, but a fixed IP
address is usually not guaranteed.

If you are not concerned about accessing the PowerCore module from the Internet, you
can place the PowerCore module on the internal network using an IP address assigned
either statically or through DHCP.

User’s Manual 97

6.3 Placing Your Device on the Network

In many corporate settings, users are isolated from the Internet by a firewall and/or a
proxy server. These devices attempt to secure the company from unauthorized network
traffic, and usually work by disallowing traffic that did not originate from inside the net-
work. If you want users on the Internet to communicate with your PowerCore module, you
have several options. You can either place the PowerCore module directly on the Internet
with a real Internet address or place it behind the firewall. If you place the PowerCore
module behind the firewall, you need to configure the firewall to translate and forward
packets from the Internet to the PowerCore module.

98 PowerCore FLEX

6.4 Running TCP/IP Sample Programs

We have provided a number of sample programs demonstrating various uses of TCP/IP for
networking embedded systems. These programs require you to connect your PC and the

PowerCore module together on the same network. This network can be a local private net-
work (preferred for initial experimentation and debugging), or a connection via the Internet.

PowerCore
System PowerCore
System
User's PC 2 1
ser’'s
/(Ethernet /'/l
Ethernet cables N
crossover m |Z|/|;| El\> To additional
cable network
; : Hub _/f elements
Direct Connection . : .
(network of 2 computers) Direct Connection Using a Hub

User’s Manual 99

6.4.1 How to Set IP Addresses in the Sample Programs

With the introduction of Dynamic C 7.30 we have taken steps to make it easier to run
many of our sample programs. You will see a TcPCONFIG macro. This macro tells
Dynamic C to select your configuration from a list of default configurations. You will
have three choices when you encounter a sample program with the TCPCONFIG macro.

1.

You can replace the TcpcoNFIG macro with individual MY IP ADDRESS,
MY NETMASK, MY GATEWAY, and MY NAMESERVER mMacros in each program.

. You can leave TcPCONF1IG at the usual default of 1, which will set the IP configurations

t010.10.6.100, the netmask to 255.255.255. 0, and the nameserver and gateway
t010.10.6.1. If youwould like to change the default values, for example, to use an IP
address of 10.1.1.2 for the PowerCore module, and 10.1.1.1 for your PC, you can
edit the values in the section that directly follows the “General Configuration” com-
ment in the Tcp_coNFIG.LIB library. You will find this library in the LIB\TCPIP
directory.

. You can create a CUSTOM CONFIG.LIB library and use a TCPCONFIG value greater

than 100. Instructions for doing this are at the beginning of the TCP_CONFIG.LIB
library in the LIB\TCPIP directory.

There are some other “standard” configurations for TcPcoNFIG that let you select different
features such as DHCP. Their values are documented at the top of the TCP_CONFIG.LIB
library in the LIB\TCPIP directory. More information is available in the Dynamic C
TCP/IP User’s Manual.

100 PowerCore FLEX

6.4.2 How to Set Up Your Computer for Direct Connect

Follow these instructions to set up your PC or notebook. Check with your administrator if
you are unable to change the settings as described here since you may need administrator
privileges. The instructions are specifically for Windows 2000, but the interface is similar
for other versions of Windows.

TIP: If you are using a PC that is already on a network, you will disconnect the PC from
that network to run these sample programs. Write down the existing settings before
changing them to facilitate restoring them when you are finished with the sample pro-
grams and reconnect your PC to the network.

1. Go to the control panel (Start > Settings > Control Panel), and then double-click the
Network icon.

2. Select the network interface card used for the Ethernet interface you intend to use (e.g.,
TCP/IP Xircom Credit Card Network Adapter) and click on the “Properties” button.
Depending on which version of Windows your PC is running, you may have to select
the “Local Area Connection” first, and then click on the “Properties” button to bring up
the Ethernet interface dialog. Then “Configure” your interface card for a “10Base-T
Half-Duplex” or an “Auto-Negotiation” connection on the “Advanced” tab.

NOTE: Your network interface card will likely have a different name.

3. Now select the IP Address tab, and check Specify an IP Address, or select TCP/IP and
click on “Properties” to assign an IP address to your computer (this will disable “obtain
an IP address automatically”):

IP Address : 10.10.6.101
Netmask : 255.255.255.0
Default gateway : 10.10.6.1
4. Click <OK> or <Close> to exit the various dialog boxes.

PowerCore
IP 10.10.6.101 System
Netmask
255.255.255.0
-
User’'s PC
Ethernet
crossover
cable

Direct Connection PC to PowerCore Module

User’s Manual 101

6.5 Run the PINGME.C Sample Program

Connect the crossover cable from your computer’s Ethernet port to the PowerCore module’s
RJ-45 Ethernet connector. Open this sample program from the SAMPLES\TCPIP\ICMP
folder, compile the program, and start it running under Dynamic C. The crossover cable is
connected from your computer’s Ethernet adapter to the PowerCore module’s RJ-45
Ethernet connector. When the program starts running, the green DS2 LED on the Power-
Core module should be on to indicate an Ethernet connection is made. (Note: If the green
LED does not light, you may not be using a crossover cable, or if you are using a hub per-
haps the power is off on the hub.)

The next step is to ping the board from your PC. This can be done by bringing up the MS-
DOS window and running the pingme program:

ping 10.10.6.101
or by Start > Run

and typing the entry

ping 10.10.6.101

Notice that the yellow DS1 LED flashes on the PowerCore module while the ping is tak-
ing place, and indicates the transfer of data. The ping routine will ping the board four
times and write a summary message on the screen describing the operation.

6.6 Running Additional Sample Programs

Many generic TCP/IP sample programs are available in the Dynamic C SAMPLES\TCPIP
folder. The following sample programs specific to the PowerCore FLEX modules are in
the Dynamic C SAMPLES\PowerCoreFLEX\TCPIP\ folder.

e SMTP.c—This program demonstrates using the SMTP library to send an e-mail when
either switch S2 or S3 on the Prototyping Board is pressed. If you are using a direct
connection, you will need an SMTP server on your host machine.

e ssI.c—This program demonstrates using a Web page to control LEDs DS5 and DS6
(LEDO and LED1) from the PowerCore Prototyping Board. Two “device LEDs” are
created along with two buttons to toggle them. Users can use their Web browser to
change the status of the LEDs to match the status on the Prototyping Board.

As long as you have not modified the TcPCcONFIG 1 macro in the sample program,
enter the following server address in your Web browser to bring up the Web page
served by the sample program.

http://10.10.6.100.
Otherwise use the TCP/IP settings you entered in the TCP_CONFIG.LIB library.

102 PowerCore FLEX

e TELNET.c— This sample program takes anything that comes in on a port and sends it
out Serial Port E. It uses a digital input to indicate that the TCP/IP connection should be
closed and a digital output to toggle an LED to indicate that there is an active connection.

PC Setup
1. Start up a PC serial utility such as Tera Term or Hyperterminal.
2. Configure the serial parameters for a baud rate of 19200, 8 bits, no parity and 1 stop bit.
3. Enable the “Local Echo” option.
4. Enable the option to append linefeeds to incoming and outgoing messages.

Connect PC to PowerCore Prototyping Board

1. Connect PC Tx to pin 4 on header J1 of the Prototyping Board (RXF).
2. Connect PC Rx to pin 6 on header J1 of the Prototyping Board (TXF).
3. Connect PC GND to pin 9 on header J1 of the Prototyping Board (GND).

Once you have compiled and run the sample program, start a Telnet session on your PC
(Start > Run telnet 10.10.6.100). Aslong as you have not modified the
TCPCONFIG 1 macro in the sample program, the IP address is 10.10.6.100 as shown;
otherwise use the TCP/IP settings you entered in the TcP CONFIG.LIB library.

Now look at LED DS5 on the Prototyping Board—a blinking LED indicates that there
Is an active Telnet connection. You can type a message in the Telnet window, then view
the message using a PC serial utility such as Tera Term. Press switch S2 on the Proto-

typing Board to close the Telnet connection; DS5 should stop blinking, indicating that
the Telnet connection has been closed.

6.7 Where Do | Go From Here?

NOTE: If you purchased your PowerCore module through a distributor or through a
Rabbit Semiconductor partner, contact the distributor or partner first for technical
support.

If there are any problems at this point:
e Use the Dynamic C Help menu to get further assistance with Dynamic C.

e Check the Rabbit Semiconductor Technical Bulletin Board at
www.rabbit.com/support/bb/.

e Use the Technical Support e-mail form at www.rabbit.com/support/.
If the sample programs ran fine, you are now ready to go on.
Additional sample programs are described in the Dynamic C TCP/IP User’s Manual.

Please refer to the Dynamic C TCP/IP User’s Manual to develop your own applications.
An Introduction to TCP/IP provides background information on TCP/IP, and is available
on the CD and on our \Web site.

User’s Manual 103

http://www.rabbit.com/
http://www.rabbit.com/support/bb/index.html
http://www.rabbit.com/support/questionSubmit.shtml

104 PowerCore FLEX

APPENDIX A. POWERCORE
SPECIFICATIONS

Appendix A provides the specifications for the PowerCore, and
describes the conformal coating.

User’s Manual 105

A.1 Electrical and Mechanical Characteristics

Figure A-1 shows the mechanical dimensions for the PowerCore.

0 . 0.225 0.150 -
§5 (5.7 H“’ (3.8) ¢ (2&;)56 x3
T
o~
O 0
Se
S~
S
ce
5= S
¥ 1 L E8
23Ty ~ =
28 3@
o — <
l O s ¥ CAUTION: HoT! Or
4.000
(102)
Bag
8g <oco58
<< o~ o—
v LA | el v
" ¥
= -
522 4.000 5]
o S8 . NS
e=e (102) ©
ojﬁ %83@? ~ Please refer to the PowerCore
°8 o-sT footprint diagram later in this
l 4t appendix for precise header
i A locations.
e O
23 5o 2.350
(60)

Figure A-1. PowerCore Dimensions
NOTE: All measurements are in inches followed by millimeters enclosed in parentheses.
All dimensions have a manufacturing tolerance of £0.01" (0.25 mm).

NOTE: The battery holder and the RJ-45 jack both extend 0.1" (2.5 mm) beyond the
edge of the board.

106 PowerCore FLEX

It is recommended that you allow for an “exclusion zone” of 0.04" (1 mm) around the
PowerCore module in all directions when the PowerCore module is incorporated into an
assembly that includes other printed circuit boards. An “exclusion zone” of 0.16" (4 mm)
is recommended below the PowerCore module when the PowerCore module is plugged
into another assembly. Figure A-2 shows this “exclusion zone.”

© Exclusion
2 ~Ng Zone

Figure A-2. PowerCore “Exclusion Zone”

NOTE: All measurements are in inches followed by millimeters enclosed in parentheses.

The PowerCore modules were tested for heat dissipation over the specified operating
temperature range, and normal heat dissipation by convection was found to be adequate. If
you plan to use PowerCore module in a tightly enclosed space, additional forced-air cool-
ing will likely be needed.

User’s Manual 107

Table A-1 lists the electrical, mechanical, and environmental specifications for the PowerCore.

Table A-1. PowerCore Speci

fications

Parameter

PowerCore 3800

PowerCore 3810

Microprocessor

Rabbit 3000® at 51.6 MHz

Rabbit 3000® at 25.8 MHz

EMI Reduction

Spectrum spreader for reduc

ed EMI (radiated emissions)

Ethernet Port

10/100 compatible 10Base-T interface,

RJ-45, 2 LEDs
512K program (fast SRAM)
SRAM + 512K data 256K data
Flash Memory 519K 519K
(program)
Serial Flash Memory 1 Mbyte —

Backup Battery

3V lithium coin type 2032, 220 mA:h
(to support RTC and data SRAM)

General-Purpose 1/0

39 parallel configurable digital 1/0 lines

Additional Inputs

2 startup mode, reset input

Additional Outputs

Status, reset

Analog Output

Ramp-generator for A/D conversion measurements

Aucxiliary 1/0 Bus

Can be configured for 8 data lines and
6 address lines (shared with parallel 1/0 lines)

Five 3.3 V, CMOS-compatible ports (shared with 1/0)
® all 5 configurable as asynchronous

e 3 configurable as clocked serial (SPI)

Serial Ports ® 2 configurable as HDLC

® 1 configurable as SDLC

® 1 asynchronous serial port dedicated for programming
Serial Rate Maximum asynchronous baud rate = CLK/8

Slave Interface

A slave port allows the PowerCore module to be used as an intelligent peripheral
device slaved to a master processor, which may either be another Rabbit 3000 or
any other type of processor

Real-Time Clock

Yes

Ten 8-bit timers (6 cascadable, 3 reserved for internal peripherals),

Timers one 10-bit timer with 2 match registers
Watchdog/Supervisor Yes

Pulse-Width 4 PWM registers with 10-bit free-running counter

Modulators and priority interrupts

Input Capture 2-channel input capture can be used to time input signals from various port pins

Quadrature Decoder

2-channel quadrature decoder accepts inputs from external incremental encoder
modules

108

PowerCore FLEX

Table A-1. PowerCore Specifications (continued)

Parameter PowerCore 3800 PowerCore 3810
DC Unregulated 8-43 V DC Unregulated 8-40 V DC
(draws 13.3 W) (draws 6.7 W)
Input
Po?/ver 24-60 V AC with center-tapped 19-57 V AC with center-tapped
Lo transformer (draws 13.3 W) transformer (draws 6.7 W)
Options AC
12-36 VV AC with untapped standard 10-29 V AC with untapped standard
transformer (draws 13.3 W) transformer (draws 6.7 W)

Current Limits for

Onboard +5 V DC 2A 1A
\oltage Regulators
Current Draw by 400 mA 150 mA

Onboard Circuits

+345VDC/| I3youtm = 350 MA I3voutm = 550 MA
+5V DC | Isyoutm = [1600 MA - I3youtal Isvoutm = [850 MA - Iayouial
AC/DC
Outputs' Unregulated lunregm = lunregm =
ACIDC 1600 MA — (I5y0uta lavouta) X (9\77I—N\—/) 1850 MA — (I5youta ¥ lavouta) X (6—\}';‘\9
Operating Temperature -40°C to +70°C

Humidity 5% to 95%, noncondensing
One 2 x 25, 0.1" pitch
Connectors one 6-pin 3 mm locking
one 2 x 5 for programming with 1.27 mm pitch
Standoffs/Spacers Provision for 3

Board Size (without
wiring harness)

2.350" x 4.000" x 1.08"
(60 mm x 102 mm x 28 mm)

* Additional power-supply options are available for PowerCore FLEX boards configured to your
specifications. These are described in Section D.1.1.

t NOTES

+3.45 V DC power supply tolerance is £150 mV; +5 V DC power supply tolerance is 250 mV

I3voutm = Maximum +3.45 V output current available to user’s circuit

lavouta = actual +3.45 V output current used by user’s circuit

lsvoutm = Maximum +5 V output current available to user’s circuit

Isvouta = actual +5 V output current used by user’s circuit

lunregm = maximum unregulated AC/DC output current available to user’s circuit—note that you
may need additional current capacity from your input power source to deliver this output current

The 6.7 V constant in the current calculation for Iqegn is derived from the 75% efficiency of
the +5 V switching regulator.

An example is provided below to illustrate a typical calculation of the various output currents.

User’s Manual

109

Example Current Calculation

Let’s look at a 24 VV AC power supply where the user’s circuit consumes 300 mA @ +3.45V,
550 mA @ +5 V, and 1500 mA @ 24 V AC. Can a PowerCore 3810 supply these needs?

I3vouta = 300 MA

Isvouta = 950 mA

lunrega = 1500 mA = actual AC output current used by user’s circuit

Now let’s examine each of these currents in turn.

* l3voutm = 350 mA; since the user’s circuit only needs 300 mA @ +3.45 V, this is OK.

® lgvoutm = [850 MA - I3youtal = [850 MA - 300 mA] = 550 mA; since the user’s circuit
needs 550 mA @ +5V, this is OK.

* IunregM

6.7

1850 MA — (1o * lavouta) X (-——V V)
IN

6.7
24V

1850 MA — (550mA + 300 mA) x

1613 mA

Since the user’s circuit only needs 1500 mA @ +24 V AC, this is OK,

110 PowerCore FLEX

A.1.1 Headers and Spacers

The PowerCore module uses one header at J4 for physical connection to other boards. J4
isa 2 x 25 SMT header with a 0.1" pin spacing. J2, the programming port, isa 2 x 5
header with a 1.27 mm pin spacing. J3 is a 2 x 3 locking connector used for power-supply
connections.

Figure A-3 shows the layout of another board for the PowerCore module to be plugged
into. These values are relative to the designated mounting hole (reference point).

1.950
\ (49.5)
| 1.680
| (42.7)
1.580
[« (40.1) ’
—J O ‘ ‘J4l P Ay
\ 2.110
2045 PowerCore Footprint ‘ m 2_045(53-6)
(519), gor H= (51.9)
(40.3) ‘ E 1.718
1.435 (43.6)
(3e.4) | 1.030
‘ J2 (26.2)
,,,,,, **éjigl
I 0.171
1.525 0.970 — “3)
(38.7) | (24.6)
1.785 | 1.300
(45.3) \ (33.0)
l 1.933

Figure A-3. User Board Footprint for PowerCore Module

NOTE: All measurements are in inches followed by millimeters enclosed in parentheses.

The PowerCore module has three mounting holes whose diameter is 0.125" (3.2 mm).
These holes can be used with spacers and mounting screws to secure the PowerCore
module for use on a high-vibration environment.

User’s Manual 111

A.2 Bus Loading

You must pay careful attention to bus loading when designing an interface to the Power-
Core module. This section provides bus loading information for external devices.

Table A-2 lists the capacitance for the various PowerCore module 1/O ports.

Table A-2. Capacitance of Rabbit 3000 I/O Ports

Input Output
I/O Ports Capacitance Capacitance
(pF) (pF)
Parallel Ports Ato G 12 14

Table A-3 lists the external capacitive bus loading for the various PowerCore module out-
put ports. Be sure to add the loads for the devices you are using in your custom system and
verify that they do not exceed the values in Table A-3.

Table A-3. External Capacitive Bus Loading -40°C to +85°C

St Ba Clock Speed Maximum External
P (MHz) Capacitive Loading (pF)
51.6 50
All /O lines
25.8 70

112 PowerCore FLEX

Figure A-4 shows a typical timing diagram for the Rabbit 3000 microprocessor external 1/0
read and write cycles.

NOTE: /IOCSx can be programmed to be active low (default) or active high.

External I/O Read (no extra wait states)

1 | Tw———s—— T2 |
CLK —
A[15:0] X valid X
7 Tadr
/CSx | | __
1 Tcsx Tesx <7
/I0CSx K -
1 Tiocsx Tiocsx|<]
/IORD -
TiorD TiorRD[<]
/BUFEN -
“1TBUFEN TBUFﬁN‘_’
setup, |
D[7:0] < X _valid -
| Thold <"
External I/O Write (no extra wait states)
k—T1 | Tw—] T2 ——)
o | | |
A[15:01 — X valid : C
7 Tadr ‘
\
ICSx | 1 \ N
I Tcsx } Tesx[7
/I0CSx !) &
1 Tiocsx { Tiocsx[<
/IOWR ‘ R
Tiowr TiowR[<™]
/BUFEN 8
~1TBUFEN TBUFEN]
D[7:0] valid —
TbHzv ‘ TovHz <

Figure A-4. 1/0 Read and Write Cycles—No Extra Wait States

User’s Manual

113

Table A-4 lists the delays in gross memory access time at 3.3 V.

Table A-4. Data and Clock Delays VIN £10%, Temp, -40°C—+85°C (maximum)

Clock to Address Output Delay Spectrum Spreader Delay
(ns) Data Setup (ns)
VIN Time Delay
30 oF 60 0F 90 oF (ns) Normal Strong
k k k no dbl/dbl | no dbl/dbl
3.3V 6 8 11 1 3/4.5 4.5/9

The measurements are taken at the 50% points under the following conditions.

e T=-40°Cto85°C, V =Vpp x10%

¢ Internal clock to nonloaded CLK pin delay <1 ns @ 85°C/3.0 V

The clock to address output delays are similar, and apply to the following delays.

* Tagn the clock to address delay

Ty the clock to memory chip select delay

* Tocsx the clock to 1/0 chip select delay

* T\orp: the clock to 1/O read strobe delay

e Towr: the clock to I/O write strobe delay

e Tguren: the clock to 1/0 buffer enable delay

The data setup time delays are similar for both Tget,, and Tpyg.

When the spectrum spreader is enabled with the clock doubler, every other clock cycle is
shortened (sometimes lengthened) by a maximum amount given in the table above. The
shortening takes place by shortening the high part of the clock. If the doubler is not
enabled, then every clock is shortened during the low part of the clock period. The maxi-
mum shortening for a pair of clocks combined is shown in the table.

Technical Note TN227, Interfacing External 1/0 with Rabbit 2000/3000 Designs, con-
tains suggestions for interfacing 1/0 devices to the Rabbit 3000 microprocessors.

114 PowerCore FLEX

A.3 Rabbit 3000 DC Characteristics

Table A-5. Rabbit 3000 Absolute Maximum Ratings

Symbol Parameter Maximum Rating
Ta Operating Temperature -55° to +85°C
Ts Storage Temperature -65° to +150°C

Maximum Input Voltage:

® Oscillator Buffer Input Vpp + 0.5V

e 5-V-tolerant I/O 55V
Vpp | Maximum Operating Voltage 3.6V

Stresses beyond those listed in Table A-5 may cause permanent damage. The ratings are
stress ratings only, and functional operation of the Rabbit 3000 chip at these or any other
conditions beyond those indicated in this section is not implied. Exposure to the absolute
maximum rating conditions for extended periods may affect the reliability of the Rabbit
3000 chip.

Table A-6 outlines the DC characteristics for the Rabbit 3000 at 3.3 V over the recom-
mended operating temperature range from T, = -55°C to +85°C, Vpp = 3.0V t0 3.6 V.

Table A-6. 3.3 Volt DC Characteristics

Symbol Parameter Test Conditions Min | Typ | Max | Units
Vpop | Supply Voltage 3.0 3.3 3.6 \Y
Vig | High-Level Input Voltage 2.0 \Y
VL | Low-Level Input Voltage 0.8 \%

_ loy = 6.8 MA, 0.7 x

V - .

oH | High-Level Output Voltage Vpp = Vpp (Min) Voo \%
Vv Low-Level Output Volt lo, =6.8mA, 04 | Vv

oL ow-Level Output Voltage Vop = Vpp (min) .

| High-Level Input Current | Vin = VoD 10 A

IH (absolute worst case, all buffers) | Vpp = Vpp (max) H

| Low-Level Input Current | VIN = Vss, 10 A

L | (absolute worst case, all buffers) | Vpp = Vpp (Max) H
loz ngtEL'tT:pueﬁZﬂf oo VINSNBD S -10 10 | pA

(absolute worst case, all buffers) Vop = Vpp (max), no pull-up

NOTE: PowerCore modules operate at a nominal +3.45 V DC.

User’s Manual

115

A.4 1/0O Buffer Sourcing and Sinking Limit

Unless otherwise specified, the Rabbit 1/0 buffers are capable of sourcing and sinking
6.8 mA of current per pin at full AC switching speed. Full AC switching assumes a

22.1 MHz CPU clock and capacitive loading on address and data lines of less than 100 pF
per pin. The absolute maximum operating voltage on all 1/O is 5.5 V.

Table A-7 shows the AC and DC output drive limits of the parallel 1/0 buffers when the
Rabbit 3000 is used in the PowerCore.

Table A-7. I/O Buffer Sourcing and Sinking Capability

Output Drive (Full AC Switching)

Sourcing/Sinking Limits

Pin Name (MA)

Sourcing Sinking

All data, address, and 1/0O

) 6.8 6.8
lines

Under certain conditions, you can exceed the limits outlined in Table A-7. See the Rabbit
3000 Microprocessor User’s Manual for additional information.

116 PowerCore FLEX

A.5 Jumper Configurations

Figure A-5 shows the jJumper locations used to configure the various PowerCore options.
The black square indicates pin 1.

Top Side

m[~ |JP1

|:|JP2

JPan[]
JP3a[_]

Bottom Side

Figure A-5. Location of PowerCore Configurable Positions

User’s Manual 117

Table A-8 lists the configuration options.

Table A-8. PowerCore Jumper Configurations

Header Description Pins Connected Factory
Default
PowerCore
1-2 | 256K 3810
JP1 Data SRAM Size
PowerCore
2-3 | 512K 3800
1-2 | Bank Mode
JP2 Flash Memory Bank Select
2-3 | Normal Mode X
PowerCore
n.c. | No Ethernet 3810
JP3 Ethernet LEDs 1-9 10/100-compatible 10Base-T PowerCore
Ethernet interface 3800
2-3 | 100Base-T Ethernet interface
PowerCore
n.c. | No Ethernet 3810
JP4 | Ethernet LEDs 1-2 10/100-compatible 10Base-T PowerCore
Ethernet interface 3800
2-3 | 100Base-T Ethernet interface

NOTE: The jumper connections are made using surface-mounted resistors.

118

PowerCore FLEX

A.6 Conformal Coating

The areas around the 32 kHz real-time clock crystal oscillator have had the Dow Corning
silicone-based 1-2620 conformal coating applied. The conformally coated area is shown
in Figure A-6. The conformal coating protects these high-impedance circuits from the
effects of moisture and contaminants over time.

Conformally coated
area

\

=
T2 Co3

Figure A-6. PowerCore Areas Receiving Conformal Coating

Any components in the conformally coated area may be replaced using standard soldering
procedures for surface-mounted components. A new conformal coating should then be
applied to offer continuing protection against the effects of moisture and contaminants.

NOTE: For more information on conformal coatings, refer to Technical Note 303, Con-
formal Coatings.

User’s Manual 119

120 PowerCore FLEX

APPENDIX B. PROTOTYPING BOARD

Appendix B describes the features and accessories of the Proto-
typing Board.

User’s Manual 121

B.1 Introduction

The Prototyping Board included in the Development Kit provides some basic 1/O periph-
erals (RS-232, triacs, LEDs, and switches), as well as a prototyping area for more
advanced hardware development. For the most basic level of evaluation and development,
the Prototyping Board can be used without modification. As you progress to more sophis-
ticated experimentation and hardware development, modifications and additions can be
made to the board without modifying or damaging the PowerCore module itself.

Figure B-1 shows the Prototyping Board and identifies its main features.

PowerCore
Module
Connector
' . ol O RS-232
Q’ I % / Header
e
/35 S
?ﬁ’gggf,ﬁ%ﬁﬂf Triac-Controlled
K , / Lamp DS1
Analog ftn Digital Outputs
Inputs/ :f/
Outputs\
User ™ Triac Out
. i puts
Swﬂches§ ’ High voltages
User N may be present
LEDs — 3 > Triac-Controlled
Reset 2 Lamp DS2
Switch Q 000
RabbitNet E:E Through-Hole CND Pad
Q ugh-
Port R |, P FHBHHG (885 Prototyping Area
SMT Prototyping| | &
Area o)

T \ LCD/Keypad
Module

+5V, GND, and .
+V Buses Connections

Figure B-1. Prototyping Board

CAUTION: High AC voltages may be present on pin 7 of header J2 and on the triac
outputs on header J2.

122 PowerCore FLEX

B.1.1 Prototyping Board Features

e Power Connection—+5V, +3.45V, and AC1_DCIN voltages are supplied to the Pro-
totyping Board by the PowerCore module. These voltages can be used to power cus-
tomer-installed parts in the prototyping area.

e Power LEDs—The two power LEDs at DS3 and DS4 light whenever +3.45V and + 5V
is being supplied to the Prototyping Board from the PowerCore module.

e Prototyping Area—A generous prototyping area has been provided for the installation
of through-hole components. +5 V, +3.45 V, and Ground buses run along one edge of
this area. Several areas for surface-mount devices are also available. Each SMT pad is
connected to a hole designed to accept a 30 AWG solid wire.

e Reset Switch—A momentary-contact, normally open switch is connected directly to the
PowerCore module’s /RESET_IN pin. Pressing the switch forces a hardware reset of the
system.

e |/O Switches and LEDs—Two momentary-contact, normally open switches are con-
nected to the PC3 and PG4 pins of the PowerCore module and may be read as inputs by
sample applications.

Two user LEDs (DS5-DS6) are connected to 1/0 pins PD5 and PC2 of the PowerCore
module.

e LCD/Keypad Module—Rabbit Semiconductor’s LCD/keypad module may be plugged
in directly to headers LCD1:JA, LCD1:JB, and LCD1:JC. The signals on headers
LCD1:JB and LCD1:JC will be available only if the LCD/keypad module is plugged in
to header LCD1:JA. Appendix C provides complete information for mounting and
using the LCD/keypad module.

e Module Extension Header—The PowerCore module’s pin set is duplicated at header
J4. Developers can solder wires directly into the appropriate holes, or, for more flexible
development, a 2 x 25 header strip with a 0.1" pitch can be soldered into place. See
Figure B-3 for the header pinouts.

e Digital I/O0—Four digital outputs and a +K connection are available on header J2. Two
digital inputs are available at header location J4. See Figure B-3 for the header pinouts.

e Triacs—Two Z0107MN triacs are installed on the Prototyping Board, and can be used
for general-purpose AC switching applications such as electrovalves, pumps, door
locks, small lamp control, and fan-speed control. Their outputs are available on header
J2. Miniature incandescent lamps may also be installed on the Prototyping Board to
observe the triac operation.

e RS-232—Two 3-wire serial ports or one 5-wire RS-232 serial port are available on the
Prototyping Board at header J1.

e RabbitNet Port—One RS-422 RabbitNet port is available to allow RabbitNet periph-
eral cards to be used with the PowerCore Prototyping Board.

User’s Manual 123

B.2 Mechanical Dimensions and Layout

Figure B-2 shows the mechanical dimensions and layout for the PowerCore Prototyping Board.

»e

- . Lr)/\
(4.75) =%
ol
4
'6"_'3 TR TR
E
R1]
@m .
.
il U
R4 [T a
g EE 8869
- [T c7
cs +
mmmmmm
€32 D4
Q9
e oF o
o
g “.;525034 mQS 0’)2 QOE
POWERCOREFLEX 5] = aiog Expan L= =
2
PRQTOTYPING ge gﬁﬁ@ﬁ
BOARD) & .
o ool
ue 2| .
!] 28838 I
|] 0000000000000 |
! 1 @] 000000000000 .
s 2 8pB822228538 85
ESET o §° 888535 |
68
il '
il
[1]
0 -
Tl o L) |
73
- DX1 1
RABBITNET T 2 AN
oo oo Lo 28 3 |
i w—) |
DEEECCO oxol— 9 ooooooog” o g s el ®
olepEnonononoRan 6 o0 o & 4494983 © oLz 383 85
RIEE 000000Q : O : 000000 |
b o|loE T QQQQQOO S 310000000 |
SO0 5B aoB 52 258 B 52
g U U; p
© EEEEEEEEEEEEEs © |
Oj0ooooooooooooo O [=]
wDDD N ’£XA$DR 3 —a
@é.;'—'é.’;"“t‘—u i dele s eYsYoYeYoYoYsYoYeYoYoYoYoYe Yo Yo Yo Yo Yo Yo Yo o Yo Yo C
ooo ooo DX3 X4
0.15
4.20 01429
(106) (38)
4.50
(114)

Figure B-2. Prototyping Board Dimensions

NOTE: All measurements are in inches followed by millimeters enclosed in parentheses.

NOTE: The RJ-45 RabbitNet jack extends 0.1" (2.5 mm) beyond the edge of the board.

124

PowerCore FLEX

Table B-1 lists the electrical, mechanical, and environmental specifications for the Power-

Core Prototyping Board.

Table B-1. PowerCore Prototyping Board Specifications

Parameter

Specification

Board Size

4.50" x 5.60" x 0.88" (114 mm x 142 mm x 22 mm)

Operating Temperature

-40°C to +70°C

Humidity

5% to 95%, noncondensing

Power from PowerCore
Module (max. current
draw for user-added
circuits)

® |aout = 350 mA (max.) (PowerCore 3800)
I3vout = 550 MA (max.) (PowerCore 3810)

o | =[1600 mA - |] (PowerCore 3800)
5Vout 3\Vout.
lsvout = [850 MA - I3yl (PowerCore 3810)"

Digital Inputs

4 inputs pulled up, £ 36 V DC,
switching threshold 0.9-2.3 V typical

Digital Outputs

2 sinking outputs,+40 V DC, 1 A maximum per channel,
2 sourcing outputs,+40 V DC, 500 mA maximum per channel

Analog Input

One 12-bit resolution, 10-bit accuracy, input range 0-10 V, 400 samples/s

Analog Outputs

3.0 V with typical 10 kQ load, 10-bit resolution
® DACO—settling time 0.4 ms
® DACI1—settling time 0.9 ms
® DAC2—settling time 2.5 ms

Two Z0107MN triacs’

Triacs ® 1 A on-state rms current, 30 V AC max. @ —40°C to +50°C
® (.8 A on-state rms current, 30 V AC max. @ 50°C to +70°C
Serial Ports Two 3-wire RS-232 or one RS-232 with RTS/CTS

Other Serial Interfaces

RabbitNet RS-422 SPI port

Other Interfaces

LCD/keypad module

LEDs

Four LEDs
® two power-supply indicators (+3.45 V and + 5 V)
® two user-configurable LEDs

Prototyping Area

Throughhole, 0.1" spacing, additional space for SMT components

® one 2 x 25,0.1" pitch socket for PowerCore module

Connectors ® two 2 x 5, 0.1" pitch headers for serial ports, digital 1/O, and triac outputs
® one RJ-45 RabbitNet jack
Standoffs/Spacers 5 plastic standoffs

* Additional current can be supplied by the 5 V regulator if the 3.45 V regulator is not supplying

its maximum current.

t Only 300 mA (rms) current is available when using the AC transformer from the PowerCore
Tool Kit when the maximum current is being drawn from the PowerCore module’s regulated

power supplies.

User’s Manual

125

B.3 Power Supply

The PowerCore Prototyping Board uses the regulated and unregulated power from the
PowerCore module.

e regulated +3.45V (+V)

e regulated +5V

¢ unregulated DC voltage (DC+)
e AC voltage (AC1_DCIN)

126 PowerCore FLEX

B.4 Using the Prototyping Board

The Prototyping Board is actually both a demonstration board and a prototyping board. As
a demonstration board, it can be used with the sample programs to demonstrate the func-
tionality of the PowerCore module right out of the box without any modifications.

The Prototyping Board pinouts are shown in Figure B-3.

Figure B-3. PowerCore Prototyping Board Pinout

i J1
: : TXE RXF
EEE NS SR EEEEEREEEE AR RXE TXF RS-232
GND
High voltages Ja
J3 J4 may be present | =& | _
o N =9 @ o OUTO0 L OUTO1 glgt’talt
2322 UBLENFRISERBIL,BE80080500 outoz Ll outes | PHIRATS
0000 0000000000000000000000000 sCro B scr1] Triac
000/ ©OO0O0O0O0O00O0O0O00O0000O00000 Outputs
Analog RCM3800
/0 Signals

A

CAUTION: High AC voltages may be present on pin 7 of header J2 and on the triac
outputs on header J2. Exercise extreme care to make sure that you do not inadvert-
ently connect one of the triac outputs or pin 7 to other pins on header J2

User’s Manual

127

The Prototyping Board comes with the basic components necessary to demonstrate the
operation of the PowerCore module. Two user LEDs (DS5 and DS6) are connected to
PowerCore module’s pins PC2 and PD5, and may be driven as output indicators as shown
in the sample applications. Two switches (S2 and S3) are connected to PG4 and PC3 to
demonstrate the interface to the Rabbit 3000 microprocessor. Reset switch S1 is the hard-
ware reset for the PowerCore module.

The Prototyping Board provides the user with the PowerCore module’s connection points
brought out conveniently to labeled points at J4 on the Prototyping Board. Although J4 is
unstuffed, a 2 x 25 header is included in the bag of parts.

Analog signals are available at J3 on the Prototyping Board. Although J3 is unstuffed, a
2 x 4 header is included in the bag of parts.

RS-232 signals are available on header J1, and digital and triac outputs are available on
header J2.

There is a through-hole prototyping space available on the Prototyping Board. The holes in
the prototyping area are spaced at 0.1" (2.5 mm). +3.45 V, +5 V, and GND traces run along
one edges of the prototyping area. Small to medium circuits can be prototyped using point-
to-point wiring with 20 to 30 AWG wire between the prototyping area, the +3.45V, +5V,
and GND traces, and the surrounding area where surface-mount components may be
installed. Small holes are provided around the surface-mounted components that may be
installed around the prototyping area.

B.4.1 Adding Other Components

There are pads for 6-pin, 16-pin, and 28-pin devices that can be used for prototyping with
surface-mount devices. There are also pads that can be used for SMT resistors and capaci-
tors in an 0805 SMT package. Each component has every one of its pin pads connected to
a hole in which a 30 AWG wire can be soldered (standard wire wrap wire can be soldered
in for point-to-point wiring on the Prototyping Board). Because the traces are very thin,
carefully determine which set of holes is connected to which surface-mount pad.

128 PowerCore FLEX

B.4.2 Digital /O

B.4.2.1 Digital Inputs

The PowerCore Prototyping Board has two digital inputs connected to a switch, INO and
IN2. The inputs are pulled up to +3.45 V as shown in Figure B-4.

GND

47 kQ

.||_

Figure B-4. PowerCore Prototyping Board Digital Inputs

The actual switching threshold is between 0.9 V and 2.3 V. Anything below this value is a

logic 0, and anything above is a logic 1.

User’s Manual

129

B.4.3 Digital Outputs

Four digital outputs, two sinking and two sourcing, are available on header J2. The sinking
outputs, OUTO00 and OUTO01, can each sink up to 1 A; the sourcing outputs, OUT02 and
OUTO3, can each source up to 500 mA. Figure B-5 shows a schematic diagram for both

types of output.

SINKING OUTPUT <
+

J2-1

ouT

PO J2-3,4
PF1

0.1 pF

GND

) .

LOAD

= J2-2

+ External
Power

- Supply

SOURCING OUTPUT
+K

J2-1
100 kQ

47 kQ 499 Q 0.1 puF

GND

LOAD

PD4 ‘ out
PES A % i J2-5,6
L

J2-2

+ External
Power
- Supply

Figure B-5. PowerCore Prototyping Board Digital Outputs

130

PowerCore FLEX

B.4.4 Triac Outputs

The Prototyping Board has two triacs, each of which can handle up to 1 A. The Rabbit
3000 can enable or disable the triacs via software calls. Figure B-6 shows a schematic
diagram for the two triac outputs.

ny, +V AC1_DCIN
A
—
PF4 TkQ /a
SCR PULSE LOAD
P2 1k /T our
PF3 N J2-9,10

47 kQ

Figure B-6. PowerCore Prototyping Board Triac Outputs

When the triac outputs are being used, the AC must be supplied by a transformer with one
side of the transformer connected to logic ground. This connection is made automatically
when you use the center-tapped transformer supplied with the PowerCore Tool Kit, or you
can use a half-wave rectified power supply.

User’s Manual 131

The zero-crossover interrupt circuit on
the PowerCore module, shown below in
Figure B-7, allows the turning on of the
triac output to be synchronized with the
AC waveform. An interrupt is sent to the
microprocessor when the AC voltage
crosses zero—this allows the software to
respond to the event. The triac output is
turned off automatically at the next
crossover after the gate is disabled.

]

0.1 pF

10kQ 10kQ

AC1_DCIN
BAT54

]]
4 4
o o
o o
¢ To
Microprocessor

20 kQ%

Interrupt 1 (PE5)

Figure B-7. PowerCore Crossover Detection Circuit

Since the triacs automatically turn themselves off at each zero crossing, power can be
applied just after a zero crossing for full power to the other device, or most of the way
between zero crossings for minimum power to the other device, or anywhere across the

wave phase.

Vout

FuLL Power ((((@) vou

AN
, .
g A

—|

angle
of triac
turn on

] 2 E t v
k_phase | \
angle
of triac

phase
turn on

, . -
/ \ /
\ '
t i
\
N l—

MINIMUM POWER{@} v, HALF POWER ((@))

phase
angle

of triac
turn on

‘

t

’
’
/
/!
\
\ \
\ \
N N

132

PowerCore FLEX

B.4.5 Analog I/O
B.4.5.1 A/D Converter Input

The Prototyping Board has one A/D converter circuit, shown below in Figure B-8.

+5V

Ramp

Generator To

Microprocessor
Input Capture PG5

Analog
Input

1

Figure B-8. PowerCore Prototyping Board A/D Converter Circuit

The ramp generator makes it possible to measure analog voltages using LM339 compara-
tors and the pulse capture capabilities of the Rabbit 3000 microprocessor to convert time
into voltage. One example of this analog measurement capability is the A/D measurement
circuit on the PowerCore Prototyping Board.

The circuit is designed to accept input voltages of 0-10 V. An A/D converter measurement
is implemented when a pulse from the comparator is routed to an input capture, PG5, on
the Rabbit 3000. The counter in the Rabbit 3000 starts at the beginning of the ramp, and
stops when the ramp crosses the input signal. The full scale is approximately 5000 counts,
which yields a measurement resolution of at least 12 bits. The end of the ramp drives an
interrupt in the Rabbit 3000, which then retrieves the count and stores it so that it can be
accessed by a software function call. The interrupt routine can be set up to average inputs
and to detect out-of-range signals.

The absolute accuracy of the voltage measurements is typically better than + 5 mV.

User’s Manual 133

B.4.5.2 D/A Converter Circuits

The Prototyping Board has three D/A converter circuits, each with a different settling time:
e DACO—settling time 0.4 ms

e DACI1—settling time 0.9 ms

e DAC2—settling time 2.5 ms

Figure B-9 shows a schematic for the D/A converter circuits used for DAC1 and DAC?2.

Analog
From Output

Microprocessor DW - J\N\f—IJW\/T + " LM324A
f1 kQ

I |

Figure B-9. PowerCore Prototyping Board D/A Converter Circuits DAC1 and DAC2

The three D/A converters differ in the number and kind of RC filtering stages.

e DACO has a faster response filter that is still able to filter out PWM noise. It uses a
5-pole active filter configuration with two op-amps.

e DACI has a less expensive 5-pole passive filter that has a slower response, but still
filters out PWM noise.

e DAC2 has the least expensive filter, a 3-pole passive filter. The trade-off is a slower
response time for the D/A converter.

Each D/A converter outputs 3.0 V into a typical 10 k< load.

134 PowerCore FLEX

B.4.6 Serial Communication

The PowerCore Prototyping Board allows you to access three of the serial ports on the Pow-
erCore module. Table B-2 summarizes the use of the three serial ports.

Table B-2. PowerCore Prototyping Board Serial Ports

Serial Port Signal Header Use
J5 .
D (RI-45 jack) RabbitNet
E J1 RS-232
F J1 RS-232

B.4.6.1 RS-232

RS-232 serial communication on the PowerCore Prototyping Board is supported by an
RS-232 transceiver installed at U2. This transceiver provides the voltage output, slew rate,
and input voltage immunity required to meet the RS-232 serial communication protocol.
Basically, the chip translates the Rabbit 3000’s signals to RS-232 signal levels. Note that
the polarity is reversed in an RS-232 circuit so that a +3.3 V input becomes approximately
-7V and 0V isoutputas +7 V. The RS-232 transceiver also provides the proper line load-
ing for reliable communication.

RS-232 can be used effectively at the PowerCore module’s maximum baud rate for dis-
tances of up to 15 m.

RS-232 flow control on an RS-232 port is initiated in software using the
serXflowcontrolon function call from rRs232.LIB, where X is the serial port (E or F).
The locations of the flow control lines are specified using a set of five macros.

SERX RTS_ PORT—Data register for the parallel port that the RTS line is on (e.g., PGDR).

SERX RTS SHADOW—Shadow register for the RTS line's parallel port (e.g., PGDRShadow).

SERX RTS_ BIT—The bit number for the RTS line.

SERX CTS_PORT—Data register for the parallel port that the CTS line is on (e.g., PCDRShadow).

SERX_ CTS_BIT—The bit number for the CTS line.

User’s Manual 135

Standard 3-wire RS-232 communication using Serial Ports E and F is illustrated in the
following sample code.

#define EINBUFSIZE 15

##define EOUTBUFSIZE 15

#define FINBUFSIZE 15
#define FOUTBUFSIZE 15

#ifndef _232BAUD
#define _232BAUD 115200
#endif

main () {
serEopen (232BAUD) ;
serFopen (232BAUD) ;
serEwrFlush () ;
serErdFlush() ;
serFwrFlush () ;
serFrdFlush() ;

}
B.4.6.2 RabbitNet Ports

The RJ-45 jack labeled RabbitNet is a clocked SPI RS-422 serial 1/0 expansion port for
use with RabbitNet peripheral boards. The RabbitNet jack does not support Ethernet
connections. Additional information on RabbitNet peripheral boards is available in
Appendix E and on the Web at www.rabbit.com/products/ExpSystems/.

B.4.7 Other Prototyping Board Modules

An optional LCD/keypad module is available that can be mounted on the Prototyping
Board. The signals on headers LCD1JB and LCD1JC will be available only if the
LCD/keypad module is installed. Refer to Appendix C, “LCD/Keypad Module,” for
complete information.

136 PowerCore FLEX

http://www.rabbit.com/products/ExpSystems/

B.5 Use of Rabbit 3000 Parallel Ports
Table B-3 lists the Rabbit 3000 parallel ports and their use for the PowerCore Prototyping

Board.

Table B-3. PowerCore Prototyping Board Use of Rabbit 3000 Parallel Ports

Port I/O Use Initial State
PAO-PA7 Input/Output | IDO-ID7 Pulled up
PB2-PB5 Output IAO-1A3 High
PB6-PB7 Output Spare pins High

PCO Output TXD SPI High (disabled)

Serial Port D

PC1 Input RXD SPI Pulled up

PC2 Output LED1 (DS6) High (disabled)

PC3 Input Switch S3 Pulled up

PD4 Output Sourcing output (OUT02) Low

PD5 Output LEDO (DS5) High

PEO Output Sinking output (OUTO01) Low

PE1 Input A/D converter interrupt —

PE3 Output Sourcing output (OUTO03) Low

PE4 Output RabbitNet chip select High

PE6 Output LCD/keypad module High

PE7 Output LCD/keypad module High

PFO Output RabbitNet CLKD Low (disabled)

PF1 Output Sinking output (OUTO00) Low (disabled)

PF2 Output Triac output (SCRO0) Low (disabled)

PF3 Output Triac output (SCR1) Low (disabled)

PF4 Output Triac pulse High (disabled)

PF5 Output D/A converter output (DAC2) Low (disabled)

PF6 Output D/A converter output (DAC1) Low (disabled)

PF7 Output D/A converter output (DACO0) Low (disabled)

PG2 Output TXF RS-232 High

Serial Port F

PG3 Input RXF RS-232 Pulled up

PG4 Input Switch S2 Pulled up

PG5 Input AJD converter input (AINO) —

PG6 Output TXE RS-232 High

Serial Port E
PG7 Input RXE RS-232 Pulled up

User’s Manual

137

138 PowerCore FLEX

APPENDIX C. LCD/KEYPAD MODULE

An optional LCD/keypad is available for the Prototyping Board.
Appendix C describes the LCD/keypad and provides the soft-
ware APIs to make full use of the LCD/keypad.

C.1 Specifications

Two optional LCD/keypad modules—with or without a panel-mounted NEMA 4 water-
resistant bezel—are available for use with the Prototyping Board. They are shown in
Figure C-1.

LCD/Keypad Modules

00000000 e0o0o0o0o0

-R+N4

200

Figure C-1. LCD/Keypad Modules Versions

Only the version without the bezel can mount directly on the Prototyping Board; if you
have the version with a bezel, you will have to remove the bezel to be able to mount the
LCD/keypad module on the Prototyping Board. Either version of the LCD/keypad module
can be installed at a remote location up to 60 cm (24") away. Contact your Rabbit Semi-
conductor sales representative or your authorized distributor for further assistance in
purchasing an LCD/keypad module.

User’s Manual 139

Mounting hardware and a 60 cm (24") extension cable are also available for the LCD/keypad
module through your Rabbit Semiconuctor sales representative or authorized distributor.

Table C-1 lists the electrical, mechanical, and environmental specifications for the LCD/
keypad module.

Table C-1. LCD/Keypad Specifications

Parameter Specification

Board Size (66 rm x 76 mm 19)
Bezel Size 4.50" x 3.60" x 0.23"

(124 mm x 91 mm x 6 mm)
Temperature Storage Ranges 40°C 1o 185°C
Humidity 5% to 95%, noncondensing
Power Consumption 1.5 W without backlight”
Connections Connects to high-rise header sockets on the Prototyping Board
LCD Panel Size 122 x 32 graphic display
Keypad 7-key keypad
LEDs Seven user-programmable LEDs

* The backlight adds approximately 650 mW to the power consumption.

The LCD/keypad module has 0.1"
IDC headers at J1, J2, and J3 for L] o100
physical connection to other boards or 29
ribbon cables. Figure C-2 shows the
LCD/keypad module footprint. These
values are relative to one of the

J1

%
. o
mounting holes. o
o
NOTE: All measurements are in ¥ D S,

inches followed by millimeters G
enclosed in parentheses. All dimen- 52

sions have a manufacturing toler- g8e v

<

ance of £0.01" (0.25 mm).

0.200 |__,|.0.500,
(5.1) (12.7)
1.450
(36.8)
2.200
(55.9)

Figure C-2. User Board Footprint for
LCD/Keypad Module

140 PowerCore FLEX

C.2 Contrast Adjustments for All Boards

Starting in 2005, LCD/keypad modules were factory-configured to optimize their contrast
based on the voltage of the system they would be used in. Be sure to select a KDU3V
LCD/keypad module for use with the PowerCore Prototyping Board — these modules
operate at 3.3 V. You may adjust the contrast using the potentiometer at R2 as shown in
Figure C-3. While LCD/keypad modules configured for 5 VV may be used with the 3.3 V
PowerCore Prototyping Board by using the potentiometer to adjust the contrast, the back-
light is likely to be dim.

LCD/Keypad Module Jumper Configurations

L Pins Factory
Header Description Connected Default
28V 12 X
75 33V 34
5V nc.
Contrast

Adjustment [

sOI onm

R11
(I
-
1 =
S
:

R13
1] [T
H
o]
¥ o4 § a6
o
J3

on

R14
(I
=
oy
& a7
o

Us)

om Onm

Part No. 101-0541

DISPLAY
BOARD

O

Figure C-3. LCD/Keypad Module Contrast Adjustments

You can set the contrast on the LCD display of pre-2005 LCD/keypad modules by adjust-
ing the potentiometer at R2 or by setting the voltage for 3.3 V by setting the jumper across

pins 3—4 on header J5 as shown in Figure C-3. Only one of these two options is available
on these LCD/keypad modules.

NOTE: Older LCD/keypad modules that do not have a header at J5 or a contrast adjust-
ment potentiometer at R2 are limited to operate only at 5 V, and will not work with the
PowerCore Prototyping Board. These LCD/keypad modules are no longer being sold.

User’s Manual 141

C.3 Keypad Labeling

The keypad may be labeled according to your needs. A template is provided in Figure C-4
to allow you to design your own keypad label insert.

(28)

Figure C-4. Keypad Template

To replace the keypad legend, remove the old legend and insert your new legend prepared
according to the template in Figure C-4. The keypad legend is located under the blue key-
pad matte, and is accessible from the left only as shown in Figure C-5.

Keypad label is located

under the blue keypad matte. O 000000 O

<JoRvl»
B00

Figure C-5. Removing and Inserting Keypad Label

)

The sample program KEYBASIC.C in the SAMPLES\LCD KEYPAD\122x32 1x7 folder
shows how to reconfigure the keypad for different applications.

142 PowerCore FLEX

C.4 Header Pinouts
Figure C-6 shows the pinouts for the LCD/keypad module.

J1

/ICS |v o|/RES

DB7B |0 o | DB6B
+5BKLT (o m| VCC

DB5B | o o | DB4B
DB3B |o o | DB2B
DB1B |o o | DBOB
AOB [0 o|A1B

A2B [0 o|A3B

GND |o o | GND
GND |o o| LED7
LED6 |o o | LED5S
LED4 |o o | LED3
LED2 |o o | LED1

GND
DB6B
DB4B
DB2B
DBOB
AOB |Z ©| A1B

J3 J2

A2B |- B | A3B
PE7 |© = |/RES

GND | o |GND
+5BKLT |C W |VCC

GND | = ©|LED7
LED6 | & O |LED5S
LED4 |o O |LED3

LED2 | o o |LED1

GND |o ©
DB7B |0 ©
DB5B |0 O
DB3B |0 ©
DB1B |0 ©

Figure C-6. LCD/Keypad Module Pinouts

C.4.1 1/O Address Assignments

The LCD and keypad on the LCD/keypad module are addressed by the /CS strobe as
explained in Table C-2.

Table C-2. LCD/Keypad Module Address Assignment

Address Function
0xE000 Device select base address (/CS)
OXExx0-0xExx7 LCD control
OXExx8 LED enable
OxExx9 Not used
OXExxA 7-key keypad
OXExxB (bits 0-6) 7-LED driver
OxExxB (bit 7) LCD backlight on/off
OXExxC-ExxF Not used

User’s Manual

143

C.5 Install Connectors on Prototyping Board

Before you can use the LCD/keypad module with the PowerCore Prototyping Board, you
will need to install connectors to attach the LCD/keypad module to the Prototyping Board.
These connectors are included with the PowerCore Tool Kit.

First solder the 2 x 13 connector to location LCD1:JA on the PowerCore Prototyping
Board as shown in Figure C-7.

¢ If you plan to bezel-mount the LCD/keypad module, continue with the bezel-mounting
instructions in Section C.7, “Bezel-Mount Installation.”

¢ If you plan to mount the LCD/keypad module directly on the Prototyping Board, solder
two additional 2 x 7 connectors at locations LCD1:JB and LCD1:JC on the Prototyping
Board. Section C.6, “Mounting LCD/Keypad Module on the Prototyping Board,”
explains how to mount the LCD/keypad module on the Prototyping Board.

FEfEEPEEPoP0FREET
5555 E = e 8
2‘ ‘ W 4 a=mcss
POWERCORE FLEX
PROTOTYPING rez[E]
BOARD DDE v
) 25z

s Sf‘ ‘gDEﬁ
Res D O

uuuuuuuuu

o
o
o
o
o
o
o

o
o
o
o
o
o
o
o
o
o
o
o
o
o

S

o
o
o
o
o
o
o
o
o
o
o
o
e
=

E
= == =
R

2
&

ox2 oxt Ui _ ol
ol o of =
Uxe
W aux2
X7
o o
uxs oo o
2
o o2 o

g

g

g

.y
o

o
g
oo

Figure C-7. Solder Connectors to RC3800 Prototyping Board

144 PowerCore FLEX

C.6 Mounting LCD/Keypad Module on the Prototyping Board

Install the LCD/keypad module on header sockets LCD1:JA, LCD1:JB, and LCD1:JC of
the Prototyping Board as shown in Figure C-8. Be careful to align the pins over the head-
ers, and do not bend them as you press down to mate the LCD/keypad module with the
Prototyping Board.

82
POWERCORE FLEX
PROTOTYPING
BOARD

9387
ﬂoq PRTRYE: Q©©©©©©© o

car 33
ve LD

Figure C-8. Install LCD/Keypad Module on Prototyping Board

User’s Manual 145

C.7 Bezel-Mount Installation

This section describes and illustrates how to bezel-mount the LCD/keypad module
designed for remote installation. Follow these steps for bezel-mount installation.

1. Cut mounting holes in the mounting panel in accordance with the recommended dimen-
sions in Figure C-9, then use the bezel faceplate to mount the LCD/keypad module onto

the panel.
0125 D, 4x
€/(3) |
JR— - 7®777

\‘ ‘/
AN //
AN s
AN //
AN /
AN /
AN ,
AN /
AN ;
AN 7
AN s
O/\
ov
cuTtouT Sg
o=
// \
, AN
// \
, AN
// \
s AN
// \
s AN
// \
/ AN
//‘ \
—p————— — o3
. 0.230 | 83
(5.8) s
2.870 |
(72.9)
3.100
(78.8)

Figure C-9. Recommended Cutout Dimensions

2. Carefully “drop in” the LCD/keypad module with the bezel and gasket attached.

146 PowerCore FLEX

3. Fasten the unit with the four 4-40 screws and washers included with the LCD/keypad
module. If your panel is thick, use a 4-40 screw that is approximately 3/16" (5 mm)
longer than the thickness of the panel.

/7 Bezel/Gasket

w R W

Om Om OEN ON ON Om Om
R2 ORI Re_ RS R R me
FCUEMI20D 200 200 200 2Eg

Figure C-10. LCD/Keypad Module Mounted in Panel (rear view)

Carefully tighten the screws until the gasket is compressed and the plastic bezel face-
plate is touching the panel.

Do not tighten each screw fully before moving on to the next screw. Apply only one or
two turns to each screw in sequence until all are tightened manually as far as they can
be so that the gasket is compressed and the plastic bezel faceplate is touching the panel.

User’s Manual 147

C.7.1 Connect the LCD/Keypad Module to Your Prototyping Board

The LCD/keypad module can be located as far as 2 ft. (60 cm) away from the PowerCore
Prototyping Board, and is connected via a ribbon cable as shown in Figure C-11.

1

™

ONIdALOLONd
XT3 OO

Figure C-11. Connecting LCD/Keypad Module to PowerCore Prototyping Board

Note the locations and connections relative to pin 1 on both the Prototyping Board and the
LCD/keypad module.

Rabbit Semiconductor offers 2 ft. (60 cm) extension cables. Contact your authorized dis-
tributor or a Rabbit Semiconductor sales representative for more information.

148 PowerCore FLEX

C.8 Sample Programs

Sample programs illustrating the use of the LCD/keypad module with the Prototyping
Board are provided in the SAMPLES\ PowerCoreFLEX\LCD KEYPAD folder.

These sample programs use the auxiliary 1/0 bus on the Rabbit 3000 chip, and so the
#define PORTA AUX I0 line is already included in the sample programs.

Each sample program has comments that describe the purpose and function of the pro-
gram. Follow the instructions at the beginning of the sample program. To run a sample
program, open it with the File menu (if it is not still open), compile it using the Compile
menu, and then run it by selecting Run in the Run menu. The PowerCore module must be
in Program mode (see Section 4.3, “Programming Cable”), and must be connected to a
PC using the programming cable as described in Chapter 2, “Getting Started.”

More complete information on Dynamic C is provided in the Dynamic C User’s Manual.

e KEYPAD LED.C—This program demonstrates the use of the external 1/0 bus. The pro-
gram will light up an LED on the LCD/keypad module and will display a message on
the LCD when a keypress is detected.

e LCDKEY FUN.C—Thisprogram demonstrates how to draw primitive features from the
graphic library (lines, circles, polygons), and also demonstrates the keypad with the key
release option.

Once you have compiled the program and are running it, you can watch the LCD display
as it goes through the various graphic demonstrations. Press a key on the LCD/keypad
module to see the corresponding LED light up. Press S2 on the Prototyping Board to
light up LED DS5 (LEDO) on the Prototyping Board, or press S3 on the Prototyping
Board to light up LED DS6 (LED1) on the Prototyping Board.

e SWITCH LCD.C—This program demonstrates the use of the external I/O bus. The pro-
gram will light up an LED on the LCD/keypad module and will display a message on
the LCD when a switch press is detected. LEDs DS5 or DS6 on the Prototyping Board
will also light up when switch S2 or S3 is pressed.

Additional sample programs are available in the SAMPLES\LCD KEYPAD\122x32 1x7
folder.

User’s Manual 149

C.9 LCD/Keypad Module Function Calls

When mounted on the Prototyping Board, the LCD/keypad module uses the auxiliary 1/0
bus on the Rabbit 3000 chip. Remember to add the line

#define PORTA AUX IO

to the beginning of any programs using the auxiliary 1/0 bus.
C.9.1 LCD/Keypad Module Initialization

The function used to initialize the LCD/keypad module can be found in the Dynamic C
LIB\DISPLAYS\LCD122KEY7.LIB library.

dispInit

void dispInit();

DESCRIPTION

Initializes the LCD/keypad module. The keypad is set up using keypadDef£ () or
keyConfig () after this function call.

RETURN VALUE
None.

150 PowerCore FLEX

C.9.2 LEDs

When power is applied to the LCD/keypad module for the first time, the red LED (DS1)
will come on, indicating that power is being applied to the LCD/keypad module. The red
LED is turned off when the brdInit function executes.

One function is available to control the LEDs, and can be found in the Dynamic C ris\
DISPLAYS\LCD122KEY7.LIB library.

displedOut

void displedOut(int led, int wvalue);

DESCRIPTION

LED on/off control. This function will only work when the LCD/keypad module is in-
stalled on the Prototyping Board.

PARAMETERS

led is the LED to control.

0=LED DS1
1=LED DS2
2=LED DS3
3=LED DS4
4 =LED DS5
5=LED DS6
6 = LED DS7

value is the value used to control whether the LED is on or off (0 or 1).
0 = off
1=on
RETURN VALUE
None.

User’s Manual 151

C.9.3 LCD Display

The functions used to control the LCD display are contained in the GRAPHIC.LIB library
located in the Dynamic C LIB\DISPLAYS\GRAPHIC library folder. When x and y coordi-
nates on the display screen are specified, x can range from 0 to 121, and y can range from
0 to 31. These numbers represent pixels from the top left corner of the display.

glInit

void glInit (void);

DESCRIPTION
Initializes the display devices, clears the screen.

RETURN VALUE
None.

SEE ALSO

glDispOnOFF, glBacklight, glSetContrast, glPlotDot, glBlock, glPlotDot,
glPlotPolygon, glPlotCircle, glHScroll, glVScroll, glXFontInit, glPrintf,
glPutChar, glSetBrushType, glBufflLock, glBuffUnlock, glPlotLine

glBackLight

void glBackLight(int onOff) ;

DESCRIPTION
Turns the display backlight on or off.

PARAMETER

onOff turns the backlight on or off

1—turn the backlight on
0—turn the backlight off

RETURN VALUE
None.

SEE ALSO

glInit, glDispOnoff, glSetContrast

152 PowerCore FLEX

glDispOnOff

void glDispOnOff (int onOff) ;

DESCRIPTION
Sets the LCD screen on or off. Data will not be cleared from the screen.
PARAMETER
onOf £ turns the LCD screen on or off
1—turn the LCD screen on
0—turn the LCD screen off

RETURN VALUE
None.

SEE ALSO
glInit, glSetContrast, glBackLight

glSetContrast

void glSetContrast (unsigned level) ;

DESCRIPTION
Sets display contrast.

NOTE: This function is not used with the LCD/keypad module since the support circuits
are not available on the LCD/keypad module.

User’s Manual 153

glFillScreen

void glFillScreen(int pattern);

DESCRIPTION
Fills the LCD display screen with a pattern.

PARAMETER

The screen will be set to all black if pattern is OxFF, all white if pattern is 0x00,
and vertical stripes for any other pattern.

RETURN VALUE
None.

SEE ALSO
glBlock, glBlankScreen, glPlotPolygon, glPlotCircle

glBlankScreen

void glBlankScreen (void) ;
DESCRIPTION
Blanks the LCD display screen (sets LCD display screen to white).

RETURN VALUE
None.

SEE ALSO
glFillScreen, glBlock, glPlotPolygon, glPlotCircle

154 PowerCore FLEX

glFillRegion

void glFillRegion(int left, int top, int width, int height,
char pattern);

DESCRIPTION

Fills a rectangular block in the LCD buffer with the pattern specified. Any portion of
the block that is outside the LCD display area will be clipped..

PARAMETERS
left the x coordinate of the top left corner of the block.
top the y coordinate of the top left corner of the block.
width the width of the block.
height the height of the block.
pattern the bit pattern to display (all black if pattern is OxFF, all white

if pattern is 0x00, and vertical stripes for any other pattern).

RETURN VALUE
None.

SEE ALSO
glFillScreen, glBlankScreen, glBlock, glBlankRegion

User’s Manual 155

glFastFillRegion

void glFastFillRegion(int left, int top, int width, int height,
char pattern);

DESCRIPTION
Fills arectangular block in the LCD buffer with the pattern specified. The block left and
width parameters must be byte-aligned. Any portion of the block that is outside the
LCD display area will be clipped..

PARAMETERS
left the x coordinate of the top left corner of the block.
top the y coordinate of the top left corner of the block.
width the width of the block.
height the height of the block.
pattern the bit pattern to display (all black if pattern is OxFF, all white

if pattern is 0x00, and vertical stripes for any other pattern).
RETURN VALUE
None.

SEE ALSO
glFillScreen, glBlankScreen, glBlock, glBlankRegion

156 PowerCore FLEX

glBlankRegion

void glBlankRegion (int left, int top, int width, int height) ;

DESCRIPTION

Clears a region on the LCD display. The block left and width parameters must be byte-
aligned. Any portion of the block that is outside the LCD display area will be clipped..

PARAMETERS
left the x coordinate of the top left corner of the block (x must be
evenly divisible by 8).
top the y coordinate of the top left corner of the block.
width the width of the block (must be evenly divisible by 8).
height the height of the block.

RETURN VALUE
None.

SEE ALSO
glFillScreen, glBlankScreen, glBlock

User’s Manual 157

glBlock

void glBlock(int left, int top, int width, int height);

DESCRIPTION

Draws a rectangular block in the page buffer and on the LCD if the buffer is unlocked.
Any portion of the block that is outside the LCD display area will be clipped.

PARAMETERS
left the x coordinate of the top left corner of the block.
top the y coordinate of the top left corner of the block.
width the width of the block.
height the height of the block.

RETURN VALUE
None.

SEE ALSO
glFillScreen, glBlankScreen, glPlotPolygon, glPlotCircle

glPlotVPolygon

void glPlotVPolygon(int n, int *pFirstCoord);

DESCRIPTION

Plots the outline of a polygon in the LCD page buffer, and on the LCD if the buffer is
unlocked. Any portion of the polygon that is outside the LCD display area will be
clipped. If fewer than 3 vertices are specified, the function will return without doing
anything.

PARAMETERS
n the number of vertices.

pFirstCoord apointer to array of vertex coordinates: x1,y1, x2,y2,
x3,y3, ...

RETURN VALUE
None.

SEE ALSO
glPlotPolygon, glFillPolygon, glFillVPolygon

158 PowerCore FLEX

glPlotPolygon

void glPlotPolygon(int n, int yl, int x2, int y2, ...);

DESCRIPTION

Plots the outline of a polygon in the LCD page buffer and on the LCD if the buffer is
unlocked. Any portion of the polygon that is outside the LCD display area will be
clipped. If fewer than 3 vertices are specified, the function will return without doing

anything.

PARAMETERS
n the number of vertices.
vl the y coordinate of the first vertex.
x1 the x coordinate of the first vertex.
y2 the y coordinate of the second vertex.
x2 the x coordinate of the second vertex.

. the coordinates of additional vertices.

RETURN VALUE
None.

SEE ALSO
glPlotVPolygon, glFillPolygon, glFillVPolygon

User’s Manual 159

glFillVPolygon

void glFillVPolygon(int n, int *pFirstCoord);

DESCRIPTION

Fills a polygon in the LCD page buffer and on the LCD screen if the buffer is unlocked.
Any portion of the polygon that is outside the LCD display area will be clipped. If fewer
than 3 vertices are specified, the function will return without doing anything.

PARAMETERS
n the number of vertices.

pFirstCoord apointer to array of vertex coordinates: x1,y1, x2,y2,
x3,y3, ...

RETURN VALUE
None.

SEE ALSO
glFillPolygon, glPlotPolygon, glPlotVPolygon

160 PowerCore FLEX

glFillPolygon

void glFillPolygon(int n, int x1, int yl, int x2, int y2, ...):

DESCRIPTION

Fills a polygon in the LCD page buffer and on the LCD if the buffer is unlocked. Any
portion of the polygon that is outside the LCD display area will be clipped. If fewer than
3 vertices are specified, the function will return without doing anything.

PARAMETERS
n the number of vertices.
x1 the x coordinate of the first vertex.
vl the y coordinate of the first vertex.
x2 the x coordinate of the second vertex.
y2 the y coordinate of the second vertex.

. the coordinates of additional vertices.

RETURN VALUE
None.

SEE ALSO
glFillVPolygon, glPlotPolygon, glPlotVPolygon

User’s Manual 161

glPlotCircle

void glPlotCircle(int xc, int yc, int rad);

DESCRIPTION

Draws the outline of a circle in the LCD page buffer and on the LCD if the buffer is
unlocked. Any portion of the circle that is outside the LCD display area will be clipped.

PARAMETERS
xc the x coordinate of the center of the circle.
yc the y coordinate of the center of the circle.
rad the radius of the center of the circle (in pixels).

RETURN VALUE
None.

SEE ALSO
glFillCircle, glPlotPolygon, glFillPolygon

glFillCircle

void glFillCircle(int xc, int yc, int rad);

DESCRIPTION

Draws a filled circle in the LCD page buffer and on the LCD if the buffer is unlocked.
Any portion of the circle that is outside the LCD display area will be clipped.

PARAMETERS
xc the x coordinate of the center of the circle.
yc the y coordinate of the center of the circle.
rad the radius of the center of the circle (in pixels).

RETURN VALUE
None.

SEE ALSO
glPlotCircle, glPlotPolygon, glFillPolygon

162 PowerCore FLEX

glXFontInit

void glXFontInit (fontInfo *pInfo, char pixWidth, char pixHeight,
unsigned startChar, unsigned endChar, unsigned long xmemBuffer) ;

DESCRIPTION

Initializes the font descriptor structure, where the font is stored in xmem. Each font
character's bitmap is column major and byte aligned.

PARAMETERS
pInfo a pointer to the font descriptor to be initialized.
pixWidth the width (in pixels) of each font item.
pixHeight the height (in pixels) of each font item.
startChar the value of the first printable character in the font character set.
endChar the value of the last printable character in the font character set.
xmemBuffer the xmem pointer to a linear array of font bitmaps.

RETURN VALUE
None.

SEE ALSO
glPrinf

User’s Manual 163

glFontCharAddr

unsigned long glFontCharAddr (fontInfo *pInfo, char letter);

DESCRIPTION
Returns the xmem address of the character from the specified font set.

PARAMETERS
*pInfo the xmem address of the bitmap font set.
letter an ASCII character.

RETURN VALUE
xmem address of bitmap character font, column major and byte-aligned.

SEE ALSO

glPutFont, glPrintf

glPutFont

void glPutFont (int x, int y, fontInfo *pInfo, char code);

DESCRIPTION

Puts an entry from the font table to the page buffer and on the LCD if the buffer is un-
locked. Each font character's bitmap is column major and byte-aligned. Any portion of
the bitmap character that is outside the LCD display area will be clipped.

PARAMETERS
X the x coordinate (column) of the top left corner of the text.
y the y coordinate (row) of the top left corner of the text.
pInfo a pointer to the font descriptor.
code the ASCII character to display.

RETURN VALUE
None.

SEE ALSO
glFontCharAddr, glPrintf

164 PowerCore FLEX

glSetPfStep

void glSetPfStep(int stepX, int stepY);

DESCRIPTION

Setsthe glPrint£ () printing step direction. The x and y step directions are indepen-
dent signed values. The actual step increments depend on the height and width of the
font being displayed, which are multiplied by the step values.

PARAMETERS
stepX the glPrint£ X step value
stepY the glPrint£ y step value

RETURN VALUE
None.

SEE ALSO
Use glGetP£fStep () to examine the current x and y printing step direction.

glGetPfStep

int glGetPfStep(void) ;

DESCRIPTION

Gets the current glPrint£ () printing step direction. Each step direction is indepen-
dent of the other, and is treated as an 8-bit signed value. The actual step increments de-
pends on the height and width of the font being displayed, which are multiplied by the
step values.

RETURN VALUE

The x step is returned in the MSB, and the y step is returned in the LSB of the integer
result.

SEE ALSO
Use glGetP£fStep () to control the x and y printing step direction.

User’s Manual 165

glPutChar

void glPutChar (char ch, char *ptr, int *cnt, glPutCharInst
*pInst)

DESCRIPTION

Provides an interface between the STDIO string-handling functions and the graphic li-
brary. The STDIO string-formatting function will call this function, one character at a
time, until the entire formatted string has been parsed. Any portion of the bitmap char-
acter that is outside the LCD display area will be clipped.

PARAMETERS
ch the character to be displayed on the LCD.
*ptr not used, but is a place holder for STDIO string functions.
*ant not used, is a place holder for STDIO string functions.
pInst a pointer to the font descriptor.

RETURN VALUE
None.

SEE ALSO

glPrintf, glPutFont, doprnt

166 PowerCore FLEX

glPrintf

void glPrintf (int x, int y, fontInfo *pInfo, char *fmt, ...);

DESCRIPTION

Prints a formatted string (much like print£) on the LCD screen. Only the character
codes that exist in the font set are printed, all others are skipped. For example, "\b', '\t
\n"and "\r' (ASCII backspace, tab, new line, and carriage return, respectively) will be
printed if they exist in the font set, but will not have any effect as control characters.
Any portion of the bitmap character that is outside the LCD display area will be clipped.

PARAMETERS
X the x coordinate (column) of the upper left corner of the text.
y the y coordinate (row) of the upper left corner of the text.
pInfo a pointer to the font descriptor.
*fmt a formatted string.
.o formatted string conversion parameter(s).

EXAMPLE

glprintf (0,0, &fil2x16, "Test %d\n", count);

RETURN VALUE
None.

SEE ALSO

glXFontInit

User’s Manual 167

glBuffLock

void glBufflLock(void) ;

DESCRIPTION
Increments LCD screen locking counter. Graphic calls are recorded in the LCD mem-
ory buffer and are not transferred to the LCD if the counter is non-zero.

NOTE: glBuffLock () and glBuffUnlock () can be nested up to a level of 255, but be
sure to balance the calls. It is not a requirement to use these procedures, but a set of
glBuffLock () and glBuffUnlock () bracketing a set of related graphic calls speeds
up the rendering significantly.

RETURN VALUE

None.

SEE ALSO
glBuffUnlock, glSwap

glBuffUnlock

void glBuffUnlock (void) ;

DESCRIPTION

Decrements the LCD screen locking counter. The contents of the LCD buffer are trans-
ferred to the LCD if the counter goes to zero.

RETURN VALUE
None.

SEE ALSO
glBuffLock, glSwap

168 PowerCore FLEX

glswap

void glSwap (void) ;

DESCRIPTION

Checks the LCD screen locking counter. The contents of the LCD buffer are transferred
to the LCD if the counter is zero.

RETURN VALUE
None.

SEE ALSO

glBuffUnlock, glBufflLock, glSwapData (located in the library specifically for
the LCD that you are using)

glSetBrushType

void glSetBrushType(int type);

DESCRIPTION
Sets the drawing method (or color) of pixels drawn by subsequent graphic calls.

PARAMETER

type value can be one of the following macros.

PIXBLACK draws black pixels (turns pixel on).
PIXWHITE draws white pixels (turns pixel off).
PIXXOR draws old pixel XOR'ed with the new pixel.

RETURN VALUE
None.

SEE ALSO
glGetBrushType

User’s Manual 169

glGetBrushType

int glGetBrushType (void) ;
DESCRIPTION
Gets the current method (or color) of pixels drawn by subsequent graphic calls.

RETURN VALUE
The current brush type.

SEE ALSO
glSetBrushType

glXGetBitmap

void glXGetBitmap (int x, int y, int bmWidth, int bmHeight,
unsigned long xBm) ;

DESCRIPTION

Gets a bitmap from the LCD page buffer and stores it in xmem RAM. This function au-
tomatically calls glXGetFastmap if the left edge of the bitmap is byte-aligned and
the left edge and width are each evenly divisible by 8.

This function call is intended for use only when a graphic engine is used to interface with
the LCD/keypad module.

PARAMETERS
x the x coordinate in pixels of the top left corner of the bitmap (x
must be evenly divisible by 8).
y the y coordinate in pixels of the top left corner of the bitmap.
bmwWidth the width in pixels of the bitmap (must be evenly divisible by 8).
bmHeight the height in pixels of the bitmap.
xBm the xmem RAM storage address of the bitmap.

RETURN VALUE
None.

170 PowerCore FLEX

glXGetFastmap

void glXGetFastmap (int left, int top, int width, int height,
unsigned long xmemptr) ;

DESCRIPTION
Draws bitmap in the specified space. The data for the bitmap are stored in xmem. This
function is similar to glXPutBitmap, except that it's faster. The bitmap must be
byte-aligned. Any portion of a bitmap image or character that is outside the LCD dis-
play area will be clipped.

This function call is intended for use only when a graphic engine is used to interface with
the LCD/keypad module.

PARAMETERS
left the x coordinate of the top left corner of the bitmap (x must be
evenly divisible by 8).
top the y coordinate in pixels of the top left corner of the bitmap.
width the width of the bitmap (must be evenly divisible by 8).
height the height of the bitmap.
xmemptr the xmem RAM storage address of the bitmap.

RETURN VALUE
None.

SEE ALSO
glXPutBitmap, glPrintf

User’s Manual 171

glPlotDot

void glPlotDot (int x, int y);

DESCRIPTION

Draws a single pixel in the LCD buffer, and on the LCD if the buffer is unlocked. If the
coordinates are outside the LCD display area, the dot will not be plotted.

PARAMETERS
X the x coordinate of the dot.
y the y coordinate of the dot.

RETURN VALUE
None.

SEE ALSO
glPlotline, glPlotPolygon, glPlotCircle

glPlotLine

void glPlotLine(int x0, int yO0, int x1, int yl1);

DESCRIPTION

Draws a line in the LCD buffer, and on the LCD if the buffer is unlocked. Any portion
of the line that is beyond the LCD display area will be clipped.

PARAMETERS
x0 the x coordinate of one endpoint of the line.
yo0 the y coordinate of one endpoint of the line.
x1 the x coordinate of the other endpoint of the line.
vl the y coordinate of the other endpoint of the line.

RETURN VALUE
None.

SEE ALSO
glPlotDot, glPlotPolygon, glPlotCircle

172 PowerCore FLEX

glLeftl

void glLeftl (int left, int top, int cols, int rows);

DESCRIPTION
Scrolls byte-aligned window left one pixel, right column is filled by current pixel type
(color).
PARAMETERS
left the top left corner of bitmap, must be evenly divisible by 8, other-
wise truncates.
top the top left corner of the bitmap.
cols the number of columns in the window, must be evenly divisible by 8,
otherwise truncates.
rows the number of rows in the window.

RETURN VALUE
None.

SEE ALSO
glHScroll, glRightl

User’s Manual 173

glRightl

void glRightl (int left, int top, int cols, int rows);

DESCRIPTION
Scrolls byte-aligned window right one pixel, left column is filled by current pixel type
(color).
PARAMETERS
left the top left corner of bitmap, must be evenly divisible by 8, other-
wise truncates.
top the top left corner of the bitmap.
cols the number of columns in the window, must be evenly divisible by 8,
otherwise truncates.
rows the number of rows in the window.

RETURN VALUE
None.

SEE ALSO
glHScroll, glLeftl

174 PowerCore FLEX

gluUpl

void glUpl(int left, int top, int cols, int rows);

DESCRIPTION
Scrolls byte-aligned window up one pixel, bottom columniis filled by current pixel type
(color).
PARAMETERS
left the top left corner of bitmap, must be evenly divisible by 8, other-
wise truncates.
top the top left corner of the bitmap.
cols the number of columns in the window, must be evenly divisible by 8,
otherwise truncates.
rows the number of rows in the window.

RETURN VALUE
None.

SEE ALSO
glvScroll, glDownl

User’s Manual 175

glDownl

void glDownl (int left, int top, int cols, int rows);

DESCRIPTION
Scrolls byte-aligned window down one pixel, top column is filled by current pixel type
(color).
PARAMETERS
left the top left corner of bitmap, must be evenly divisible by 8, other-
wise truncates.
top the top left corner of the bitmap.
cols the number of columns in the window, must be evenly divisible by 8,
otherwise truncates.
rows the number of rows in the window.

RETURN VALUE
None.

SEE ALSO
glvScroll, glUpl

176 PowerCore FLEX

glHScroll

void glHScroll (int left, int top, int cols, int rows, int nPix);

DESCRIPTION

Scrolls right or left, within the defined window by x number of pixels. The opposite
edge of the scrolled window will be filled in with white pixels. The window must be
byte-aligned.

Parameters will be verified for the following:

1. The left and cols parameters will be verified that they are evenly divisible by 8. If not,
they will be truncated to a value that is a multiple of 8.

2. Parameters will be checked to verify that the scrolling area is valid. The minimum scroll-
ing area is a width of 8 pixels and a height of one row.

PARAMETERS
left the top left corner of bitmap, must be evenly divisible by 8.
top the top left corner of the bitmap.
cols the number of columns in the window, must be evenly divisible by 8.
rows the number of rows in the window.
nPix the number of pixels to scroll within the defined window (a negative

value will produce a scroll to the left).

RETURN VALUE
None.

SEE ALSO
glvScroll

User’s Manual 177

glvScroll

void glvScroll (int left, int top, int cols, int rows, int nPix);

DESCRIPTION

Scrolls up or down, within the defined window by x number of pixels. The opposite
edge of the scrolled window will be filled in with white pixels. The window must be
byte-aligned.

Parameters will be verified for the following:

1. The left and cols parameters will be verified that they are evenly divisible by 8. If not,
they will be truncated to a value that is a multiple of 8.

2. Parameters will be checked to verify that the scrolling area is valid. The minimum scroll-
ing area is a width of 8 pixels and a height of one row.

PARAMETERS
left the top left corner of bitmap, must be evenly divisible by 8.
top the top left corner of the bitmap.
cols the number of columns in the window, must be evenly divisible by 8.
rows the number of rows in the window.
nPix the number of pixels to scroll within the defined window (a negative

value will produce a scroll up).

RETURN VALUE
None.

SEE ALSO
glHScroll

178 PowerCore FLEX

glXPutBitmap

void glXPutBitmap (int left, int top, int width, int height,
unsigned long bitmap) ;

DESCRIPTION

Draws bitmap in the specified space. The data for the bitmap are stored in xmem. This
function calls glXPutFastmap automatically if the bitmap is byte-aligned (the left
edge and the width are each evenly divisible by 8).

Any portion of a bitmap image or character that is outside the LCD display area will be

clipped.

PARAMETERS
left the top left corner of the bitmap.
top the top left corner of the bitmap.
width the width of the bitmap.
height the height of the bitmap.
bitmap the address of the bitmap in xmem.

RETURN VALUE
None.

SEE ALSO
glXPutFastmap, glPrintf

User’s Manual 179

glXPutFastmap

void glXPutFastmap (int left, int top, int width, int height,
unsigned long bitmap) ;

DESCRIPTION

Draws bitmap in the specified space. The data for the bitmap are stored in xmem. This
function is like glXPutBitmap, except that it is faster. The restriction is that the bit-
map must be byte-aligned.

Any portion of a bitmap image or character that is outside the LCD display area will be

clipped.
PARAMETERS

left the top left corner of the bitmap, must be evenly divisible by 8,
otherwise truncates.

top the top left corner of the bitmap.

width the width of the bitmap, must be evenly divisible by 8, otherwise
truncates.

height the height of the bitmap.

bitmap the address of the bitmap in xmem.

RETURN VALUE
None.

SEE ALSO
glXPutBitmap, glPrintf

180 PowerCore FLEX

TextWindowFrame

int TextWindowFrame (windowFrame *window, fontInfo *pFont, int x,
int y, int winWidth, int winHeight);

DESCRIPTION

Defines a text-only display window. This function provides a way to display characters
within the text window using only character row and column coordinates. The text win-
dow feature provides end-of-line wrapping and clipping after the character in the last
column and row is displayed.

NOTE: Execute the TextWwindowFrame function before other Text. .. functions.

PARAMETERS
window a pointer to the window frame descriptor.
pFont a pointer to the font descriptor.
x the x coordinate of the top left corner of the text window frame.
y the y coordinate of the top left corner of the text window frame.
winWidth the width of the text window frame.
winHeight the height of the text window frame.

RETURN VALUE

O0—window frame was successfully created.

-1—x coordinate + width has exceeded the display boundary.
-2—y coordinate + height has exceeded the display boundary.
-3—Invalid winHeight and/or winwidth parameter value.

User’s Manual 181

TextBorderInit

void TextBorderInit (windowFrame *wPtr, int border, char *title);

DESCRIPTION
This function initializes the window frame structure with the border and title information.

NOTE: Execute the TextWindowFrame function before using this function.

PARAMETERS

wPtr a pointer to the window frame descriptor.

border the border style:
SINGLE LINE—The functionwill draw asingle-line border
around the text window.

DOUBLE _LINE—The function will draw a double-line bor-
der around the text window.

title a pointer to the title information:
If a NULL string is detected, then no title is written to the text
menu.

If a string is detected, then it will be written center-aligned to
the top of the text menu box.

RETURN VALUE
None.

SEE ALSO
TextBorder, TextGotoXY, TextPutChar, TextWindowFrame, TextCursorLocation

182 PowerCore FLEX

TextBorder

void TextBorder (windowFrame *wPtr) ;

DESCRIPTION

This function displays the border for a given window frame. This function will auto-
matically adjust the text window parameters to accommodate the space taken by the
text border. This adjustment will only occur once after the TextBorderInit func-
tion executes.

NOTE: Execute the TextWindowFrame function before using this function.
PARAMETER
wPtr a pointer to the window frame descriptor.

RETURN VALUE
None.

SEE ALSO

TextBorderInit, TextGotoXY, TextPutChar, TextWindowFrame,
TextCursorLocation

TextGotoXY

void TextGotoXY (windowFrame *window, int col, int row);

DESCRIPTION

Sets the cursor location to display the next character. The display location is based on
the height and width of the character to be displayed.

NOTE: Execute the TextWindowFrame function before using this function.

PARAMETERS
window a pointer to a font descriptor.
col a character column location.
row a character row location.

RETURN VALUE
None.

SEE ALSO

TextPutChar, TextPrintf, TextWindowFrame

User’s Manual 183

TextCursorLocation

void TextCursorLocation (windowFrame *window, int *col, int *row);

DESCRIPTION
Gets the current cursor location that was set by a Graphic Text . . . function.

NOTE: Execute the TextWindowFrame function before using this function.

PARAMETERS
window a pointer to a font descriptor.
col a pointer to cursor column variable.
row a pointer to cursor row variable.

RETURN VALUE

Lower word = Cursor Row location
Upper word = Cursor Column location

SEE ALSO

TextGotoXY, TextPrintf, TextWindowFrame, TextCursorLocation

184 PowerCore FLEX

TextPutChar

void TextPutChar (struct windowFrame *window, char ch);

DESCRIPTION

Displays a character on the display where the cursor is currently pointing. Once a char-
acter is displayed, the cursor will be incremented to the next character position. If any
portion of a bitmap character is outside the LCD display area, the character will not be
displayed.

NOTE: Execute the TextWindowFrame function before using this function.

PARAMETERS
*window a pointer to a font descriptor.
ch a character to be displayed on the LCD.

RETURN VALUE
None.

SEE ALSO

TextGotoXY, TextPrintf, TextWindowFrame, TextCursorLocation

User’s Manual 185

TextPrintf

void TextPrintf (struct windowFrame *window, char *fmt, ...);

DESCRIPTION

Prints a formatted string (much like print£) on the LCD screen. Only printable char-
acters in the font set are printed; escape sequences '\r' and "\n' are also recognized. All
other escape sequences will be skipped over; for example, \b* and \'t' will will cause

nothing to be displayed.

The text window feature provides end-of-line wrapping and clipping after the character
in the last column and row is displayed. The cursor then remains at the end of the string.

NOTE: Execute the TextWwindowFrame function before using this function.

PARAMETERS

window a pointer to a font descriptor.

*fmt a formatted string.

.o formatted string conversion parameter(s).
EXAMPLE

TextPrintf (&TextWindow, "Test %d\n", count);

RETURN VALUE
None.

SEE ALSO

TextGotoXY, TextPutChar, TextWindowFrame, TextCursorLocation

186

PowerCore FLEX

TextMaxChars

int TextMaxChars (windowFrame *wPtr) ;

DESCRIPTION

This function returns the maximum number of characters that can be displayed within
the text window.

NOTE: Execute the TextWwindowFrame function before using this function.
PARAMETER

wPtr a pointer to the window frame descriptor.

RETURN VALUE
The maximum number of characters that can be displayed within the text window.

SEE ALSO

TextGotoXY, TextPrintf, TextWindowFrame, TextCursorLocation

TextWinClear

void TextWinClear (windowFrame *wPtr);

DESCRIPTION
This functions clears the entire area within the specified text window.

NOTE: Execute the TextWindowFrame function before using this function.
PARAMETERS

wPtr a pointer to the window frame descriptor.

RETURN VALUE
None.

SEE ALSO

TextGotoXY, TextPrintf, TextWindowFrame, TextCursorLocation

User’s Manual

187

C.9.4 Keypad

The functions used to control the keypad are contained in the Dynamic C LIB\KEYPADS\

KEYPAD7 . LIB library.

keyInit

void keyInit (void);

DESCRIPTION

Initializes keypad process.

RETURN VALUE
None.

SEE ALSO

brdInit

188

PowerCore FLEX

keyConfig

void keyConfig(char cRaw, char cPress, char cRelease,
char cCntHold, char cSpdLo, char cCntLo, char cSpdHi);

DESCRIPTION

Assigns each key with keypress and release codes, and hold and repeat ticks for auto
repeat and debouncing.

PARAMETERS

cRaw a raw key code index.
1 x 7 keypad matrix with raw key code index assignments (in brackets):

[0] [1] [2] [3]
[4] [5] [6]

User Keypad Interface

cPress a keypress code

An 8-bit value is returned when a key is pressed.
0 = Unused.

See keypadDef () for default press codes.

cRelease a key release code.
An 8-bit value is returned when a key is pressed.
0 = Unused.
cCntHold a hold tick, which is approximately one debounce period or 5 ps.
How long to hold before repeating.
0 = No Repeat.
cSpdLo a low-speed repeat tick, which is approximately one debounce

period or 5 s.
How many times to repeat.
0 = None.
cCntLo a low-speed hold tick, which is approximately one debounce period
or 5 us.
How long to hold before going to high-speed repeat.
0 = Slow Only.
cSpdHi a high-speed repeat tick, which is approximately one debounce
period or 5 ps.

How many times to repeat after low speed repeat.
0 = None.

User’s Manual 189

RETURN VALUE
None.

SEE ALSO
keyProcess, keyGet, keypadDef

190 PowerCore FLEX

keyProcess

void keyProcess(void);

DESCRIPTION

Scans and processes keypad data for key assignment, debouncing, press and release,

and repeat.

NOTE: This function is also able to process an 8 x 8 matrix keypad.

RETURN VALUE
None.

SEE ALSO
keyConfig, keyGet, keypadDef

keyGet

char keyGet (void) ;

DESCRIPTION
Get next keypress.

RETURN VALUE
The next keypress, or 0 if none.

SEE ALSO
keyConfig, keyProcess, keypadDef

User’s Manual

191

keyUnget

int keyUnget (char cKey) ;

DESCRIPTION
Pushes the value of cKey to the top of the input queue, which is 16 bytes deep.

PARAMETER

cKey

RETURN VALUE
None.

SEE ALSO

keyGet

192 PowerCore FLEX

keypadDef

void keypadbDef () ;

DESCRIPTION

Configures the physical layout of the keypad with the desired ASCII return key codes.
1 x 7 keypad physical mapping:

0

4

1

5

2

6

3

[L]

[-1]

(U]

[+]

[D1]

[E]

[R1]

where
'L represents Left Scroll
'U' represents Up Scroll

'D' represents Down Scroll
'R' represents Right Scroll

'~ represents Page Down
"+' represents Page Up
'E' represents the ENTER key

Example: Do the following for the above physical vs. ASCII return key codes.

keyConfig
keyConfig
keyConfig
keyConfig
keyConfig
keyConfig
keyConfig

~ e~~~ o~~~

3,'R',0,
6,'E',0,
2,'D',0,
4,'-',0,
i,'u',o0,
5,'+',0,
0,'L',0,

0,
0,
0,
0,
0,
0,
0,

0,
0,
0,
0,
0,
0,
0,

0,
0,
0,
0,
0,
0,
0,

Characters are returned upon keypress with no repeat.

RETURN VALUE
None.

SEE ALSO
keyConfig,

keyGet,

keyProcess

User’s Manual

193

keyScan

void keyScan(char *pcKeys):;

DESCRIPTION

Writes "1" to each row and reads the value. The position of a keypress is indicated by
a zero value in a bit position.

PARAMETER

pcKeys a pointer to the address of the value read.

RETURN VALUE
None.

SEE ALSO
keyConfig, keyGet, keypadDef, keyProcess

194 PowerCore FLEX

APPENDIX D. POWER SUPPLY

Appendix D provides information for PowerCore power supplies
and battery backup. Information on the reset generator used in
power management is also included.

D.1 Power Supplies

The PowerCore has an optional 6-pin locking connector on the top side at J3 designed to
accept a wire harness that brings in power. The same power connections and some addi-
tional connections are available on the 50-pin motherboard connector J4.

The PowerCore receives power in the form of unregulated AC, DC, or regulated +5 V DC.
When an unregulated power supply is used, the PowerCore has an onboard +5V DC
switching regulator that is available in 1 A and 2 A versions. The +5 V DC is regulated
down to 3.45 V by a linear regulator on the PowerCore board.

H—+5V
5 AC1_DCIN

v L b7
TVS1 SG3
}T AC CT D7, D8, R59, R60 are not installed
4 o O

on PowerCore 3800 and 3810 modules.

AC

TVS?\}L Mse2 'LSGﬂ =
h T 1—1

3
=35 R59, RGO% %R
0Q

2
57, R58
0Q

" LINEAR POWER
T 1 act pom SWITCHING POWER REGULATOR 5V R »v
Fllfvie 1 A and 2 A options I SR
5 4 I DC+ U1 l I 3] U15
=z |54 C34 %2l
S} 330 pF 10 uF 10 uF
a 1 11 000 WF LM2592HV T T
- = or LM2575 D4 — =
45V = l 7
Py = 100 nF

Figure D-1. PowerCore Module Power Supplies

User’s Manual 195

The two preconfigured PowerCore models are built for use with a full-wave rectifier and
center-tapped AC transformer. Power may be supplied directly to the PowerCore module
via the locking connector at header J3:

e viapins 2, 4, and 6 (AC); note that center tap of the transformer is connected to ground
through pin 4 and resistors R57 and R58

e viapins 2 and 3 (DC, unregulated)

Power may also be supplied to the PowerCore module from the motherboard to which the
PowerCore module is plugged in:

e via pins 1 and 2 of header J4 (AC); note that center tap of the transformer should be
connected to ground

e viapins 4 and 5 of header J4 (DC, unregulated)

The PowerCore module also provides for the regulated voltages to be output for use on the
motherboard or elsewhere:

e +5V DC on pin 6, header J4 (connection to motherboard), and pin 1, header J3 (locking
connector)

e +3.45V DC (+V) on pin 21, header J4 (connection to motherboard)

You can draw up to 550 mA from the +3.45 V supply, depending on the PowerCore
options and the operating temperature. If there is a +5 V regulator on the PowerCore
board, you can draw as much as 850 mA or 1850 mA from the +5 V supply, depending on
what options are actually installed on the PowerCore module, the input voltage to the
switching regulator, and the operating temperature. The current from the various power
supplies that is available for use on the motherboard or elsewhere is specified in Table A-1.

There is an additional design consideration for the switching power supply with regard to
AC ripple at 50 kHz or 150 kHz. The ripple can be reduced by adding additional filtering
capacitors on the motherboard or by using local filters where reduced ripple is required.
Ripple increases as more current is drawn from the power supply.

Ripple in the rectified AC can also be a particular concern for the half-wave rectifier
option. This ripple can be reduced by adding additional capacitance to the unregulated DC
between the DC+ line (from pin 4 of J4) and ground on the motherboard.

The operating life of electrolytic filter capacitors is reduced at higher temperatures and
with more ripple. For this reason it is important to use high-quality capacitors and to follow
standard engineering guidelines for ripple at higher operating temperatures to extend
capacitor life and to avoid premature failures.

If you plan to operate your PowerCore module from a low-voltage AC input and draw
significant amounts of current from the PowerCore for external circuits and operate your
PowerCore module at very high ambient temperatures, adding an external 1000 uF capac-
itor to the motherboard can double the lifetime of the AC rectifier filter circuit.

196 PowerCore FLEX

Use these guidelines to define the thresholds when each element needs to be considered.

e \oltage type—AC only.

¢ \Woltage threshold—AC input voltages within 3 V of the minimum specified input volt-
age for Options 3 or 4, within 5 V of the minimum specified input voltage for Option 5.

¢ Significant current

more than 1 A to user circuits for 2 A regulator
more than 250 mA to user circuits for 1 A regulator

e High ambient temperatures—If all three of the above factors are present, then look at
Table D-1 to determine whether the operating temperature creates an issue. The capaci-
tor lifetimes are listed at the specified temperatures for the existing 1000 uF capacitor
at position C34 on the PowerCore module by itself and with an additional user-supplied
1000 uF capacitor installed between the DC+ line (from pin 4 of J4) and ground on the

motherboard:

Table D-1. Effects of Additional 1000 pF Filtering Capacitor

. Lifetime with One 1000 pF Lifetime with Additional
Ambient : .
Temperature) Capacitor on PowerCore 1000 pF Capacitor
Module on Motherboard

25°C Capacitor lifetime not a factor

40°C Capacitor lifetime not a factor

50°C 18 years 36 years
60°C 9 years 18 years
70°C 4.5 years 9 years

User’s Manual

197

D.1.1 Power-Supply Options

Five power-supply options are available for the PowerCore modules. In two of the
options, either regulated or unregulated DC power comes to header J4 on the PowerCore
from the user’s motherboard. In the three remaining options, AC power comes either to
header J4 on the PowerCore from the user’s motherboard, or the AC power comes directly
to the PowerCore module via the polarized locking connector at J3.

Option 1—Regulated +5V DC
Regulated +5 V (x5%) DC power must be

supplied to the PowerCore module via pins 1 OPTION 1
5 and 6 of header J4 (the locking connector
at J3 is not stuffed when you select this +5V 2 ” * > +5V
option). There is always a +3.45 V DC GND = L 345V

. ' — 4V
linear voltage regulator on PowerCore = fegi'ator

modules to supply +3.45 V DC. =

With this option, the maximum power is

limited by the traces on the PowerCore module to 2 A at 5 V, which includes the power
consumed by the +3.45 V and +5 V onboard PowerCore circuits. The 3.45 V regulator can
pass a maximum of 700 mA. The PowerCore will require 150-400 mA at 3.45 V depending
on the clock speed and other options.

This power-supply option does not have the AC zero-crossover detection circuit used for
triac support.

Option 2—Unregulated DC

Unregulated DC power is supplied to the PowerCore module via pins 1 and 5 of header J4
(the locking connector at J3 is not stuffed when you select this option).

J4 OPTION 2

1 +5V »
DCIN Pt regulator o »+5V

Y _ 70%

s B = efficiency

GND = 75%
l efficienc A5V L gLy
y regulator
T

The selection of the +5 V regulator determines the voltage range for the unregulated DC
input power as follows.

e 8-43V DC for 2 A regulator option
e 9-40V DC for 1 A regulator option

The power consumed by the onboard PowerCore circuits is 150-400 mA at +3.45 V
depending on the clock speed and other options. This power-supply option does not
support the AC zero-crossover detection circuit.

198 PowerCore FLEX

You can calculate the current that is available to your circuits that are external to the Power-
Core module.

The current required is calculated based on the power consumed by the PowerCore as
optionally configured. I = Power/Vin. The PowerCore will consume between 1 W and 2.7 W,
depending on the PowerCore options. Additional power may be needed to provide for
other user's circuitry external to the PowerCore. That additional power needed from the
input power supply is calculated as follows.

e For the user's 5 V circuitry, additional power from supply =
(5Vpower_to_user's_circuit) x 1.33.

e For the user's 3.45 V circuitry, additional power from supply =
(3.45Vpower_to_user's_circuit) x 1.92.

Thus, as an example, if the user's 5 V circuitry consumes 2.5 W and the user's 3.45 V cir-
cuitry consumes 0.5 W, then the total power needed from the power supply is (2.5 W x
1.33+0.5W x 1.92 + (PowerCore consumption as optionally configured)) = 5.3 W to 7.0 W.
If that external power supply is a 12 V supply, then it will need to source | = Power/\olt-
age current. Bear in mind that voltage presented to the regulators has a 0.7 V diode drop.
Thus the voltage in this formula must be reduced by 0.7 V, so current = Power/11.3 V
amps current. 5.3 W/11.3 V =469 mA; 7.0 W/11.3 V = 619 mA.

This power-supply option does not have the AC zero-crossover detection circuit used for
triac support.

External AC Power Supplies
Three external AC power-supply options are available.

e Option 3—AC via locking connector at J3, full-wave bridge rectifier, onboard +5 V
switching regulator @ 1 A or 2 A, no zero-crossover detection or triac support, trans-
former with untapped secondary winding may be used

e Option 4—AC via locking connector at J3, full-wave center-tapped rectifier, onboard
+5 V switching regulator @ 1 A or 2 A, includes zero-crossover detection for triac sup-
port, transformer with tapped secondary winding required

e Option 5—AC via locking connector at J3, half-wave rectifier, onboard +5 V switching
regulator @ 1 A or 2 A, includes zero-crossover detection for triac support, transformer
with untapped secondary winding may be used

The operation and features of each these options are discussed below.

User’s Manual 199

Option 3—Full-Wave Bridge

Option 3 requires unregulated AC or DC. This option places a full-wave bridge and filter
before the regulators. The full wave bridge is necessary to rectify AC voltage into DC
voltage. This option has a friction lock connector installed on the PowerCore to accept
external power.

The full-wave bridge causes a 1.4 V voltage drop before voltage is applied to the regula-
tors. This means that the 1.4 V drop needs to be taken into account.

The selection of the +5 V regulator determines the voltage range for the unregulated DC
input power as follows.

e 9-51V DC for 2 A regulator option
e 10-41V DC for 1 A regulator option

With this option, unregulated DC voltage is input to pin 2 of locking connector J3. The
negative side of the input voltage is applied to pin 6 of locking connector J3.

The unregulated DC connection allows a higher voltage to be applied with the 2 A regula-
tor option, but it does not provide for a common power-supply ground and circuit ground.
If the DC voltage does not exceed 43 V with a 2 A regulator, or 40 V with a 1 A regulator,
then the DC power-input ground can be connected to both J3 pins 3 and 4— this will pro-
vide for a common power-supply and circuit ground, and will also provide 43 V transorb

protection from transients.

AC voltage is applied to the same pins (between pins 2 and 6 of J3). Because the peak AC
voltages are 1.42 times higher than the rated AC voltages, the AC voltage applied will
have lower upper limits than those specified for the DC input. Also, because AC voltage
inputs go down to zero voltage during each cycle, a higher minimum voltage than the DC
voltage will be required. The selection of the +5 V regulator determines the voltage range
for the AC input power as follows.

e 12-36 V AC for 2 A regulator option
e 10-29 V AC for 1 A regulator option

The current required is calculated based on the power consumed by the PowerCore as
optionally configured: I = Power/Vin. The PowerCore will consume between 1 W and 2.7 W,
depending on the PowerCore options. Additional power may be needed to provide for
other user's circuitry external to the PowerCore. That additional power needed from the
input power supply is calculated as follows.

e For the user's 5 V circuitry, additional power from supply =
(5Vpower_to_user's_circuit) x 1.33.

e For the user's 3.45 V circuitry, additional power from supply =
(3.45Vpower_to_user's_circuit) x 1.92.

Additional power is taken by the input diodes.

200 PowerCore FLEX

Thus, as an example, if the user's 5 V circuitry consumes 2.5 W and the user's 3.45 V cir-
cuitry consumes 0.5 W, the total power needed from the power supply is (2.5 W x 1.33 +
0.5W x 1.92 + (PowerCore consumption as optionally configured)) =5.3 W to 7.0 W. If
the external power supply is a 12 V supply, then it will need to source | = Power/\oltage
current. Bear in mind that voltage presented to the regulators has a 1.4 V diode drop. Thus
the voltage in this formula must be reduced by 1.4 V, so current = Power/10.6 V = 5.3 W/
10.6 V =500 mA; 7.0 W/10.6 V = 660 mA. This is the DC power supply current require-
ment, and would be the maximum current that an AC power-supply would have to deliver.

The input power circuit configuration is shown below for Option 3.

OPTION 3 FULL-WAVE BRIDGE

2

AC1/DC IN

T\/S’l}

POWER
IN

6

Tvsz}{

D5

2 A CONFIGURATION

1 A CONFIGURATION

Input Supply
Requirements

12-36 VAC
9-51Vv DC

10-29 VAC
1041V DC

Current Draw by
Onboard Circuits

max IQ =
150400 mMA @ +3.45V

max | Q =
150400 mMA @ +3.45V

Output Current

700 mA - IQ @ +345V

700 mA - IQ @+345V

L35 Availabl - -
= vailable 2A IQ I3VMB@+5V

NOTE: I3VMB

1A=L @45V

= current consumed by user’s board at +3.45V

The full-wave bridge rectifier has no common ground between the power-supply trans-
former and the rest of the circuit. The full-wave bridge requires four diodes and therefore is
a more expensive circuit than a full-wave center-tapped rectifier or a half wave rectifier.

Vin
The output from this full-
wave bridge is shown at
right.

0 T2 T 3T/2 2T t

After the bridge, the AC
voltage is filtered with a
large (1000 uF) capacitor.
The final filtered voltage is
shown by the solid line in the
diagram at right.

Vin

T2 T 3112 Tt

User’s Manual 201

For any current to flow, two of the diodes must be turned on at any given time, depending
on the polarity of the AC sine wave at the transformer secondary winding. Because two
diodes conduct at any given time, there are two diode voltage drops for the complete cur-
rent to flow through. This means that the power dissipated by the full-wave bridge is 1.4 V
x current, which is twice that of the full-wave center-tapped rectifier.

Since current is delivered to the load during both halves of the cycle and since there is no
need for identical secondary windings on both sides of a center tap, the full-wave bridge
requires the least expensive transformer. However, the full-wave bridge has twice the
power dissipation of the full-wave center-tapped rectifier. The full-wave bridge cannot be
used with triacs and other circuits based on zero-crossover detection because there is no
common ground.

202 PowerCore FLEX

Option 4—Full-Wave CT

Option 4 requires unregulated AC or DC. This option uses a center-tapped-transformer
full-wave bridge and filter before the regulators. The full-wave bridge converts AC volt-
age into DC voltage. This option has a friction lock connector installed on the PowerCore
to accept external power. The full-wave rectifier of option 4 requires a center-tapped trans-
former—a center-tapped transformer has a third connection at the center of the secondary
side for a connection to ground.

The full-wave rectifier causes a 0.7 V voltage drop before voltage is applied to the regula-
tors. This means that the 0.7 V drop will need to be taken into account.

With this option, it is also possible to supply unregulated DC voltage to pin 2 of locking
connector J3. The negative side of the input voltage is applied to pin 4 of locking connec-
tor J3.

The selection of the +5 V regulator determines the voltage range for the unregulated DC
input power as follows.

e 8-43V DC for 2 A regulator option
e 9-40V DC for 1 A regulator option

AC voltage is applied to pins 2 and 6 of J3 with the center tap of the transformer con-
nected to pin 4 of J3. Because the peak AC voltages are 1.42 times higher than the rated
AC voltages, the AC voltage applied will have lower upper limits than that of an unregu-
lated DC input. Also, because AC voltage inputs go down to zero voltage during each
cycle, a higher minimum voltage than the DC voltage will be required. The selection of the
+5 V regulator determines the voltage range for the AC input power as follows.

e 24-60 V AC for 2 A regulator option
e 19-57 V AC for 1 A regulator option

This is the voltage range between each AC output. The AC voltage to the center tap is half
of the voltage specified above.

The current required is calculated based on the power consumed by the PowerCore as
optionally configured: 1 = Power/Vin. The PowerCore will consume between 1 W and 2.7 W,
depending on the PowerCore options. Additional power may be needed to provide for
other user's circuitry external to the PowerCore. That additional power needed from the
input power supply is calculated as follows.

e For the user's 5 V circuitry, additional power from supply =
(5Vpower_to_user's_circuit) x 1.33.

e For the user's 3.45 V circuitry, additional power from supply =
(3.45Vpower_to_user's_circuit) x 1.92.

Additional power is taken by the input diodes.

User’s Manual 203

Thus, as an example, if the user's 5 V circuitry consumes 2.5 W and the user's 3.45 V cir-
cuitry consumes 0.5 W, then total power needed from the power supply is (2.5 W x 1.33 +
0.5W x 1.92 + (PowerCore consumption as optionally configured)) =5.3 W to 7.0 W. If
that external power supply is a 24 V center-tapped AC supply (giving 12 V on each side of
the center tap), then it will need to source | = (Power/\oltage) current. Bear in mind that
voltage presented to the regulators has a 0.7 V diode drop. Thus the voltage in this formula
must be reduced by 0.7 V, so current = Power/11.3 V current (in amps). 5.3 W /11.3V =
469 mA; 7.0 W/11.3 V = 619 mA. This is the maximum current the AC power supply will
need to deliver. An AC supply may not need to deliver that much current since the filter
capacitor may raise the DC voltage input into the regulator, allowing less current to be
consumed. If a DC supply were used, this is the current the power supply would have to
deliver.

The input power circuit configuration is shown below for Option 4.

OPTION 4 FULL-WAVE CENTER-TAPPED

2 A CONFIGURATION | 1 A CONFIGURATION
2 AC1/DC IN
w s Input Supply 24-60 VAC 19-57 VAC
i Tvsq{ Requirements 8-43 V DC 9-40 V DC
z AC CENTER TAP — —
o . Current Draw by max | = max | =
Tvsz}{ ¢ Onboard Circuits | 150-400 mA @ +3.45 V | 150-400 mA @ +3.45 VV
£ Acz “ Output Current | 700 mA- I, @ +345V | 700 mA- 1, @+345V
i -l - 1A-1_-1 +5V
T35 §ng’§58 Available 2A-15 lovs @+5V a svme @
GND
1 NOTE: |3VMB = current consumed by user’s board at +3.45 V

A full-wave center-tapped rectifier has a third connection on the secondary side of the AC
transformer for ground. Both sides of the windings go separately through diodes as shown
above. This is essentially two half-wave rectifier circuits with one inverted from the other.
This configuration combines the advantages of full-wave and half-wave rectifiers.

Vin
The output from this full-
wave center-tapped rectifier
is shown at right.

[0 T2 T 3T/2 2T t

204 PowerCore FLEX

After the rectifier, the AC
voltage is filtered with a
large (1000 pF) capacitor.
The final filtered voltage is
shown by the solid line in the |
diagram at right. i

T2 T 3112 Tt

Since at any given time there is only current flowing in one of the diodes, there is only one
diode voltage drop at a given time in the circuit. Because current flows during both half-
cycles, only half the current required by an equivalent half-wave rectifier will be needed.
The power dissipated by the full-wave center-tapped rectifier is 0.7 V x current. Since this
rectifier circuit has only two diodes, it is less expensive than a full-wave bridge. Since the
power-supply center tap is ground, there is a common ground between the power supply
and the circuit. However, each of the secondary windings of the transformer must still pass
the full current, and this along with the third center-tap connection could increase the
physical size and cost of the transformer.

Because there is a common AC ground between the AC power transformer and the circuit,
AC zero-crossing detection is possible. Zero-crossing detection allows accurate triac tim-
ing control. Thus, the zero-crossing detection circuit is stuffed and triac control is sup-
ported with this option.

User’s Manual 205

Option 5—Half-Wave Rectifier

Option 5 requires unregulated AC or DC. This option places a half-wave rectifier and fil-
ter before the regulators. The half-wave rectifier is necessary to rectify AC voltage into
DC voltage. This option has a friction lock connector installed on the PowerCore to accept
external power.

The half-wave rectifier causes a 0.7 V voltage drop before voltage is applied to the regula-
tors. This means that the 0.7 V drop will need to be taken into account.

With this option, unregulated DC voltage is input to pin 2 of friction lock connector J3.
The negative side of the input voltage is applied to pin 4 and/or 6 of friction lock connec-
tor J3. The selection of the +5 V regulator determines the voltage range for the unregu-
lated DC input power as follows.

e 8-43V DC for 2 A regulator option
e 9-40V DC for 1 A regulator option

AC voltage is applied to the same pins of J3. Because the peak AC voltages are 1.42 times
higher than the rated AC voltages, the AC voltage applied will have lower upper limits.
Also, because AC voltage inputs go down to zero voltage during each cycle, a higher min-
imum voltage than the DC voltage will be required. The selection of the +5 V regulator
determines the voltage range for the AC input power as follows.

e 17-30 V AC for 2 A regulator option
e 14-28 V AC for 1 A regulator option

The current required is calculated based on the power consumed by the PowerCore as
optionally configured: 1 = Power/Vin. The PowerCore will consume between 1 W and 2.7 W,
depending on the PowerCore options. Additional power may be needed to provide for
other user's circuitry external to the PowerCore. That additional power needed from the
input power supply is calculated as follows.

e For the user's 5 V circuitry, additional power from supply =
(5Vpower_to_user's_circuit) x 1.33.

e For the user's 3.45 V circuitry, additional power from supply =
(3.45Vpower_to_user's_circuit) x 1.92.

Additional power is taken by the input diodes.

Thus, as an example, if the user's 5 V circuitry consumes 2.5 W and the user's 3.45 V cir-
cuitry consumes 0.5 W, the total power needed from the power supply is (2.5 W x 1.33 +
0.5W x 1.92 + (PowerCore consumption as optionally configured)) =5.3 W to 7.0 W. If
the external power supply is a 24 V supply, then it will need to source | = Power/\oltage
current. Bear in mind that voltage presented to the regulators has a 0.7 V diode drop. Thus
the voltage in this formula must be reduced by 0.7 V, so current = Power/23.3 V = 5.3 W/
23.3V =227 mA; 7.0 W/23.3 VV = 300 mA. An AC supply may not need to deliver that
much current because the filter capacitor may raise the DC voltage input into the regulator,
allowing less current to be consumed. For a 24 V DC input, this is what current the power
supply would need to deliver.

206 PowerCore FLEX

The input power circuit configuration is shown below for Option 5.

OPTION 5 HALF-WAVE RECTIFIER

ACUDC N 2 A CONFIGURATION | 1 A CONFIGURATION
2
x v D5 Input Supply 17-30 VAC 14-28 VAC
“;Jz TVS17{ Requirements 8-43V DC 9-40V DC
= |4
2 Current Draw by max | = max | =
Onboard Circuits| 150400 mA @ +3.45V | 150-400 mA @ +3.45 V
6 AC2 o
nd Output Current | 700 mA-1, @ +345V | 700mA- 1, @ +345V
o §R5S'§58 Avalable 2A-1g- 1y @*5V | TA-1g -3y @+SV
= NOTE: ISVMB = current consumed by user’s board at +3.45 V

Half wave rectification allows a common ground between the power-supply ground and
the circuit ground. Half-wave rectification only requires one diode, and so is less expensive

than the other power-supply options.

The output from this half- vin

wave rectifier is shown at
right.

A

p

T/2 T

After the rectifier, the AC
voltage is filtered with a
large (1000 uF) capacitor.
The final filtered voltage is
shown by the solid line in the

Vin

3T/2

2T t

diagram at right. o 77 7

3T/2

A half-wave rectifier experiences only one diode voltage drop (0.7 V) during the rectification.
Because current flows only during half the cycle, twice as much current will be required
(albeit for only half of the wave cycle) compared to a full-wave rectifier. Since all the cur-
rent going through the rectifier must go through a single diode drop, the power dissipated
is 0.7 V x current. A larger, more expensive AC transformer will be needed to provide the
current for a half-wave rectifier because twice the current is required during the positive

half-cycle to fill the gaps.

Because there is a common AC ground between the AC power transformer and the circuit,
AC zero-crossing detection is possible. Zero-crossing detection allows accurate triac tim-
ing control. Thus, the zero-crossing detection circuit is stuffed and triac control is sup-

ported with this option.

User’s Manual

207

D.2 Battery-Backup Circuits

The data SRAM and the real-time clock on the PowerCore module have battery backup.
Power to the SRAM and the real-time clock (VRAM) is provided by two different sources,
depending on whether the PowerCore module is powered or not. When the PowerCore
module is powered normally, and the +5 V supply is within operating limits, the SRAM and
the real-time clock are powered from the +5 V supply. If power to the board is lost or falls
below 4.38 V, the VRAM and real-time clock power will come from the battery. The reset
generator circuit controls the source of power by way of its /RESET output signal.

A replaceable 220 mA:h lithium battery provides power to the real-time clock and SRAM
when external power is removed from the circuit board. The drain on the battery is typically
less than 6 LA when there is no external power applied to the PowerCore module, and so the
expected shelf life of the battery is

220 mA-h

5 A = 4.2 years.

The actual life in your application will depend on the current drawn by components not on
the PowerCore module and the storage capacity of the battery. The PowerCore module
does not drain the battery while it is powered up normally.

Cycle the main power off/on on the PowerCore module after you install a backup battery
for the first time, and whenever you replace the battery. This step will minimize the cur-
rent drawn by the real-time clock oscillator circuit from the backup battery should the
PowerCore module experience a loss of main power.

D.2.1 Replacing the Backup Battery

The battery is user-replaceable, and is fitted in a battery holder. To replace the battery,
slide out the old battery. Use only a 2032 or equivalent replacement lithium battery, and
insert it into the battery holder with the + side facing away from the PowerCore module.

NOTE: The SRAM contents and the real-time clock settings will be lost if the battery is
replaced with no power applied to the PowerCore module. Exercise care if you replace
the battery while external power is applied to the PowerCore module.

to the PowerCore module. AC voltages up to 60 V may be present on locking con-

CAUTION: Be careful when replacing the battery with external AC power applied
A nector J3.

CAUTION: There is an explosion danger if the battery is short-circuited, recharged,

Q or replaced incorrectly. Replace the battery only with the same type or an equivalent
type recommended by the battery manufacturer. Dispose of used batteries according
to the battery manufacturer’s instructions.

208 PowerCore FLEX

D.3 Reset Generator

The PowerCore module uses a reset generator to reset the Rabbit 3000 microprocessor when
the voltage drops below the voltage necessary for reliable operation. The reset typically
occurs at 4.38 V.

The PowerCore module has a reset pin, pin 49 on header J4. This pin provides access to
the reset output of the reset generator, which drives the reset input of the Rabbit 3000 and
peripheral circuits. The /RESET output can be used to reset user-defined circuits on the
motherboard on which the PowerCore module is mounted.

User’s Manual 209

210 PowerCore FLEX

APPENDIX E. RABBITNET

E.1 General RabbitNet Description

RabbitNet is a high-speed synchronous protocol developed by Rabbit Semiconductor to
connect peripheral cards to a master and to allow them to communicate with each other.

E.1.1 RabbitNet Connections

All RabbitNet connections are made point to point. A RabbitNet master port can only be
connected directly to a peripheral card, and the number of peripheral cards is limited by
the number of available RabbitNet ports on thee master.

SLAVE

Iﬂ““v
-’_

. Straight-through
Ethernet cable
e =
MASTER i

Crossover
Ethernet cable

MASTER i SLAVE /

“~~ Straight-through
Ethernet cable

Figure E-1. Connecting Peripheral Cards to a Master

User’s Manual 211

Use a straight-through Ethernet cable to connect the master to slave peripheral cards, unless
you are using a device such as the OP7200 that could be used either as a master or a slave. In
this case you would use a crossover cable to connect an OP7200 that is being used as a slave.

Distances between a master unit and peripheral cards can be up to 10 m or 33 ft.

E.1.2 RabbitNet Peripheral Cards

Digital 1/0

24 inputs, 16 push/pull outputs, 4 channels of 10-bit A/D conversion with ranges of
0 to10V,0to 1V, and -0.25 to +0.25 V. The following connectors are used:
Signal = 0.1" friction-lock connectors
Power = 0.156" friction-lock connectors
RabbitNet = RJ-45 connector

A/D converter

8 channels of programmable-gain 12-bit A/D conversion, configurable as current mea-
surement and differential-input pairs. 2.5 V reference voltage is available on the con-
nector. The following connectors are used:

Signal = 0.1" friction-lock connectors

Power = 0.156" friction-lock connectors

RabbitNet = RJ-45 connector

D/A converter

8 channels of 0-10 V 12-bit D/A conversion. The following connectors are used:
Signal = 0.1" friction-lock connectors
Power = 0.156" friction-lock connectors
RabbitNet = RJ-45 connector

Display/Keypad interface

allows you to connect your own keypad with up to 64 keys and one character liquid
crystal display from 1 x 8 to 4 x 40 characters with or without backlight using standard
1 x 16 or 2 x 8 connectors. The following connectors are used:

Signal = 0.1" headers or sockets

Power = 0.156" friction-lock connectors

RabbitNet = RJ-45 connector

Relay card

6 relays rated at 250 VV AC, 1200 V-A or 100 V DC up to 240 W. The following connectors are
used:

Relay contacts = screw-terminal connectors

Power = 0.156" friction-lock connectors

RabbitNet = RJ-45 connector

Visit our Web site for up-to-date information about additional cards and features as they
become available. The Web site also has the latest revision of this user’s manual.

212 PowerCore FLEX

http://www.rabbit.com/

E.2 Physical Implementation

There are four signaling functions associated with a RabbitNet connection. From the mas-
ter’s point of view, the transmit function carries information and commands to the periph-
eral card. The receive function is used to read back information sent to the master by the
peripheral card. A clock is used to synchronize data going between the two devices at high
speed. The master is the source of this clock. A slave select (SS) function originates at the
master, and when detected by a peripheral card causes it to become selected and respond
to commands received from the master.

The signals themselves are differential RS-422, which are series-terminated at the source.
With this type of termination, the maximum frequency is limited by the round-trip delay
time of the cable. Although a peripheral card could theoretically be up to 45 m (150 ft)
from the master for a data rate of 1 MHz, Rabbit Semiconductor recommends a practical
limit of 10 m (33 ft).

Connections between peripheral cards and masters are done using standard 8-conductor
Ethernet cables. Masters and peripheral cards are equipped with RJ-45 8-pin female con-
nectors. The cables may be swapped end for end without affecting functionality.

E.2.1 Control and Routing

Control starts at the master when the master asserts the slave select signal (SS). Then it
simultaneously sends a serial command and clock. The first byte of a command contains
the address of the peripheral card if more than one peripheral card is connected.

A peripheral card assumes it is selected as soon as it receives the select signal. For direct
master-to-peripheral-card connections, this is as soon as the master asserts the select sig-
nal. The connection is established once the select signal reaches the addressed slave. At
this point communication between the master and the selected peripheral card is estab-
lished, and data can flow in both directions simultaneously. The connection is maintained
so long as the master asserts the select signal.

User’s Manual 213

E.3 Function Calls

The function calls described in this section are used with all RabbitNet peripheral cards,
and are available in the RNET . LIB library in the Dynamic C RABBITNET folder.

rn init

int rn init(char portflag, char servicetype);

DESCRIPTION

Resets, initializes, or disables a specified RabbitNet port on the master single-board
computer. During initialization, the network is enumerated and relevant tables are filled
in. If the port is already initialized, calling this function forces a re-enumeration of all
devices on that port.

Call this function first before using other RabbitNet functions.

PARAMETERS

portflag is a bit that represents a RabbitNet port on the master single-board
computer (from 0 to the maximum number of ports). A set bit
requires a service. If port£lag = 0x03, both RabbitNet ports 0
and 1 will need to be serviced.

servicetype enables or disables each RabbitNet port as set by the port flags.

0 = disable port
1 =enable port

RETURN VALUE
0

214 PowerCore FLEX

rn _device

int rn_device(char pmna);

DESCRIPTION

Returns an address index to device information from a given physical node address. This
function will check device information to determine that the peripheral card is connected
to a master.

PARAMETER

pna is the physical node address, indicated as a byte.

7,6—2-bit binary representation of the port number on the master
5,4,3—Level 1 router downstream port
2,1,0—Level 2 router downstream port

RETURN VALUE

Pointer to device information. -1 indicates that the peripheral card either cannot be
identified or is not connected to the master.

SEE ALSO

User’s Manual

215

rn_ find

rn_ find

int rn find(rn search *srch);

DESCRIPTION

PARAMETER
srch is the search criteria structure rn_search:
unsigned int flags; // status flags see MATCH macros below
unsigned int ports; // port bitmask
char productid; // product id
char productrev; // product rev
char coderev; // code rev
long serialnum; // serial number
Use a maximum of 3 macros for the search criteria:
RN MATCH PORT // match port bitmask
RN MATCH PNA // match physical node address
RN MATCH HANDLE // match instance (reg 3)
RN MATCH PRDID // match id/version (reg 1)
RN MATCH PRDREV // match product revision
RN MATCH CODEREV // match code revision
RN MATCH SN // match serial number

Locates the first active device that matches the search criteria.

For example:

rn_search newdev;

newdev.flags = RN MATCH PORT|RN MATCH SN;

newdev.ports = 0x03;

newdev.serialnum =

RETURN VALUE

E3446C01L;
handle = rn find(&newdev) ;

//search ports 0 and 1

Returns the handle of the first device matching the criteria. 0 indicates no such devices

were found.

SEE ALSO

rn_device

216

PowerCore FLEX

rn_echo

int rn echo(int handle, char sendecho, char *recdata);

DESCRIPTION

The peripheral card sends back the character the master sent. This function will check
device information to determine that the peripheral card is connected to a master.

PARAMETERS
handle is an address index to device information. Use rn_device () Or
rn_£ind () to establish the handle.
sendecho is the character to echo back.
recdata is a pointer to the return address of the character from the device.

RETURN VALUE

The status byte from the previous command. -1 means that device information indicates
the peripheral card is not connected to the master.

User’s Manual

217

rn write

int rn write(int handle, int regno, char *data, int datalen);

DESCRIPTION

Writes a string to the specified device and register. Waits for results. This function will
check device information to determine that the peripheral card is connected to a master.

PARAMETERS
handle is an address index to device information. Use rn_device () Or
rn_£ind () to establish the handle.
regno is the command register number as designated by each device.
data is a pointer to the address of the string to write to the device.
datalen is the number of bytes to write (0-15).

NOTE: A data length of 0 will transmit the one-byte command register number.

RETURN VALUE

The status byte from the previous command. -1 means that device information indicates
the peripheral card is not connected to the master, and -2 means that the data length was
greater than 15.

SEE ALSO

rn read

218 PowerCore FLEX

rn read

int rn_read(int handle, int regno, char *recdata, int datalen);

DESCRIPTION

Reads a string from the specified device and register. Waits for results. This function will
check device information to determine that the peripheral card is connected to a master.

PARAMETERS
handle is an address index to device information. Use rn_device () Or
rn_find () to establish the handle.
regno is the command register number as designated by each device.
recdata is a pointer to the address of the string to read from the device.
datalen is the number of bytes to read (0-15).

NOTE: A data length of 0 will transmit the one-byte command register number.

RETURN VALUE

The status byte from the previous command. -1 means that device information indicates
the peripheral card is not connected to the master, and -2 means that the data length was
greater than 15.

SEE ALSO

rn_write

User’s Manual 219

rn reset

int rn reset(int handle, int resettype):

DESCRIPTION

Sends a reset sequence to the specified peripheral card. The reset takes approximately
25 ms before the peripheral card will once again execute the application. Allow 1.5
seconds after the reset has completed before accessing the peripheral card. This func-
tion will check peripheral card information to determine that the peripheral card is con-
nected to a master.

PARAMETERS
handle is an address index to device information. Use rn_device () Or
rn_£ind () to establish the handle.
resettype describes the type of reset.

0 = hard reset—equivalent to power-up. All logic is reset.
1 = soft reset—only the microprocessor logic is reset.

RETURN VALUE

The status byte from the previous command. -1 means that device information indicates
the peripheral card is not connected to the master.

220 PowerCore FLEX

rn sw_wdt

int rn sw wdt(int handle, float timeout);

DESCRIPTION
Sets software watchdog timeout period. Call this function prior to enabling the software
watchdog timer. This function will check device information to determine that the periph-

eral card is connected to a master.

PARAMETERS
handle is an address index to device information. Use rn_device () oOr
rn_£ind () to establish the handle.
timeout is a timeout period from 0.025 to 6.375 seconds in increments of

0.025 seconds. Entering a zero value will disable the software
watchdog timer.

RETURN VALUE
The status byte from the previous command. -1 means that device information indicates
the peripheral card is not connected to the master.

User’s Manual

221

rn_enable wdt

int rn enable wdt(int handle, int wdttype):;

DESCRIPTION

Enables the hardware and/or software watchdog timers on a peripheral card. The soft-
ware on the peripheral card will keep the hardware watchdog timer updated, but will hard
reset if the time expires. The hardware watchdog cannot be disabled except by a hard
reset on the peripheral card. The software watchdog timer must be updated by software
on the master. The peripheral card will soft reset if the timeout set by rn_sw_wdt ()
expires. This function will check device information to determine that the peripheral card
is connected to a master.

PARAMETERS
handle is an address index to device information. Use rn_device () oOr
rn_find () to establish the handle.
wdttype 0 enables both hardware and software watchdog timers

1 enables hardware watchdog timer
2 enables software watchdog timer

RETURN VALUE

The status byte from the previous command. -1 means that device information indicates
the peripheral card is not connected to the master.

SEE ALSO

rn_hitwd, rn sw wdt

222 PowerCore FLEX

rn_hitwd

int rn hitwd(int handle, char *count);

DESCRIPTION
Hits software watchdog. Set the timeout period and enable the software watchdog prior
to using this function. This function will check device information to determine that the
peripheral card is connected to a master.

PARAMETERS
handle is an address index to device information. Use rn_device () oOr
rn_£ind () to establish the handle.
count iS a pointer to return the present count of the software watchdog

timer. The equivalent time left in seconds can be determined from
count X 0.025 seconds.

RETURN VALUE

The status byte from the previous command. -1 means that device information indicates
the peripheral card is not connected to the master.

SEE ALSO

rn _enable wdt, rn sw wdt

User’s Manual

223

rn rst status

int rn rst_status(int handle, char *retdata);

DESCRIPTION
Reads the status of which reset occurred and whether any watchdogs are enabled.

PARAMETERS
handle is an address index to device information. Use rn_device () oOr
rn_find () to establish the handle.
retdata is a pointer to the return address of the communication byte. A set
bit indicates which error occurred. This register is cleared when
read.

7—HW reset has occurred
6—SW reset has occurred
5—HW watchdog enabled
4—SW watchdog enabled
3,2,1,0—Reserved

RETURN VALUE
The status byte from the previous command.

224 PowerCore FLEX

rn comm status

int rn comm status(int handle, char *retdata);

PARAMETERS

handle

retdata

RETURN VALUE

is an address index to device information. Use rn_device () oOr
rn_find () to establish the handle.

is a pointer to the return address of the communication byte. A set
bit indicates which error occurred. This register is cleared when
read.

7—Data available and waiting to be processed MOSI (master
out, slave in)

6—Write collision MISO (master in, slave out)

5—Overrun MOSI (master out, slave in)

4—Mode fault, device detected hardware fault

3—Data compare error detected by device

2,1,0—Reserved

The status byte from the previous command.

User’s Manual

225

E.3.1 Status Byte

Unless otherwise specified, functions returning a status byte will have the following format
for each designated bit.

00 = Reserved

01 = Ready

10 = Busy

11 = Device not connected

0 = Device
1 = Router

0 = No error

1 = Communication error”

Reserved for individual peripheral
cards

Reserved for individual peripheral
cards

0 = Last command accepted
1 = Last command unexecuted

0 = Not expired
x |1 =HW or SW watchdog timer
expired’r

* Use the function rn_comm_status () to determine which error occurred.
T Use the function rn_rst_status () to determine which timer expired.

226 PowerCore FLEX

A

A/D converter. See external A/D
converter, ramp generator
additional information

online documentation 7
Add-On Kit

WI-Fi e 7
auxiliary 1/0 busccccvevenne 32

SOftwareccocooveveennns 150
B
battery backup

battery lifecccceeines 208

reset generator 209

use of battery-backed SRAM

....................................... 48

board initialization

function calls 65

brdlnit() ...cccooveiiie 65

bus loadingcccccoeeeiiennnne. 112
C
clock doublerccoevnee. 42
compile options 45, 47
conformal coating 118, 119
cooling requirements 107
D

D/A converter
function calls

anaOut() .ooooocervereieernnnn, 69
anaOutCalib() 70
anaOutEERA() 71
anaOutEEWTr() 71
anaOutVolts()ccoceeee. 69
digital /O ..coovvrvecveeiie 28
function calls
(o [To] [1(I 66
digout() «ovvvvvvrerieeene 67
1/0 buffer sourcing and sink-
ing limitscooevvvennne. 116
memory interface 32

SMODEQDccoevvrviiriireas 35

SMODELcccovevvivviriiinnns 35
digital inputs

switching threshold 129
dimensions

LCD/keypad module 139
LCD/keypad template 142

PowerCore module 106
Prototyping Board 124
Dynamic C 7,9,13,45
add-on modules 9
installationcc.cccvenee. 9
battery-backed SRAM 48
compile options 45, 47
iNterrupts ..ooovveeveevvvceeien, 47
libraries

PowerCoreFLEX.LIB ... 65
RN_CFG_PowerCore-

FLEX.LIBccoeevenee. 65
protected variables 48
sample programs 16
standard features 46

debuggingcoeeveevrnnnn. 46
telephone-based technical
SUPPOIT v 7,89
upgrades and patches 89
USB port settings 13
E
Ethernet cablesccoeue.e. 91
Ethernet connections 91, 93
10/100 compatible 93
10Base-T Ethernet card91
additional resources 103
direct connection 93
Ethernet cables 93
Ethernet hubc..ccveue.e. 91
IP addresseso.ov... 93, 95
MAC addressesc....... 96
SEEPS v 91, 92
Ethernet portcocevvvviennnne. 34
o] 13101 V] S 34
exclusion zoneccoue.e.. 107

INDEX

external A/D converter
function calls

analn() ..o, 58
analnCalib()cc.coevenee. 62
analnEERA()cooveennee. 63
analnEEWr()ccoovevenee. 64
analnExternallnit() 57
analnVolts()ceeevenen. 60

F

features ... 2

PowerCore FLEX options ... 4

Prototyping Board ... 122, 123
flash memory addresses

user blockscccoviinnne 43

H

hardware connections
install PowerCore module on
Prototyping Board 10

power Supplyccccceeeeeene. 12

programming cable 11
hardware resetc.ccoeenee 12
heat dissipation

cooling requirements 107

1/0 address assignments
LCD/keypad module 143
1/0 buffer sourcing and sinking

HMItS oo, 116
1/0 drivers
functioncallsccocveee. 48
interrupts
function calls
EXIt() v 47
IP addressescccoeeevvevveennenn, 95
how to set in sample programs
..................................... 100

how to set PC IP address 101

User’s Manual

227

J

jumper configurations .117, 118
JP2 (flash memory bank

select) ..ooovveieniennn. 43,118

JP3 (data SRAM size)118

JP3 (Ethernet LEDS) 118

JP4 (Ethernet LEDS) 118

jumper locations 117
K
keypad template 142
removing and inserting la-
bel o 142

L

LCD/keypad module
bezel-mount installation ..146

dimensionsccoceevrenns 139
function calls
dispInit()ccocoovieinnne 150
header pinout 143
I/O address assignments ..143
keypad
function calls
keyConfig()cccoovnne 189
keyGet() ...coovrerennne 191
keylInit() ...ccooeeviennne 188
keypadDef() 193
keyProcess()cc..... 191
keyScan()ccoeeennene 194
keyunget()cccceeeene 192
keypad template 142
LCD display
function calls
glBackLight() 152

glBlankRegion() 157
glBlankScreen() 154

[0]12] [o1o] () IR 158
glBuffLock() 168
glBuffUnlock() 168
gIDispOnOff() 153
gIDown1()ccoeeenen. 176
glFastFillRegion()156
glFillCircle() 162
glFillPolygon() 161
glFillRegion() 155
glFillScreen() 154

glFillvVPolygon() 160
glFontCharAddr()164
glGetBrushType()170

glGetPfStep() 165
glHScroll() 177
glnit() .o 152

glLeftl() «ooeverrerennne 173

glPlotCircle() 162
glPlotDot()cc.e.... 172
glPlotLine()ccvnnene 172

glPlotPolygon() 159
glPlotVPolygon()158

glPrintf() ..oocovvvenene 167
glPutChar() 166
glPutFont()cocveee. 164
gIRightl() ...cccevvnnnne 174

glSetBrushType()169
glSetContrast() 153

glSetPfStep() 165
glsSwap() ..ocooeevvenenns 169
glupl() oo, 175
glvscroll() 178
gIXFontlnit() 163

gIXGetBitmap() 170
gIXGetFastmap()171
gIXPutBitmap() 179
gIXPutFastmap() 180
TextBorder() 183
TextBorderlnit() 182
TextCursorLocation() 184

TextGotoXY() 183
TextMaxChars() 187
TextPrintf() 186
TextPutChar() 185

TextWinClear() 187
TextWindowFrame() 181
LEDs

function calls 151
displedOut() 151
mounting instructions 145
reconfigure keypad 142

remote cable connection ..148
removing and inserting keypad

label ... 142
sample programs 149
specifications 140
VErSIONS ...oveeeeiiceieiena 139
voltage settings 141

LED
function calls
1edOUt() oo 68
LEDS oo 33
libraries
ADCRAMP.LIB 50

LCD122KEY7.LIB 150
PowerCoreFLEX.LIB 65
RN_CFG_PowerCore-

FLEX.LIB ...ccocovviinne 65
RNET.LIB ...cooooviiiis 214
TRIAC.LIBcccocveiee 76

M
MAC addressesc.ccceennne 96
models
flexible options 4
production models 4

mounting instructions
LCD/keypad module 145

P

peripheral cards
connection to master 211, 212
pinout
Ethernet portcccceeeee. 34
LCD/keypad module 143
PowerCore
alternate configurations .30

PowerCore headers 28

Prototyping Board 127
power supplies

FEV s 195

battery backup 208

PowerCore FLEX
mounting module on Prototyp-

ing Boardccccceuvnene. 10
power-supply options 198
full-wave bridge 200
full-wave CTccoe... 203
half-wave rectifier 203

no onboard power sup-
PliES oo, 198
Program Modec..ceevvunee. 37
switching modes 37

programming cable
PowerCore module connec-

tIONS oo 11
PROG connector 36
programming port 35
Prototyping Board 122
adding components 128
dimensionsc.ccceveeenen. 124
eXpansion area 123
features ..o 122,123
mounting PowerCore module
....................................... 10
o110 V] A 127
power Supplyccocveevnnne 126
prototyping area 128
specifications 125
use of parallel ports 137

228

PowerCore FLEX

R

Rabbit 3000
data and clock delays 114
spectrum spreader time delays
..................................... 114
Rabbit subsystems 29
RabbitNet
Ethernet cables to connect
peripheral cards ..211, 212
function calls

S
sample programsc.cc..... 16
A/D converter
ADC_CALIB_
EXTERNAL.C 18
ADC_CALIB_RAMP.c 18
ADC_MUX_
EXTERNALlc 19
ADC_MUX_
EXTERNAL2c 20

triacs
TRIAC_PHASE.C 24
TRIAC_PHASE_ADC.c 24
TRIAC_PHASE_FLASH.c

TRIAC_RATIOG 25
TRIAC_RATIO_ADC.c 25
TRIAC_RATIO_FLASH.c

USERBLOCK_CLEAR.C 47
USERBLOCK_INFO.C 47

rn_comm_status() 225 ADC_RD_EXTERNAL.c 20 serial communication 34
rn_device() ...ccccoeeeenne 215 ADC_RD RAMP. 21 function calls
rmn_echo()ccoovveinnn. 217 THERMISTORC 21 serMode() ...ovveveeeenne. 72
rn_enable_wdt() 222 THERMOFFSET.C 21 libraries
r_find()ccoeoiinnne 216 compile to .bin file PACKET.LIB oo 49
rn_hitwd() .cooovevieeee 223 PowerCoreFLEX _ RS232.LIB oo, 49
M_iNit() oo 214 BOARD_OPTIONS.c 47 Prototyping Board
rn_read()cccoeevveennenn 219 D/A converter RS-232 oo, 135
rn_reset()ccoevveeenenn 220 DAC_CAL.C ..ccovunnne. 22 serial port configura-
rn_rst_status() 224 DAC VOLT.C ..ccoveurnee 22 tHONS oo 135
rn_sw_wdt()c....... 221 digital 1/0 RabbitNet port 136
m_write()ccooveennn. 218 DIGIN.C .oovciviiiiie, 16 serial flash
general description 211 DIGOUT.C o 16 1ibraries .o, 49
peripheral cards 212 1= D Y R 17 serial Ports ...ooevveeevveeeeeen. 34
A/D converter 212 how to run TCP/IP sample Ethernet portccooe..... 34
D/A converter 212 programs 99, 100 programming port 35
digital I/0cccueve. 212 how to set IP address 100 Prototyping Board 135
display/keypad interface 212 LCD/keypad module 149 SOFOWAre oo 7
relay cardc.c....... 212 KEYBASIC.C 142 auxiliary 1/0 bus 32,48
physical implementation . 213 KEYPAD_LED.C 149 libraries
RabbitNet port 136 LCDKEY_FUN.C 149 KEYPAD7.LIB 188
RabbitNet port reconfigure keypad 142 LCD122KEY7.LIB151
function calls 73 SWITCH_LCD.C 149 serial communication driv-
r_sp_close()ccccceeveunns 74 onboard serial flash OIS oo 49
rn_sp_disable() 75 SFLASH_PATTERN _ serial flash drivers 49
rn_sp_enable() 74 INSPECT.C ...ccveueeee. 22 TCP/IP drivers ...ooeovin... 49
rn_sp_info()cccceevenns 73 SFLASH_TEST.C 22 specificationscc...... 105
MACIOS ...covieiriirieie s 73 PONG.C ..., 13 bus loadingcc......... 112
ramp generator serial communication digital 1/0 buffer sourcing and
function calls PARITY.C .o 23 sinking limits 116
analnCalibRamp() 53 SIMPLE3WIRE.C 23 dimensions. ... eeoeii 106
analnDisable() 56 SIMPLESWIRE.C 23 electrical, mechanical, and en-
analnEERdRamp() 53 TCP/IP vironmental 108
analnEEWrRamp() 54 DISPLAY_MAC.C 96 exclusion zone ..ooovii. 107
analnEnable() 56 PINGME.C 102 header footprint 111
analnRamp()ccccovevenee. 51 SMTP.C ..o 102 headers ..o 111
analnRamplnit() 50 SSIC i 102 LCD/keypad module
analnRampVolts() 52 TELNET.C ..cvevvveennne, 103 dimensionsovovi.. 139
thermReading() 54 thermistor electrical wvevvereeviii, 140
how it Workscccee.ee. 40 THERMISTORC 21 header footprint 140
TESET .o 12 THERMOFFSET.c 21 mechanical wovoverei 140
use of reset pin 209 relative pin 1 locations 140
Run Modecccoeevvvvieeeinenns 37 temperature 140
switching modes 37
User’s Manual 229

specifications (continued)

Prototyping Board 125
Rabbit 3000 DC characteris-
tCS o 115
Rabbit 3000 timing dia-
(0] -1 U 113
relative pin 1 locations111
spectrum spreader 114
status byteccocvevvvenciennnn, 226
subsystems
digital inputs and outputs ..28
switching modescc.c...... 37
T
TCP/IP
librariesccooeiiiiinnnn. 49
TCP/IP primerccceeeeeenns 93
technical support 14
thermistor
function calls
thermOffset()cc......... 55
thermReading() 54
Tool Kit oo, 9
Getting Started instructions .6
power Supplyccccoeeeienne 6
programming cable 6
triac

phase-angle control
function calls
triac_PhaseCntrl() 83
triac_PhaseCntrlPin() .80
triac_PhaseDisable() ..82
triac_PhaseEnable() ...82
triac_Phaselnit() 77
triac_PhaselnitPWM() 79
triac_PhaseLock 81
triac_PhaseUnlock() ..81
time-proportional control
function calls
triac_TimePropCntrl() 88
triac_TimePropCntr-

[10T 86
triac_TimePropDisable()
................................. 87
triac_TimePropEnable()
................................. 87
triac_TimeProplnit() ..84
troubleshooting
changing COM port 13
CONNECLIONSovvvevcicieee 13

U
USB/serial port converter
Dynamic C settings 13
user block
determining size 47
function callsc.......... 47
readUserBlock() 43
writeUserBlock() 43
reserved area for calibration
CONSLaNtScoovevvveeeriennen. 47
W
Wi-Fi
Add-On Kit ..o 7

230

PowerCore FLEX

SCHEMATICS

090-0193 PowerCore FLEX Module Schematic

www.rabbit.com/documentation/schemat/090-0193.pdf

090-0194 PowerCore Prototyping Board Schematic

www.rabbit.com/documentation/schemat/090-0194.pdf

090-0156 LCD/Keypad Module Schematic

www.rabbit.com/documentation/schemat/090-0156.pdf

090-0128 Programming Cable Schematic

www.rabbit.com/documentation/schemat/090-0128.pdf

You may use the URL information provided above to access the latest schematics directly.

User’s Manual 231

http://www.rabbit.com/documentation/schemat/090-0193.pdf
http://www.rabbit.com/documentation/schemat/090-0194.pdf
http://www.rabbit.com/documentation/schemat/090-0128.pdf
http://www.rabbit.com/documentation/schemat/090-0156.pdf

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Rabbit Semiconductor:
101-1017 101-1019

http://www.mouser.com/rabbitsemi
http://www.mouser.com/access/?pn=101-1017
http://www.mouser.com/access/?pn=101-1019

	PowerCore FLEX™ User's Manual
	Table of Contents
	1. Introduction
	1.1 PowerCore Features
	1.1.1 Basic Features
	1.1.2 Options

	1.2 Standard Configurations and PowerCore FLEX Options
	1.3 PowerCore FLEX Advantages
	1.4 Development and Evaluation Tools
	1.4.1 Software
	1.4.2 Wi-Fi Add-On Kit
	1.4.3 Online Documentation

	2. Getting Started
	2.1 Install Dynamic C
	2.2 Hardware Connections
	2.2.1 Attach Module to Prototyping�Board
	2.2.2 Connect Programming Cable
	2.2.3 Connect Power

	2.3 Starting Dynamic C
	2.4 Run a Sample Program
	2.5 Where Do I Go From Here?
	2.5.1 Standalone Operation of the PowerCore Module
	2.5.2 Technical Support

	3. Running Sample Programs
	3.1 Introduction
	3.2 Sample Programs
	3.2.1 I/O
	3.2.2 A/D Converter
	3.2.3 D/A Converter
	3.2.4 Use of Serial Flash
	3.2.5 Serial Communication
	3.2.6 Triacs
	3.2.7 TCP/IP
	3.2.8 LCD/Keypad Module

	4. Hardware Reference
	4.1 PowerCore Digital Inputs and Outputs
	4.1.1 Internal and External Buses
	4.1.2 Other Inputs and Outputs
	4.1.3 LEDs

	4.2 Serial Communication
	4.2.1 Serial Ports
	4.2.2 Ethernet Port
	4.2.3 Programming Port

	4.3 Programming Cable
	4.3.1 Changing Between Program Mode and Run Mode

	4.4 Ramp Generator
	4.4.1 Ramp Generator Theory of Operation

	4.5 Other Hardware
	4.5.1 Clock Doubler
	4.5.2 Spectrum Spreader

	4.6 Memory
	4.6.1 SRAM
	4.6.2 Flash EPROM
	4.6.3 Serial Flash
	4.6.4 Dynamic C BIOS Source Files

	4.7 Power Supply Options and Requirements

	5. Software Reference
	5.1 More About Dynamic C
	5.1.1 Compile Options
	5.1.2 Using Dynamic C with Interrupts
	5.1.3 User Block

	5.2 Dynamic C Functions
	5.2.1 Digital I/O
	5.2.2 External I/O
	5.2.3 SRAM Use
	5.2.4 Serial Communication Drivers
	5.2.5 TCP/IP Drivers
	5.2.6 Serial Flash Drivers
	5.2.7 A/D Converter Ramp-Generator Drivers
	5.2.8 Prototyping Board Functions

	5.3 Upgrading Dynamic C
	5.3.1 Add-On Modules

	6. Using the TCP/IP Features
	6.1 TCP/IP Connections
	6.2 TCP/IP Primer on IP Addresses
	6.2.1 IP Addresses Explained
	6.2.2 How IP Addresses are Used
	6.2.3 Dynamically Assigned Internet Addresses

	6.3 Placing Your Device on the Network
	6.4 Running TCP/IP Sample Programs
	6.4.1 How to Set IP Addresses in the Sample Programs
	6.4.2 How to Set Up Your Computer for Direct Connect

	6.5 Run the PINGME.C Sample Program
	6.6 Running Additional Sample Programs
	6.7 Where Do I Go From Here?

	Appendix A. PowerCore Specifications
	A.1 Electrical and Mechanical Characteristics
	A.1.1 Headers and Spacers

	A.2 Bus Loading
	A.3 Rabbit 3000 DC Characteristics
	A.4 I/O Buffer Sourcing and Sinking Limit
	A.5 Jumper Configurations
	A.6 Conformal Coating

	Appendix B. Prototyping Board
	B.1 Introduction
	B.1.1 Prototyping Board Features

	B.2 Mechanical Dimensions and Layout
	B.3 Power Supply
	B.4 Using the Prototyping Board
	B.4.1 Adding Other Components
	B.4.2 Digital I/O
	B.4.3 Digital Outputs
	B.4.4 Triac Outputs
	B.4.5 Analog I/O
	B.4.6 Serial Communication
	B.4.7 Other Prototyping Board Modules

	B.5 Use of Rabbit 3000 Parallel Ports

	Appendix C. LCD/Keypad Module
	C.1 Specifications
	C.2 Contrast Adjustments for All Boards
	C.3 Keypad Labeling
	C.4 Header Pinouts
	C.4.1 I/O Address Assignments

	C.5 Install Connectors on Prototyping Board
	C.6 Mounting LCD/Keypad Module on the Prototyping Board
	C.7 Bezel-Mount Installation
	C.7.1 Connect the LCD/Keypad Module to Your Prototyping Board

	C.8 Sample Programs
	C.9 LCD/Keypad Module Function Calls
	C.9.1 LCD/Keypad Module Initialization
	C.9.2 LEDs
	C.9.3 LCD Display
	C.9.4 Keypad

	Appendix D. Power Supply
	D.1 Power Supplies
	D.1.1 Power-Supply Options

	D.2 Battery-Backup Circuits
	D.2.1 Replacing the Backup Battery

	D.3 Reset Generator

	Appendix E. RabbitNet
	E.1 General RabbitNet Description
	E.1.1 RabbitNet Connections
	E.1.2 RabbitNet Peripheral Cards

	E.2 Physical Implementation
	E.2.1 Control and Routing

	E.3 Function Calls
	E.3.1 Status Byte

	Index
	Schematics

