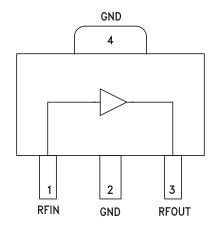


HMC480ST89 / 480ST89E

v02.0710


InGaP HBT GAIN BLOCK MMIC AMPLIFIER, DC - 5 GHz

Typical Applications

The HMC480ST89 / HMC480ST89E is an ideal RF/IF gain block & LO or PA driver for:

- Cellular / PCS / 3G
- Fixed Wireless & WLAN
- CATV, Cable Modem & DBS
- Microwave Radio & Test Equipment

Functional Diagram

Features

P1dB Output Power: +19 dBm to 2.5 GHz

Gain: 19 dB @ 1 GHz 16 dB @ 2 GHz +34 dBm Output IP3

Single Supply: +6V to +8V

Industry Standard SOT89 Package

Included in the HMC-DK001 Designer's Kits

General Description

The HMC480ST89 & HMC480ST89E are InGaP HBT Gain Block MMIC SMT amplifiers covering DC to 5 GHz and packaged in an industry standard SOT89. The amplifier can be used as a cascadable 50 Ohm RF/IF gain stage as well as a LO or PA driver with up to +20 dBm P1dB output power for cellular/3G, FWA, CATV, microwave radio and test equipment applications. The HMC480ST89(E) offers 19 dB of gain with a +34 dBm output IP3 at 1 GHz while requiring only 82 mA from a single positive supply. The HMC480ST89(E) InGaP gain blocks offer excellent output IP3 and flat +19 to +20dBm output power performance through 5 GHz compared to equivalent SiGe based products.

Electrical Specifications, Vs= 8.0 V, Rbias= 39 Ohm, T_A = +25° C

Parameter			Тур.	Max.	Units
	DC - 1.0 GHz	17	19		dB
	1.0 - 2.0 GHz	14	17		dB
Gain	2.0 - 3.0 GHz	12	15		dB
	3.0 - 4.0 GHz	10	13		dB
	4.0 - 5.0 GHz	8	11		dB
Gain Variation Over Temperature	DC - 5 GHz		0.008	0.016	dB/ °C
least Detural are	DC - 1.0 GHz		17		dB
Input Return Loss	1.0 - 5.0 GHz		10		dB
0 1 1 1 1 1	DC - 1.0 GHz		17		dB
Output Return Loss	1.0 - 5.0 GHz		10		dB
Reverse Isolation	DC - 5 GHz		20		dB
	0.5 - 1.0 GHz	16	20		dBm
Output Douge for 1 dD Compression (D1dD)	1.0 - 2.0 GHz	15.5	18.5		dBm
Output Power for 1 dB Compression (P1dB)	2.0 - 3.5 GHz	14.5	17.5		dBm
	3.5 - 5.0 GHz	13	16		dBm
	0.5 - 1.0 GHz		34		dBm
Output Third Order Intercept (IP3)	1.0 - 2.0 GHz		33		dBm
(Pout= 0 dBm per tone, 1 MHz spacing)	2.0 - 3.5 GHz		32		dBm
	3.5 - 5.0 GHz		30		dBm
Noise Figure	DC - 4 GHz		3.25		dB
Noise Figure	4.0 - 5.0 GHz		4.0		dB
Supply Current (Icq)			82		mA

Note: Data taken with broadband bias tee on device output.

HMC480* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS 🖳

View a parametric search of comparable parts.

EVALUATION KITS

HMC480ST89 Evaluation Board

DOCUMENTATION

Application Notes

- AN-1363: Meeting Biasing Requirements of Externally Biased RF/Microwave Amplifiers with Active Bias Controllers
- Broadband Biasing of Amplifiers General Application Note
- MMIC Amplifier Biasing Procedure Application Note
- Thermal Management for Surface Mount Components General Application Note

Data Sheet

HMC480 Data Sheet

TOOLS AND SIMULATIONS 🖵

• HMC480 S-Parameter

REFERENCE MATERIALS 🖵

Quality Documentation

- Package/Assembly Qualification Test Report: 3 Lead Plastic SOT89 Package (QTR: 10002 REV: 02)
- Semiconductor Qualification Test Report: GaAs HBT-B (QTR: 2013-00229)

DESIGN RESOURCES 🖵

- HMC480 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all HMC480 EngineerZone Discussions.

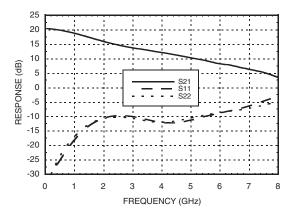
SAMPLE AND BUY 🖳

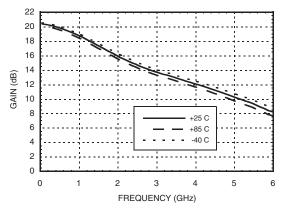
Visit the product page to see pricing options.

TECHNICAL SUPPORT 🖵

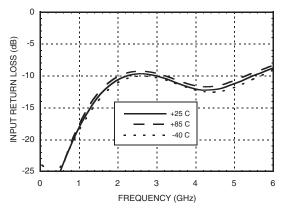
Submit a technical question or find your regional support number.

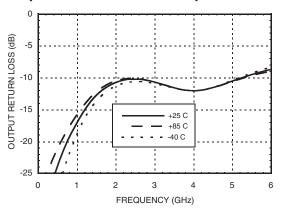
DOCUMENT FEEDBACK 🖳

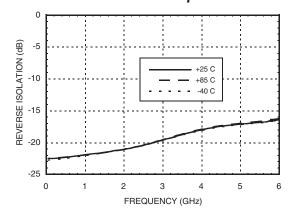

Submit feedback for this data sheet.

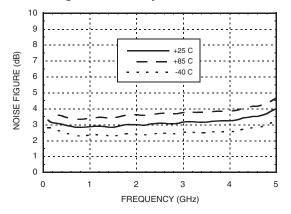


InGaP HBT GAIN BLOCK MMIC AMPLIFIER, DC - 5 GHz


Broadband Gain & Return Loss

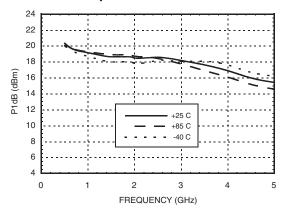

Gain vs. Temperature

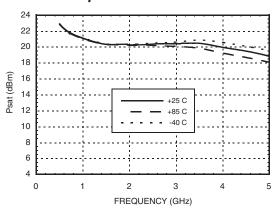

Input Return Loss vs. Temperature


Output Return Loss vs. Temperature

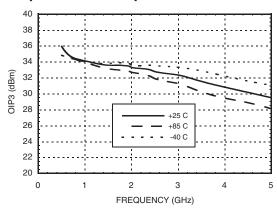
Reverse Isolation vs. Temperature

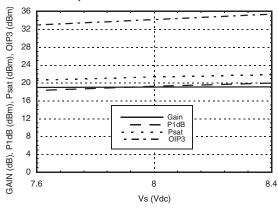
Noise Figure vs. Temperature

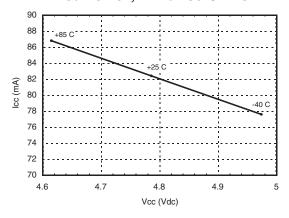




InGaP HBT GAIN BLOCK MMIC AMPLIFIER, DC - 5 GHz


P1dB vs. Temperature


Psat vs. Temperature

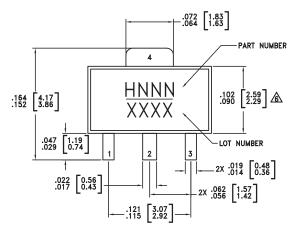

Output IP3 vs. Temperature

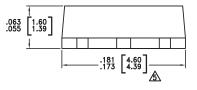
Gain, Power & OIP3 vs. Supply Voltage @ 850 MHz, Rbias= 39 Ohms

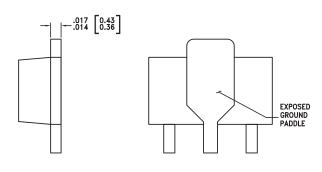
Vcc vs. Icc Over Temperature for Fixed Vs= 8V, RBIAS= 39 Ohms

HMC480ST89 / 480ST89E

v02.0710


InGaP HBT GAIN BLOCK MMIC AMPLIFIER, DC - 5 GHz


Absolute Maximum Ratings


Collector Bias Voltage (Vcc)	+6.0 Vdc	
RF Input Power (RFIN)(Vcc = +5 Vdc)	+11 dBm	
Junction Temperature	150 °C	
Continuous Pdiss (T = 85 °C) (derate 8.25 mW/°C above 85 °C)	0.536 W	
Thermal Resistance (junction to ground paddle)	122 °C/W	
Storage Temperature	-65 to +150 °C	
Operating Temperature	-40 to +85 °C	

Outline Drawing

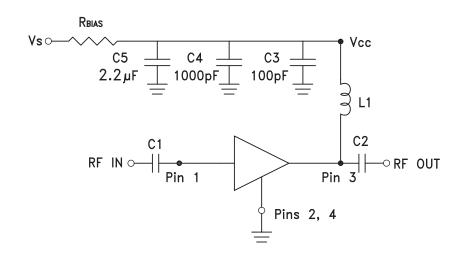
NOTES:

- 1. PACKAGE BODY MATERIAL:
 - MOLDING COMPOUND MP-180S OR EQUIVALENT.
- 2. LEAD MATERIAL: Cu w/ Ag SPOT PLATING.
- 3. LEAD PLATING: 100% MATTE TIN.
- 4. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.
- DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.
- 7. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]	
HMC480ST89	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	H480 XXXX	
HMC480ST89E RoHS-compliant Low Stress Injection Molded Plast		100% matte Sn	MSL1 [2]	H480 XXXX	

- [1] Max peak reflow temperature of 235 °C
- [2] Max peak reflow temperature of 260 $^{\circ}\text{C}$
- [3] 4-Digit lot number XXXX



InGaP HBT GAIN BLOCK MMIC AMPLIFIER, DC - 5 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic	
1	RFIN	This pin is DC coupled. An off chip DC blocking capacitor is required.	RFOUT	
3	RFOUT	RF output and DC Bias (Vcc) for the output stage.		
2, 4	GND	These pins and package bottom must be connected to RF/DC ground.	GND =	

Application Circuit

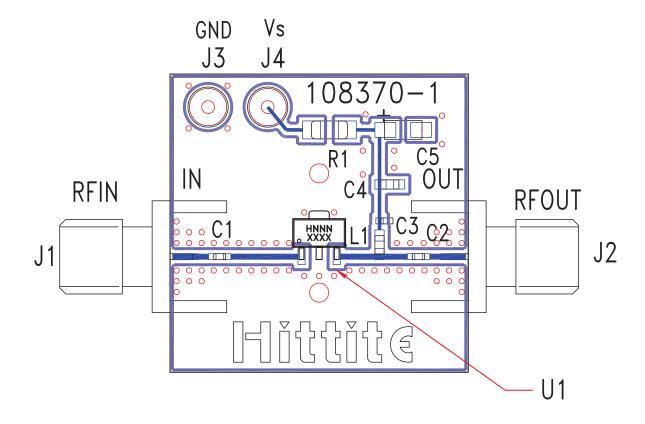
Recommended Bias Resistor Values for Icc= 82 mA, Rbias= (Vs - Vcc) / Icc

Supply Voltage (Vs)	6V	8V
RBIAS VALUE	12 Ω	39 Ω
RBIAS POWER RATING	1/8 W	1/4 W

Note:

- 1. External blocking capacitors are required on RFIN and RFOUT.
- 2. RBIAS provides DC bias stability over temperature.

Recommended Component Values for Key Application Frequencies


Component Frequency (MHz)							
Component	50	900	1900	2200	2400	3500	5000
L1	270 nH	56 nH	18 nH	18 nH	15 nH	8.2 nH	6.8 nH
C1, C2	0.01 μF	100 pF					

InGaP HBT GAIN BLOCK MMIC AMPLIFIER, DC - 5 GHz

Evaluation PCB

List of Materials for Evaluation PCB 108371 [1]

Item	Description		
J1 - J2	PCB Mount SMA Connector		
J3 - J4	DC Pin		
C1, C2	Capacitor, 0402 Pkg.		
C3	100 pF Capacitor, 0402 Pkg.		
C4	1000 pF Capacitor, 0603 Pkg.		
C5	2.2 µF Capacitor, Tantalum		
R1	Resistor, 1210 Pkg.		
L1	Inductor, 0603 Pkg.		
U1	HMC480ST89 / HMC480ST89E		
PCB [2]	108370 Evaluation PCB		

^[1] Reference this number when ordering complete evaluation $\ensuremath{\mathsf{PCB}}$

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and package bottom should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

^[2] Circuit Board Material: Rogers 4350