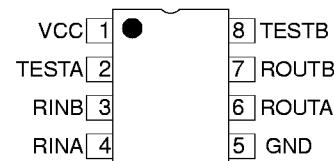


DESCRIPTION

The HI-8588-10 ARINC 429 bus interface receiver is similar to the HI-8588 with the exception that it allows an external 10 Kohm resistor in series with each ARINC input without affecting the ARINC input thresholds. The product is especially useful in applications where lightning protection circuitry is also required. In addition, the test inputs force both of the outputs to zero instead open circuit. The analog/digital CMOS product requires only a 5 volt supply and is available in a SO 8 pin package.


Each side of the ARINC bus must be connected through a 10 Kohm series resistor in order for the chip to detect the correct ARINC levels. The typical 10 volt differential signal is translated and input to a window comparator and latch. The comparator levels are set so that with the external 10 Kohm resistors they are just below the standard 6.5 volt minimum ARINC data threshold and just above the standard 2.5 volt maximum ARINC null threshold.

The TESTA and TESTB inputs bypass the analog inputs for testing purposes. Also if TESTA and TESTB are both taken high, the digital outputs are forced to zero.

FEATURES

- ARINC 429 line receiver interface in a small outline package
- Lightning protection simplified with the ability to add 10 Kohm external series resistors
- Receiver input hysteresis at least 2 volts
- Test inputs bypass analog inputs and force digital outputs to an one, zero or null state
- Plastic and ceramic package options - surface mount and DIP
- Mil processing available

PIN CONFIGURATION

SUPPLY VOLTAGES

VCC = 5.0V ± 5%

FUNCTION TABLE

RECEIVER

RINA	RINB	TESTA	TESTB	ROUTA	ROUTB
-1.25V to 1.25V	-1.25V to 1.25V	0	0	0	0
-3.25V to -6.5V	3.25V to 6.5V	0	0	0	1
3.25V to 6.5V	-3.25V to -6.5V	0	0	1	0
X	X	0	1	0	1
X	X	1	0	1	0
X	X	1	1	0	0

PIN DESCRIPTION TABLE

PIN	SYMBOL	FUNCTION	DESCRIPTION
1	VCC	SUPPLY	5 VOLT SUPPLY
2	TESTA	LOGIC INPUT	CMOS
3	RINB	ARINC INPUT	RECEIVER B INPUT
4	RINA	ARINC INPUT	RECEIVER A INPUT
5	GND	POWER	GROUND
6	ROUTA	LOGIC OUTPUT	RECEIVER CMOS OUTPUT A
7	ROUTB	LOGIC OUTPUT	RECEIVER CMOS OUTPUT B
8	TESTB	LOGIC INPUT	CMOS

FUNCTIONAL DESCRIPTION

RECEIVER

Figure 1 shows the general architecture of the ARINC 429 receiver. The receiver operates off the VCC supply only. The inputs RINA and RINB each require $35\text{ k}\Omega$ of resistance of which $25\text{ k}\Omega$ is internal to the chip. The series resistance is connected to level translators whose resistance to Ground is typically $10\text{ k}\Omega$. In order for the voltage translation not to be adversely affected, an external $10\text{ k}\Omega$ series resistor must be added to each ARINC input. The HI-8588-10 device is typically chosen for applications where external series resistors are required in its lightning protection circuitry.

After level translation, the inputs are buffered and become inputs to a differential amplifier. The amplitude of the differential signal is compared to levels derived from a divider

between VCC and Ground. The nominal settings correspond to a One/Zero amplitude of 6.0 V and a Null amplitude of 3.3 V .

The status of the ARINC receiver input is latched. A Null input resets the latches and a One or Zero input sets the latches.

The logic at the output is controlled by the test signal which is generated by the logical OR of the TestA and TestB pins. Unlike the HI-8588, if TestA and TestB are both One, the HI-8588-10 outputs are pulled low instead of being tri-stated. This allows the digital outputs of a transmitter to be connected to the test inputs through control logic for self-test purposes.

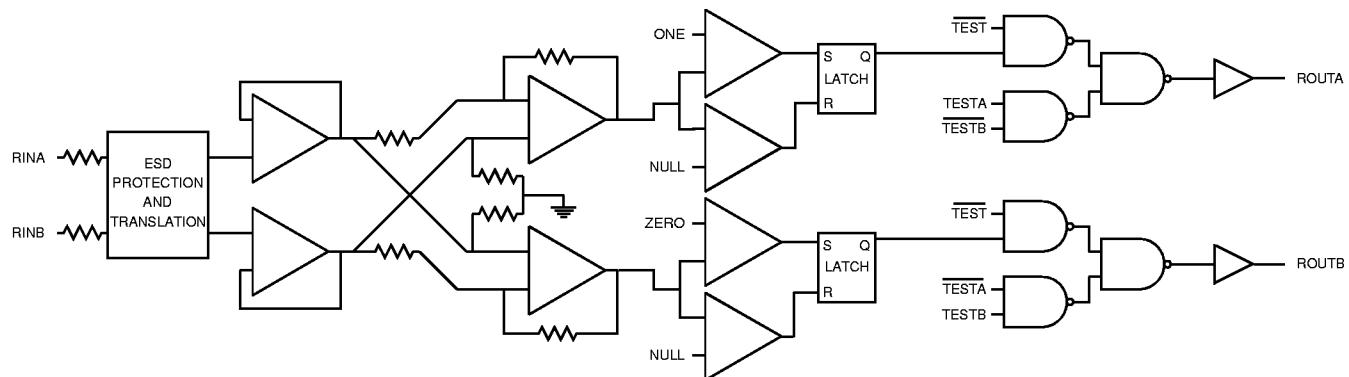


FIGURE 1 - RECEIVER BLOCK DIAGRAM

APPLICATION INFORMATION

Figure 2 shows a possible application of the HI-8588 interfacing an ARINC receive channel to the HI-6010 which in turn interfaces to an 8-bit bus.

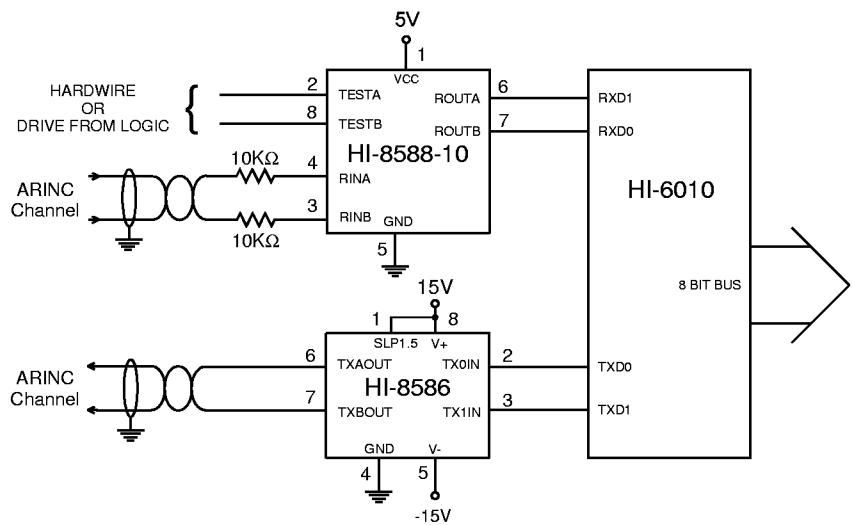


FIGURE 2 - APPLICATION DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Voltages referenced to Ground

Supply voltages VCC.....	7V
ARINC input - pins 3 & 4 Voltage at either pin.....	+29V to -29V
DC current per input pin.....	$\pm 10\text{mA}$
Power dissipation at 25°C plastic DIL.....	0.7W
ceramic DIL.....	0.5W
Solder Temperature	275°C for 10 sec
Storage Temperature.....	-65°C to $+150^\circ\text{C}$

RECOMMENDED OPERATING CONDITIONS

Supply Voltages VCC.....	5V... $\pm 5\%$
Temperature Range	
Industrial Screening.....	-40°C to $+85^\circ\text{C}$
Hi-Temp Screening.....	-55°C to $+125^\circ\text{C}$
Military Screening.....	-55°C to $+125^\circ\text{C}$

NOTE: Stresses above absolute maximum ratings or outside recommended operating conditions may cause permanent damage to the device. These are stress ratings only. Operation at the limits is not recommended.

DC ELECTRICAL CHARACTERISTICS

OPERATING TEMPERATURE RANGE, VCC = 5.0V UNLESS OTHERWISE STATED

PARAMETERS	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS	
ARINC input voltage one or zero null common mode	V_{DIN} V_{NIN} V_{COM}	diff. volt. thru $10\text{K}\Omega$, pins 3 & 4 " " " " with respect to Ground	6.5 - -	10 - -	13 2.5 5.0	volts volts volts	
logic input voltage high low	V_{IH} V_{IL}			3.5 -	- 1.5	volts volts	
ARINC input resistance RINA to RINB RINA or RINB to Gnd or VCC	R_{DIFF} R_{SUP}	supplies floating & series $10\text{K}\Omega$ " " " "	30 19	75 40	- -	Kohm Kohm	
logic input current source sink	I_{IH} I_{IL}	$V_{\text{IN}} = 0\text{ V}$ $V_{\text{IN}} = 5\text{ V}$		- -	0.1 0.1	μA μA	
logic output drive current one zero	I_{OH} I_{OL}	$V_{\text{OH}} = 4.6\text{V}$ $V_{\text{OL}} = 0.4\text{V}$		- 3.6	-1.6 5.6	-0.8 -	mA mA
Current drain operating	I_{CC1}	pins 2, 8 = 0V; pins 3, 4 open	-	2.3	6.3	mA	

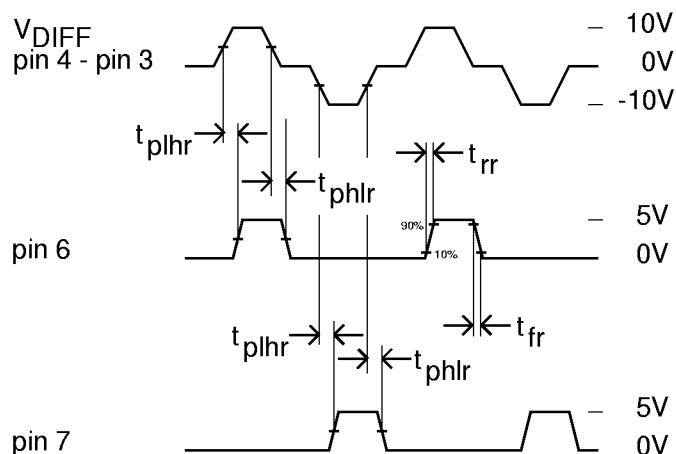
AC ELECTRICAL CHARACTERISTICS

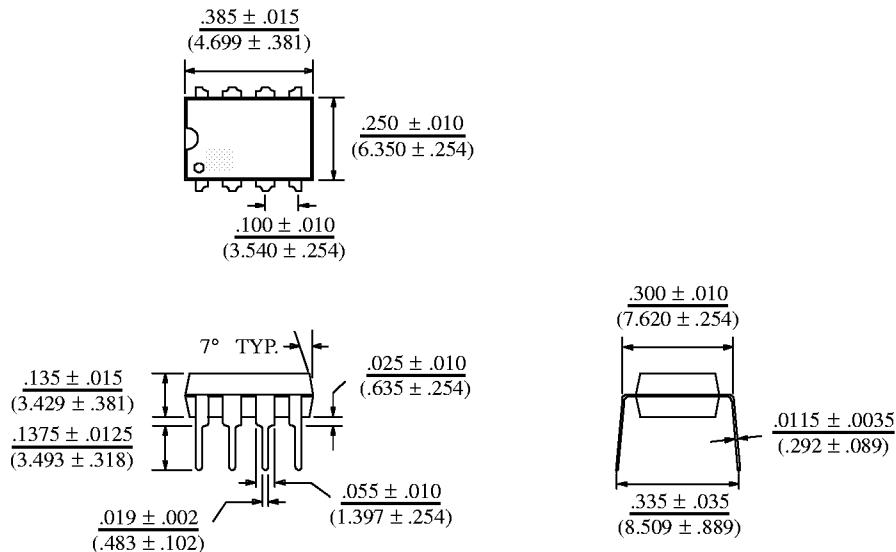
OPERATING TEMPERATURE RANGE, VCC = 5.0V UNLESS OTHERWISE STATED

PARAMETERS	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Receiver propagation delay Output high to low Output low to high	t_{phr} t_{plhr}	defined in Figure 3, $C_L = 50\text{pF}$	-	600	-	ns
Receiver output transition times Output high to low Output low to high	t_{fr} t_{rr}		-	50	80	ns
Input capacitance (1) ARINC differential ARINC single ended to Ground Logic	C_{AD} C_{AS} C_{IN}		-	5	10	pF
			-	-	10	pF
			-	-	10	pF

Notes:

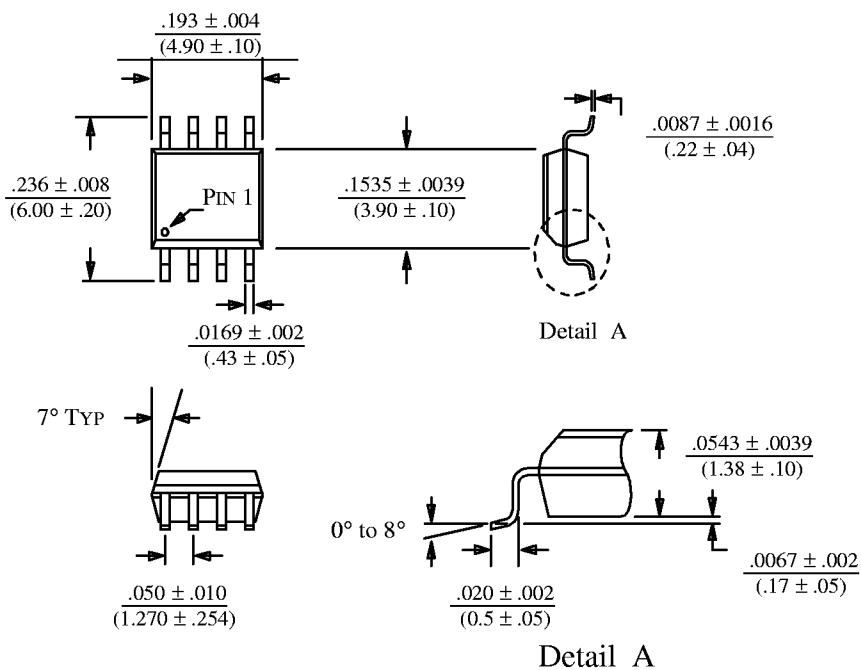
1. Guaranteed but not tested



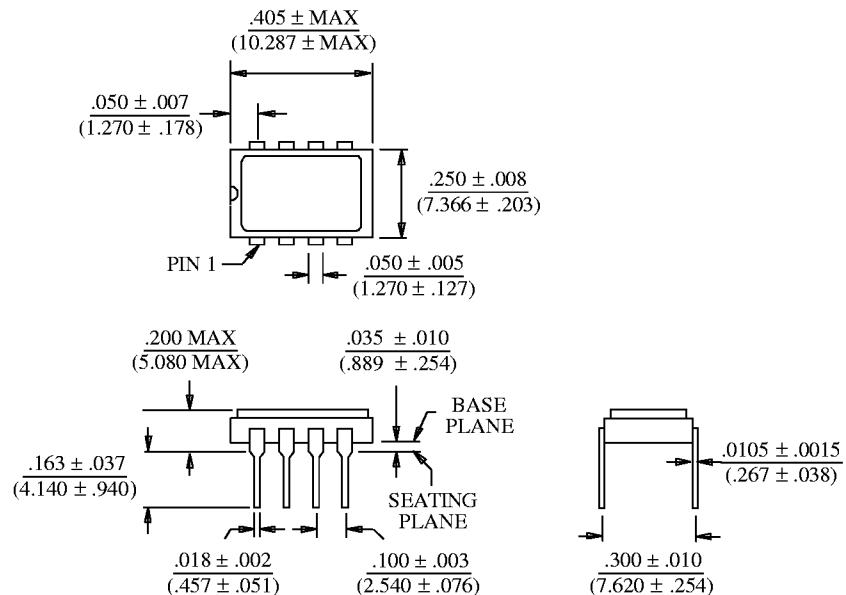

FIGURE 3 - RECEIVER TIMING

ORDERING INFORMATION

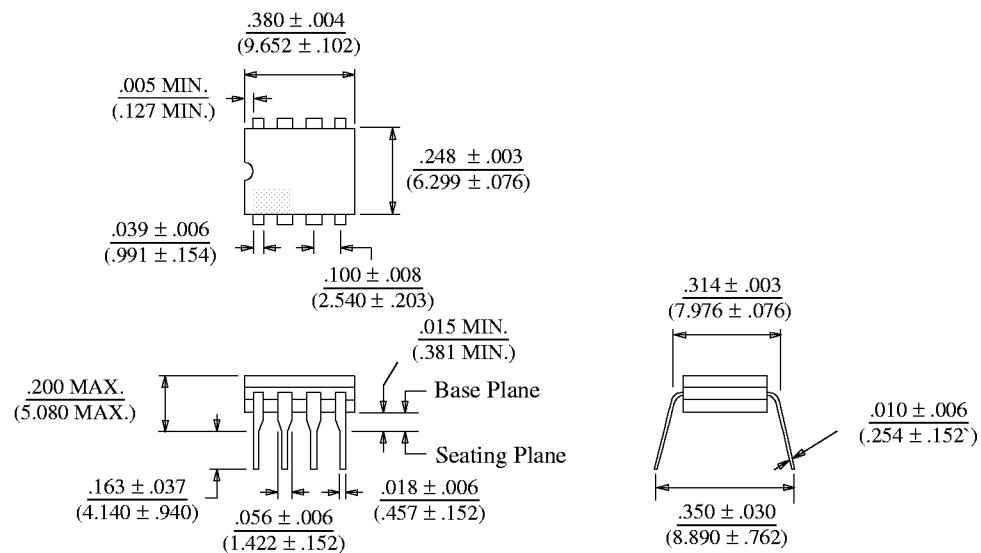
PART NUMBER	PACKAGE DESCRIPTION	TEMPERATURE RANGE	FLOW	BURN IN	LEAD FINISH
HI-8588PDI-10	8 PIN PLASTIC DIP	-40°C TO +85°C	I	NO	SOLDER
HI-8588PDT-10	8 PIN PLASTIC DIP	-55°C TO +125°C	T	NO	SOLDER
HI-8588PSI-10	8 PIN PLASTIC SO	-40°C TO +85°C	I	NO	SOLDER
HI-8588PST-10	8 PIN PLASTIC SO	-55°C TO +125°C	T	NO	SOLDER
HI-8588CDI-10	8 PIN CERAMIC SIDE BRAZED DIP	-40°C TO +85°C	I	NO	GOLD
HI-8588CDT-10	8 PIN CERAMIC SIDE BRAZED DIP	-55°C TO +125°C	T	NO	GOLD
HI-8588CDM-10	8 PIN CERAMIC SIDE BRAZED DIP	-55°C TO +125°C	M	YES	SOLDER
HI-8588CRI-10	8 PIN CERDIP	-40°C TO +85°C	I	NO	SOLDER
HI-8588CRT-10	8 PIN CERDIP	-55°C TO +125°C	T	NO	SOLDER
HI-8588CRM-10	8 PIN CERDIP	-55°C TO +125°C	M	YES	SOLDER


8-PIN PLASTIC DIP

Package Type: 8P


8-PIN PLASTIC SMALL OUTLINE PACK (SOIC)

Package Type: 8H


8-PIN CERAMIC SIDE-BRAZED DIP

Package Type: 8C

8-PIN CERDIP

Package Type: 8D

