

Data Sheet May 2001 File Number 5031

4A, 600V Stealth™ Diode

The ISL9R460P2 is a StealthTM diode optimized for low loss performance in high frequency hard switched applications. The StealthTM family exhibits low reverse recovery current (I_{RRM}) and exceptionally soft recovery under typical operating conditions.

This device is intended for use as a free wheeling or boost diode in power supplies and other power switching applications. The low I_{RRM} and short t_a phase reduce loss in switching transistors. The soft recovery minimizes ringing, expanding the range of conditions under which the diode may be operated without the use of additional snubber circuitry. Consider using the Stealth TM diode with an SMPS IGBT to provide the most efficient and highest power density design at lower cost.

Formerly developmental type TA49408.

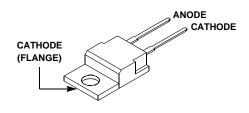
Ordering Information

PART NUMBER	PACKAGE	BRAND
ISL9R460P2	TO-220AC	R460P2

NOTE: When ordering, use the entire part number.

Symbol

Features


•	Soft Recovery $t_b / t_a > 3$
•	Fast Recovery t_{rr} < 20ns
•	Operating Temperature
•	Reverse Voltage
•	Avalanche Energy Rated

Applications

- Switch Mode Power Supplies
- · Hard Switched PFC Boost Diode
- UPS Free Wheeling Diode
- Motor Drive FWD
- SMPS FWD
- Snubber Diode

Packaging

JEDEC TO-220AC

Absolute Maximum Ratings T_C = 25°C, Unless Otherwise Specified

SYMBOL PARAMETER		ISL9R460P2	UNITS	
V_{RRM}	V _{RRM} Peak Repetitive Reverse Voltage		V	
V _{RWM} Working Peak Reverse Voltage		600	V	
V _R DC Blocking Voltage		600	V	
I _{F(AV)}	Average Rectified Forward Current	4	Α	
I _{FRM}	Repetitive Peak Surge Current (20kHz Square Wave)	8	Α	
I _{FSM}	Nonrepetitive Peak Surge Current (Halfwave 1 Phase 60Hz)	50	Α	
P _D	Power Dissipation	58	W	
E _{AVL} Avalanche Energy (1A, 20mH)		10	mJ	
T _J , T _{STG}	Operating and Storage Temperature	-55 to 175	°С	
T _L T _{pkg}	Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s Package Body for 10s, See Techbrief TB334	300 260	°C	
ERMAL SPECIFIC	CATIONS	<u> </u>	1	
$R_{ heta JC}$	Thermal Resistance Junction to Case	2.6	oC/W	
R _{0JA} Thermal Resistance Junction to Ambient		62	°C/W	

NOTES:

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

ISL9R460P2

Electrical Specifications $T_C = 25^{\circ}C$, Unless Otherwise Specified

SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNITS
V _F	I _F = 4A	-	2.0	2.4	V
	I _F = 4A, T _C = 125°C	-	1.6	2.0	V
I _R	V _R = 600V	-	-	100	μΑ
	$V_R = 600V, T_C = 125^{\circ}C$	-	-	1.0	mA
t _{rr}	$I_F = 1A$, $dI_F/dt = 100A/\mu s$, $V_R = 30V$	-	17	20	ns
	$I_F = 4A$, $dI_F/dt = 100A/\mu s$, $V_R = 30V$	-	19	22	ns
t _{rr}	$I_F = 4A$, $dI_F/dt = 200A/\mu s$, $V_R = 390V$, $T_C = 25^{\circ}C$	-	17	-	ns
I _{RRM}		-	2.6	-	А
Q _{RR}		-	22	-	nC
t _{rr}	$I_F = 4A$, $dI_F/dt = 200A/\mu s$, $V_R = 390V$, $T_C = 125^{\circ}C$	-	77	-	ns
S		-	4.2	-	
I _{RRM}		-	2.8	-	А
Q _{RR}		-	100	-	nC
t _{rr}	$I_F = 4A$, $dI_F/dt = 400A/\mu s$, $V_R = 390V$, $T_C = 125^{o}C$	-	54	-	ns
S		-	3.5	-	
I _{RRM}		-	4.3	-	А
Q _{RR}		-	110	-	nC
dI _M /dt		-	500	-	A/μs
СЛ	V _R = 10V, I _F = 0A	-	19	-	pF

DEFINITIONS

 V_F = Instantaneous forward voltage (pw = 300 μ s, D = 2%)

pw = pulse width.

D = Duty cycle

 I_R = Instantaneous reverse current.

 t_{rr} = Reverse recovery time $(t_a + t_b)$.

S = Softness factor (t_b / t_a) .

 I_{RRM} = Maximum reverse recovery current.

Q_{RR} = Reverse recovery charge.

 $dI_{M}/dt = Maximum di/dt during t_{b}$.

C_J = Junction Capacitance.

Typical Performance Curves

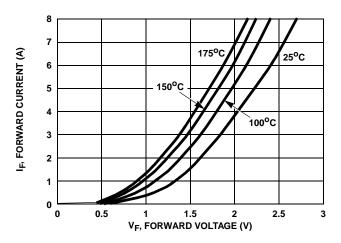


FIGURE 1. FORWARD CURRENT vs FORWARD VOLTAGE

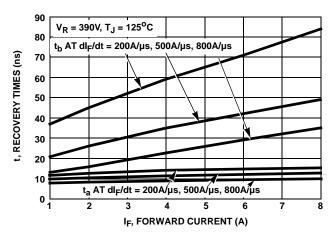


FIGURE 3. t_a AND t_b CURVES vs FORWARD CURRENT

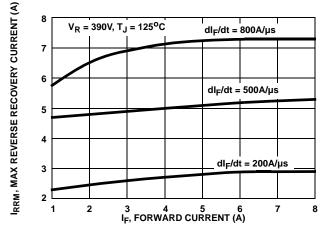


FIGURE 5. MAXIMUM REVERSE RECOVERY CURRENT vs FORWARD CURRENT

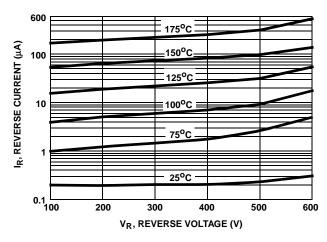


FIGURE 2. REVERSE CURRENT vs REVERSE VOLTAGE

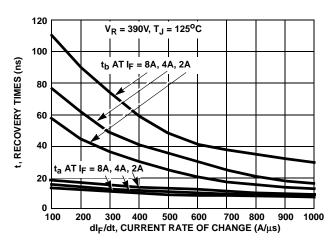


FIGURE 4. ta AND tb CURVES vs dlF/dt

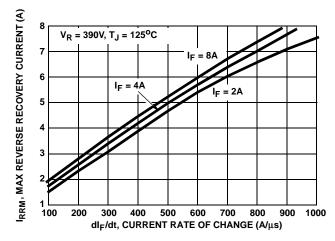
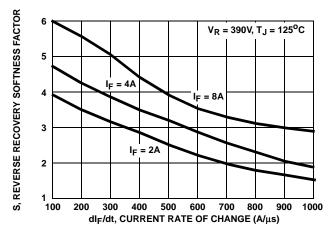



FIGURE 6. MAXIMUM REVERSE RECOVERY CURRENT vs dI_F/dt

Typical Performance Curves (Continued)

180 Q_{RR}, REVERSE RECOVERY CHARGE (nC) $V_R = 390V, T_J = 125^{\circ}C$ I_F = 8A 160 140 $I_F = 4A$ 120 100 $I_F = 2A$ 80 100 300 400 500 600 700 800 dI_F/dt, CURRENT RATE OF CHANGE (A/μs)

FIGURE 7. REVERSE RECOVERY SOFTNESS FACTOR vs dIF/dt

FIGURE 8. REVERSE RECOVERY CHARGE vs dl_F/dt

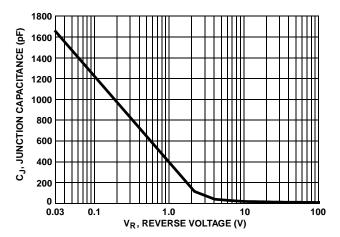


FIGURE 9. JUNCTION CAPACITANCE vs REVERSE VOLTAGE

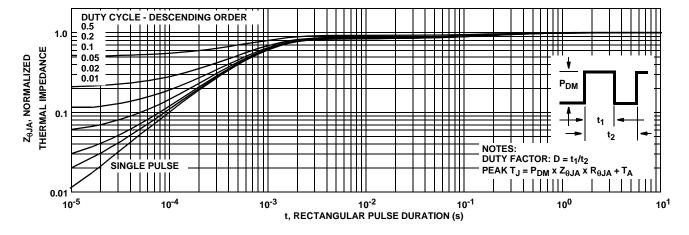


FIGURE 10. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE

©2001 Fairchild Semiconductor Corporation ISL9R460P2 Rev. A1

Test Circuits and Waveforms

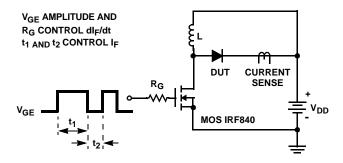


FIGURE 11. t_{rr} TEST CIRCUIT

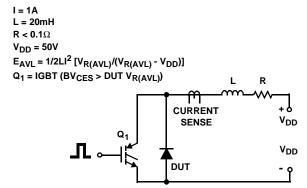


FIGURE 13. AVALANCHE ENERGY TEST CIRCUIT

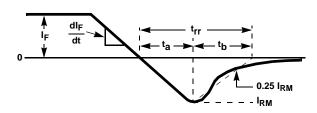


FIGURE 12. t_{rr} WAVEFORMS AND DEFINITIONS

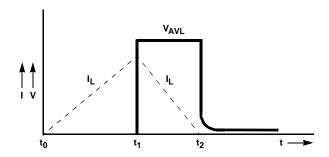
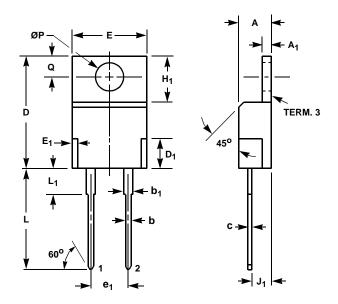



FIGURE 14. AVALANCHE CURRENT AND VOLTAGE WAVEFORMS

TO-220AC

2 LEAD JEDEC TO-220AC PLASTIC PACKAGE (FOR RECTIFIERS ONLY)

	INCHES		MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α	0.170	0.180	4.32	4.57	-
A ₁	0.048	0.052	1.22	1.32	-
b	0.030	0.034	0.77	0.86	3, 4
b ₁	0.045	0.055	1.15	1.39	2, 3
С	0.014	0.019	0.36	0.48	2, 3, 4
D	0.590	0.610	14.99	15.49	-
D ₁	-	0.160	-	4.06	-
Е	0.395	0.410	10.04	10.41	-
E ₁	-	0.030	-	0.76	-
e ₁	0.200 BSC		5.08 BSC		5
H ₁	0.235	0.255	5.97	6.47	-
J ₁	0.100	0.110	2.54	2.79	6
L	0.530	0.550	13.47	13.97	-
L ₁	0.130	0.150	3.31	3.81	2
ØP	0.149	0.153	3.79	3.88	-
Q	0.102	0.112	2.60	2.84	-

NOTES:

- These dimensions are within allowable dimensions of Rev. J of JEDEC TO-220AC outline dated 3-24-87.
- 2. Lead dimension and finish uncontrolled in L₁.
- 3. Lead dimension (without solder).
- 4. Add typically 0.002 inches (0.05mm) for solder coating.
- 5. Position of lead to be measured 0.250 inches (6.35mm) from bottom of dimension D.
- 6. Position of lead to be measured 0.100 inches (2.54mm) from bottom of dimension D.
- 7. Controlling dimension: Inch.
- 8. Revision 3 dated 7-97.

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FAST [®]	OPTOPLANAR™	SuperSOT™-3
Bottomless™	FASTr™	PACMAN™	SuperSOT™-6
CoolFET™	FRFET™	POP TM	SuperSOT™-8
$CROSSVOLT^{TM}$	GlobalOptoisolator™	PowerTrench [®]	SyncFET™
DenseTrench™	GTO™	QFET™	TinyLogic™
DOME™	HiSeC™	QS TM	UHC™
EçoSPARK™	ISOPLANAR™	QT Optoelectronics™	UltraFET [®]
E ² CMOS™	LittleFET™	Quiet Series™	VCX TM
Ensigna™	MicroFET™	SILENT SWITCHER®	
FACT™	MICROWIRE™	SMART START™	

OPTOLOGIC™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS. NOR THE RIGHTS OF OTHERS.

Stealth™

LIFE SUPPORT POLICY

FACT Quiet Series™

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

©2001 Fairchild Semiconductor Corporation