

Precision 20 MHz CMOS Rail-to-Rail Input/Output Operational Amplifiers

Preliminary Technical Data

AD8615/AD8616/AD8618

FEATURES

Low Offset Voltage: 80mV typ. 300 mV max Single-Supply Operation: 2.7 to 6 Volts

Low Noise: 8 nV/ÖHz Wide Bandwidth: 20 MHz Slew Rate: 12 V/ms Low Distortion No Phase Reversal Low Input Bias Currents Unity Gain Stable

APPLICATIONS
Barcode Scanners
Battery Powered Instrumentation
Multi-pole Filters
Sensors
ASIC Input or Output Amplifier
Audio
Photodiode amplification

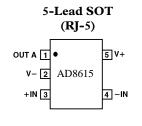
GENERAL DESCRIPTION

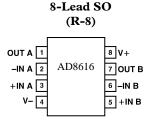
The AD8615, AD8616 and AD8618 are single, dual and quad rail-to-rail input and output single supply amplifiers featuring very low offset voltage, wide signal bandwidth, and low input voltage and current noise. These amplifiers use a patented trimming technique that achieves superior precision without laser trimming. All are fully specified to operate from +3V to +5V single supply.

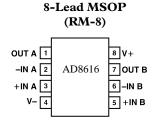
The combination of low offsets, low noise, very low input bias currents, and high speed make these amplifiers useful in a wide variety of applications. Filters, integrators, photo-diode amplifiers and high impedance sensors all benefit from the combination of performance features. Audio and other AC applications benefit from the wide bandwidth and low distortion.

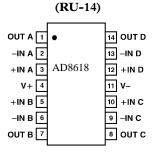
Applications for these amplifiers include Portable and loop-powered instrumentation, audio amplification for portable devices, portable phone headsets, bar code scanners, and multi-pole filters. The ability to swing rail-to-rail at both the input and output enables designers to buffer CMOS ADCs, DACs, ASICs and other wide output swing devices in single supply systems.

The AD8615, AD8616 and AD8618 are specified over the extended industrial (-40° to +125°C) temperature range. The AD8615, single, is available in the tiny 5-lead SOT-23 package. The AD8616, dual, is available in the 8-lead micro-SOIC and narrow SOIC surface mount packages. The

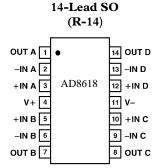

REV. PrA


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies.


AD8618, quad, is available in 14-lead TSSOP and narrow 14-pin SOIC packages.


SOT, MSOP and TSSOP versions are available in tape and reel only.

PIN CONFIGURATIONS



14-Lead TSSOP

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

Tel: 781/329-4700 www.analog.com

Fax: 781/326-8703 © 2003 Analog Devices, Inc. All rights reserved.

AD8615/AD8616/AD8618

ELECTRICAL CHARACTERISTICS (V_S =+3.0V, V_{CM} = V_S /2, T_A =+25°C unless otherwise noted)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
INPUT CHARACTERISTICS						
Offset Voltage	V _{OS}	$V_{CM} = 0V \text{ to } 3V$		80	300	μV
		$-40^{\circ} < T_{A} < +125^{\circ}C$			750	μV
Input Bias Current	I_{B}			0.2	60	pA
		$-40^{\circ} < T_{A} < +85^{\circ}C$			100	pA
		$-40^{\circ} < T_{A} < +125^{\circ}C$			100	pA
Input Offset Current	I _{OS}			0.1	30	pA
		$-40^{\circ} < T_{A} < +85^{\circ}C$			50	pA
		$-40^{\circ} < T_{A} < +125^{\circ}C$			500	pA
Input Voltage Range			0		3	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = 0V$ to $3V$	68	83		dB
Large Signal Voltage Gain	A _{VO}	$R_L = 2 k\Omega V_0 = 0.5 V \text{ to } 2.5 V$	30	100		V/mV
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$			2		μV/°C
OUTPUT CHARACTERISTICS						
Output Voltage High	V _{OH}	$I_L = 1 \text{mA}$	2.92	2.95		V
		$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +125^{\circ}\text{C}$	2.88			V
Output Voltage Low	V _{OL}	$I_L = 1 \text{mA}$		20	35	mV
		$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +125^{\circ}\text{C}$			50	mV
Output Current	I _{OUT}			±150		mA
Closed Loop Output Impedance	Z _{OUT}	$f=1 \text{ MHz}, A_V = 1$		12		Ω
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_S = 2.7 \text{ V to } 5.5 \text{ V}$	67	80		dB
Supply Current/Amplifier	I_{SY}	$V_O = 0V$		1.6	2.0	mA
		$-40^{\circ} < T_A < +125^{\circ}C$			TBD	mA
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_L = 2 k\Omega$		12		V/µs
Settling Time	t _s	To 0.01%		< 0.25		μs
Gain Bandwidth Product	GBP			20		MHz
Phase Margin	Øo			40		degrees
NOISE PERFORMANCE						
Voltage Noise Density	e _n	f=1kHz		8		nV/√Hz
Voltage Noise Density	e _n	f=10kHz		6		nV/√Hz
Current Noise Density	i _n	f=1kHz		0.05		pA/√Hz

AD8615/AD8616/AD8618

ELECTRICAL CHARACTERISTICS (@ V_S =+5.0V, V_{CM} = V_s /2, T_A =+25°C unless otherwise noted)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
INPUT CHARACTERISTICS						
Offset Voltage	V _{OS}	$V_{CM} = 0V$ to $5V$		80	300	μV
		$-40^{\circ} < T_A < +125^{\circ}C$			750	μV
Input Bias Current	I_B			0.2	60	pA
		$-40^{\circ} < T_A < +85^{\circ}C$			100	pA
		$-40^{\circ} < T_{A} < +125^{\circ}C$			1000	pA
Input Offset Current	I_{OS}			0.1	30	pA
		$-40^{\circ} < T_{A} < +85^{\circ}C$			50	pA
		$-40^{\circ} < T_A < +125^{\circ}C$			500	pA
Input Voltage Range			0		5	v
Common-Mode Rejection Ratio	CMRR	$V_{CM} = 0V$ to 5V	74	89	3	dB
Common Wode Rejection Ratio	Civitat	VCM = 0 V 10 3 V	/-	07		ub
Large Signal Voltage Gain	A _{VO}	$V_0 = 0.5 V$ to 4.5 V,	30	70		V/mV
		$R_L = 2 k\Omega$, $V_{CM} = 0V$				
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	E , c.i.		2		μV/°C
OUTPUT CHARACTERISTICS	1 22					
Output Voltage High	V_{OH}	$I_L = 1mA$	4.925	4.975		V
		$I_L = 10 \text{mA}$	4.7	4.77		V
		-40°C to +125°C	4.6			V
Output Voltage Low	V	I - 1m A		15	30	mV
Output Voltage High	V _{OL}	$I_{L} = 1 \text{mA}$ $I_{L} = 10 \text{mA}$		125	175	mV
Output voltage High	V _{OL}	-40°C to +125°C		123		
		-40°C to +125°C			250	mV
Output Current	I _{OUT}			±50		mA
Closed Loop Output Impedance	Z _{OUT}	$f=1 \text{ MHz}, A_V = 1$		10		Ω
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_S = 2.7 \text{ V to } 5.5 \text{ V}$	67	80		dB
Supply Current/Amplifier	I_{SY}	$V_{O} = 0V$		1.3	2.0	mA
1	51	$-40^{\circ} < T_A < +125^{\circ}C$			TBD	mA
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_L = 2 k\Omega$		12		V/µs
Settling Time	t _s	To 0.01%		<.5		μs
Full Power Bandwidth	BWp	<1% Distortion		TBD		kHz
Gain Bandwidth Product	GBP			20		MHz
Phase Margin	Øo			40		degrees
NOISE PERFORMANCE						
Voltage Noise Density	e _n	f=1kHz		8		nV/√Hz
Voltage Noise Density	e _n	f=10kHz		6		nV/√Hz
Current Noise Density	i _n	f=1kHz		0.05		pA/√Hz

AD8615/AD8616/AD8618

ABSOLUTE MAXIMUM RATINGS¹

Supply voltage+6V
Input VoltageGnd to Vs
Differential Input Voltage±6V
Output Short-Circuit Duration to Gnd ² Observe Derating Curves
Storage Temperature Range
R, RT, RM, RU Package65°C to +150°C
Operating Temperature Range
AD8615/AD8616/AD861840°C to +125°C
Junction Temperature Range
R, RT, RM, RU Package65°C to +150°C
Lead Temperature Range (Soldering, 60 Sec)+300°C

Package Type	q J A	qJC	Units	
5-Pin SOT-23 (RT)	230		°C/W	
8-Pin microSOIC (RM)	210	45	°C/W	
8-Pin SOIC (R)	158	43	°C/W	
14-Pin SOIC (R)	120	36	°C/W	
14-Pin TSSOP (RU)	180	35	°C/W	

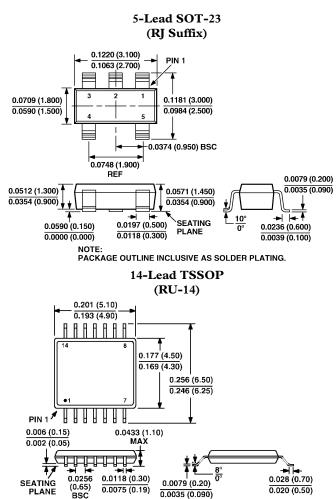
NOTES

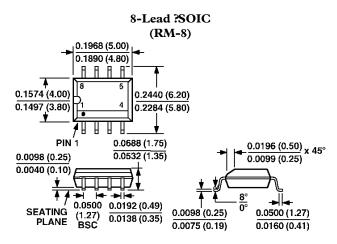
ORDERING GUIDE

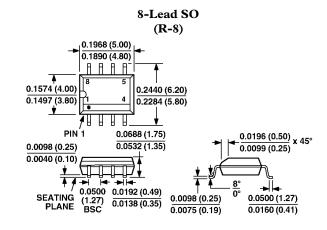
	Temperature	Package	Package	Branding
Model	Range	Description	Option	Information
AD8615ARJ	-40°C to +125°C	5-Pin SOT-23	RT-5	
AD8616ARM	-40°C to +125°C	8-Pin micro-SOIC	RM-8	
AD8616AR	-40°C to +125°C	8-Pin SOIC	R-8	
AD8618AR	-40°C to +125°C	16-Pin SOIC	R-16	
AD8618ARU	-40°C to +125°C	16-Pin TSSOP	RU-16	

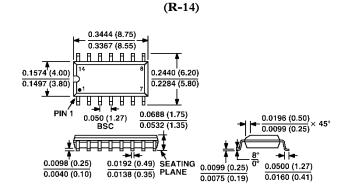
CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this device features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.


-4- Rev PrA 6/2/03


 $^{^1}$ Absolute maximum ratings apply at 25 $^{\circ}\text{C},$ unless otherwise noted.


 $^{^2}$ θ_{JA} is specified for the worst-case conditions, i.e., θ_{JA} is specified for device soldered in circuit board for surface mount packages.


AD8615/AD8616/AD8618

OUTLINE DIMENSIONS

14-Lead SO