MIP2L40MY

Silicon MOS FET type integrated circuit

■ Features

- Reducing the average noise
 - Adding a frequency jitter function to MIP2E/3E* series to dramatically reduce the average noise and simplify EMI parts
- Stabilization of maximum electric power by input correction
 Correcting the input voltage dependency of I LIMIT reduces the input voltage dependency of maximum output current
- Overheating protection function
 Changed from stopping in latch mode to self reset type
- Protecting function
 Overload protection, overheat protection

■ Applications

• Flat-screen TV, audio and others

■ Absolute Maximum Ratings $T_a = 25$ °C±3°C

Parameter	Symbol	Rating	Unit
DRAIN voltage	VD	- 0.3 to +700	V
CONTROL voltage	VC	- 0.3 to +8	V
Output peak current *	IDP	2.7	A
Channel temperature	Tch	150	°C
Storage temperature	Tstg	-55 to +150	°C

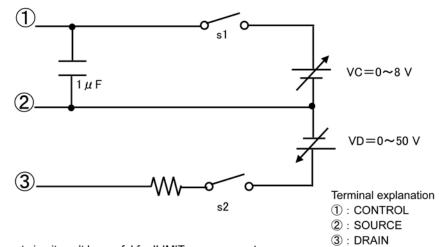
Note) *: The guarantee within the following pulse width. Leading edge blanking delay + Current limit delay ton(BLK) + td(OCL)

■ Block Diagram

Current source for start CONTROL O O DRAIN Maintain time Reset signal (Reset at MAXDC & VC(OFF)) Timer intermittent Error amplifier Timer reset VC(ON) / VC(OFF) Overheat protection OSCLLATOR WITH JITTER Restart trigger ЛЛ MAXDUTY VC_ CLAMP Q CLOCK Generating circuit \overline{Q} of on-time blanking pulse ILIMIT For drain current ILIMIT max O SOURCE

Package

- Code
 - TO-220-A2
- Pin Name
 - 1. CONTROL
 - 2. SOURCE
 - 3. DRAIN
- Marking Symbol: MIP2L4MY


■ Electrical Characteristics $T_C = 25$ °C±3°C

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Control functions						
Output frequency	fosc	VC = VC(CNT) - 0.2 V, VD = 5V	92	100	108	kHz
Jitter frequency deviation	Δf	VC = VC(CNT) - 0.2 V, VD = 5V * Fig. 5		5.5		kHz
Jitter frequency modulation rate *	fM	VC = VC(CNT) - 0.2 V, VD = 5V * Fig. 5		270		Hz
Maximum duty cycle	MAXDC	VC = VC(CNT) - 0.2 V, VD = 5V	50	53	56	%
PWM gain *	GPWM	VC = VC(CNT)		12.5		dB
Before auto-restart current	IC(SB)1	VC < VC(ON), VD = 5 V	0.2	0.5	0.8	mA
After off-state current	IC(SB)2	VC > VC(CNT), $VD = 5 V$	0.2	0.5	0.8	mA
Operating current	IC(OP)	VC = VC(CNT) - 0.2 V, VD = 5V	0.25	0.7	1.15	mA
Auto-restart threshold voltage	VC(ON)	VD = 5V	5.75	6.25	6.75	V
UV lockout threshold voltage	VC(OFF)	VD = 5V	4.35	4.8	5.25	V
Auto-restart maintain voltage	VC_m	S1 = OPEN	4.95	5.45	5.95	V
Auto-restart maintain time	Tm	S1 = OPEN		45		ms
Auto-restart hysteresis voltage	ΔVC	VC(ON) – VC(OFF)	1.05	1.45	1.85	V
Control clamp voltage	VC(CLP)	IC = 3 mA	6.2	6.8	7.4	V
Auto-restart duty cycle	TSW/TTIM	S1 = OPEN * Fig. 4		12		%
Auto-restart frequency	fTIM	S1 = OPEN * Fig. 4		2.6		Hz
Control pin charging current	IC(CHG)1	VC = 0 V, VD = 50 V	-14	-9	-6	mA
	IC(CHG)2	VC = 5 V, VD = 50 V	-11.2	-5.7	-2.4	mA
Control pin voltage	VC(CNT)	VD = 5 V	5.3	5.9	6.5	V
Control pin voltage hysteresis *	ΔVC(CNT)	VD = 5 V		10		mV
Circuit protections						
Self protection current limit	ILIMIT	Duty = 30% * Fig. 1, 2	1.24	1.35	1.46	A
ILIMIT modified coefficient	R_slope	VC = VC(CNT) - 0.2 V * Fig. 1, 2		37		mA/μs
Leading edge blanking delay *	ton(BLK)		240	300	360	ns
Current limit delay *	td(OCL)		140	210	280	ns
Thermal shutdown temperature *	TOTP		130	140	150	°C
Thermal shutdown temperature hysteresis *	ΔΤΟΤΡ			70		°C
Output						
Power-up reset the shold voltage *	VCreset		1.8	2.6	3.5	V
ON-state resistance	RDS(ON)	ID = 0.2 A		5.2	6.7	Ω
OFF-state leakage current	IDSS	VD = 650 V, VC = 6.5 V		10	20	μА
Breakdown voltage	VDSS	$ID = 100 \mu A, VC = 6.5 V$	700			V
Rise time	tr	VC = VC(CNT) - 0.2 V, VD = 5 V * Fig. 3		95		ns
Fall time	tf	VC = VC(CNT) - 0.2 V, VD = 5 V * Fig. 3		30		ns
Supply voltage characteristics	1		1		1	1
Drain supply voltage	VD(MIN)	S1 = OPEN	36			V

Note) *: Design guaranteed item

Panasonic

- Electrical Characteristics (continued) $T_C = 25$ °C±3°C
 - 1. Measurement circuit

* This measurement circuit can't be useful for ILIMIT measurement

2. Figure 1. Measurement circuit 2

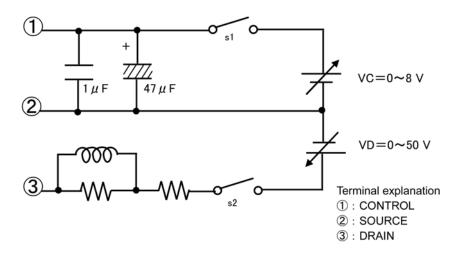
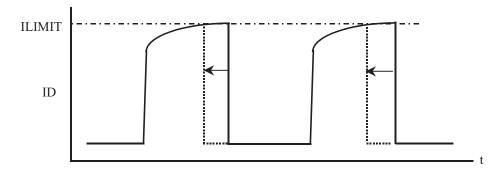



Figure 2. ILIMIT measurement

 $R_slope = \{(ILIMIT \ at \ Duty = 30\%) \ _ \ (ILIMIT \ at \ Duty = 20\%)\} \ / \ \{(Ton \ at \ Duty = 30\%) \ _ \ (Ton \ at \ Duty = 20\%)\} \ / \ \{(Ton \ at \ Duty = 30\%) \ _ \ (Ton \ at \ Duty = 20\%)\} \ / \ \{(Ton \ at \ Duty = 30\%) \ _ \ (Ton \ at \ Duty = 20\%)\} \ / \ \{(Ton \ at \ Duty = 30\%) \ _ \ (Ton \ at \ Duty = 20\%)\} \ / \ \{(Ton \ at \ Duty = 30\%) \ _ \ (Ton \ at \ Duty = 20\%)\} \ / \ \{(Ton \ at \ Duty = 30\%) \ _ \ (Ton \ at \ Duty = 20\%)\} \ / \ \{(Ton \ at \ Duty = 30\%) \ _ \ (Ton \ at \ Duty = 20\%)\} \ / \ \{(Ton \ at \ Duty = 30\%) \ _ \ (Ton \ at \ Duty = 20\%)\} \ / \ \{(Ton \ at \ Duty = 30\%) \ _ \ (Ton \ at \ Duty = 20\%)\} \ / \ \{(Ton \ at \ Duty = 30\%) \ _ \ (Ton \ at \ Duty = 20\%)\} \ / \ \{(Ton \ at \ Duty = 30\%) \ _ \ (Ton \ at \ Duty = 20\%)\} \ / \ \{(Ton \ at \ Duty = 30\%) \ _ \ (Ton \ at \ Duty = 20\%)\} \ / \ \{(Ton \ at \ Duty = 30\%) \ _ \ (Ton \ at \ Duty = 20\%)\} \ / \ \{(Ton \ at \ Duty = 30\%) \ _ \ (Ton \ at \ Duty = 20\%)\} \ / \ \{(Ton \ at \ Duty = 30\%) \ _ \ (Ton \ at \ Duty = 20\%)\} \ / \ \{(Ton \ at \ Duty = 30\%) \ _ \ (Ton \ at \ Duty = 20\%)\} \ / \ \{(Ton \ at \ Duty = 30\%) \ _ \ (Ton \ at \ Duty = 20\%)\} \ / \ \{(Ton \ at \ Duty = 30\%) \ _ \ (Ton \ at \ Duty = 20\%)\} \ / \ \{(Ton \ at \ Duty = 30\%) \ _ \ (Ton \ at \ Duty = 20\%)\} \ / \ \{(Ton \ at \ Duty = 30\%) \ _ \ (Ton \ at \ Duty = 20\%)\} \ / \ \{(Ton \ at \ Duty = 30\%) \ _ \ (Ton \ at \ Duty = 20\%)\} \ / \ \{(Ton \ at \ Duty = 30\%) \ _ \ (Ton \ at \ Duty = 20\%)\} \ / \ \{(Ton \ at \ Duty = 30\%) \ _ \ (Ton \ at \ Duty = 20\%)\} \ / \ \{(Ton \ at \ Duty = 30\%) \ / \ \{(Ton \ at \ Duty = 30\%) \ / \ \{(Ton \ at \ Duty = 30\%) \ / \ \{(Ton \ at \ Duty = 30\%) \ / \ \{(Ton \ at \ Duty = 30\%) \ / \ \{(Ton \ at \ Duty = 30\%) \ / \ \{(Ton \ at \ Duty = 30\%) \ / \ \{(Ton \ at \ Duty = 30\%) \ / \ \{(Ton \ at \ Duty = 30\%) \ / \ \{(Ton \ at \ Duty = 30\%) \ / \ \{(Ton \ at \ Duty = 30\%) \ / \ \{(Ton \ at \ Duty = 30\%) \ / \ \{(Ton \ at \ Duty = 30\%) \ / \ \{(Ton \ at \ Duty = 30\%) \ / \ \{(Ton \ at \ Duty = 30\%) \ / \ \{(Ton \ at \ Duty = 30\%) \ / \ \{(Ton \ at \ Duty = 30\%) \ / \ \{(Ton \ at \$

■ Electrical Characteristics (continued) $T_C = 25$ °C±3°C

2. Figure 3. tr, tf measurement

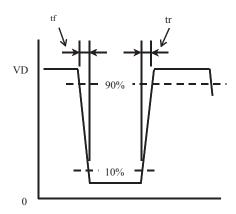


Figure 4. VC_m, Tm, TTSW. TTIM, FTIM measurement

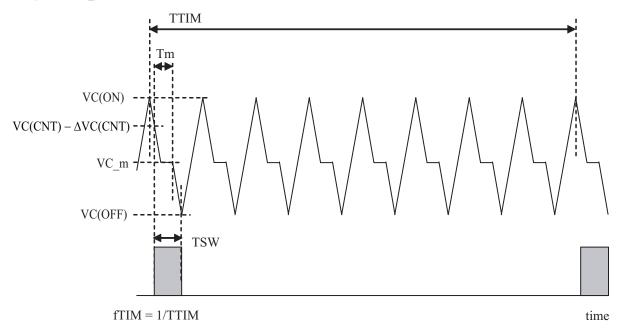
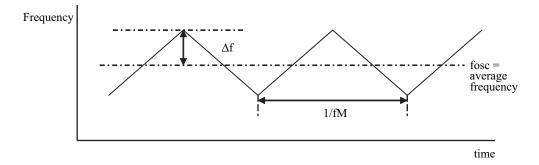



Figure 5. Δf, fM measurement

Panasonic MIP2L40MY

■ Usage Notes

Connect a Ceramic Capacitor (over 0.1 µF) between CONTROL and SOURCE.

The IPD has risks for break-down or burst or giving off smoke in following conditions. Avoid the following use.

Fuse should be added at the input side or connect zener diode between control pin and GND, etc as a countermeasure to pass regulatory Safety Standard. Concrete countermeasure could be provided individually. However, customer should make the final judgment.

- (1) Reverse the DRAIN pin and SOURCE pin connection to the power supply board.
- (2) DRAIN pin short to CONTROL pin.
- (3) DRAIN pin short to SOURCE pin.

Request for your special attention and precautions in using the technical information and semiconductors described in this book

- (1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
- (2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products. No license is granted in and to any intellectual property right or other right owned by Panasonic Corporation or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information de-scribed in this book.
- (3) The products described in this book are intended to be used for general applications (such as office equipment, communications equipment, measuring instruments and household appliances), or for specific applications as expressly stated in this book.
 - Please consult with our sales staff in advance for information on the following applications, moreover please exchange documents separately on terms of use etc.: Special applications (such as for in-vehicle equipment, airplanes, aerospace, automotive equipment, traffic signaling equipment, combustion equipment, medical equipment and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
 - Unless exchanging documents on terms of use etc. in advance, it is to be understood that our company shall not be held responsible for any damage incurred as a result of or in connection with your using the products described in this book for any special application.
- (4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most upto-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.
 Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.
- (6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. We do not guarantee quality for disassembled products or the product re-mounted after removing from the mounting board. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.
- (7) When reselling products described in this book to other companies without our permission and receiving any claim of request from the resale destination, please understand that customers will bear the burden.
- (8) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of our company.