

32-Mbit (2M × 16) Static RAM

Features

■ Very high speed: 55 ns

■ Wide voltage range: 2.20 V-3.60 V

■ Ultra-low active power

□ Typical active current: 2 mA at f = 1 MHz □ Typical active current: 15 mA at f = f_{max}

■ Ultra low standby power

■ Easy memory expansion with $\overline{\text{CE}}_1$, CE_2 and $\overline{\text{OE}}$ features

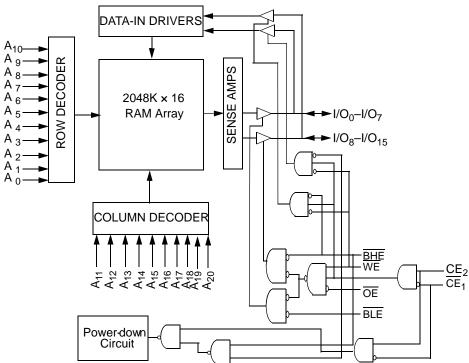
■ Automatic power-down when deselected

Complementary metal oxide semiconductor (CMOS) for optimum speed/power

■ Packages offered in a 48-ball fine ball grid array (FBGA)

Functional Description

The CY62177DV30 is a high-performance CMOS static RAM organized as 2M words by 16 bits. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life $^{\text{TM}}$ (MoBL $^{\text{\tiny B}}$) in portable applications such as cellular telephones. The device also has an


automatic power-down feature that significantly reduces power consumption. The <u>de</u>vice can also be put into <u>stand</u>by <u>mode</u> when deselected (\overline{CE}_1 HIGH or \overline{CE}_2 LOW or both BHE and BLE are HIGH). The input/output pins (I/O_0 through $\underline{I/O}_{15}$) are placed in a high-impedance state when: deselected (\overline{CE}_1 HIGH or \overline{CE}_2 LOW), outputs are disabled (\overline{OE} HIGH), both Byte High Enable and Byte Low Enable are disabled (BHE, BLE HIGH), or during a write operation (\overline{CE}_1 LOW, \overline{CE}_2 HIGH and \overline{WE} LOW).

Writing to the device is accomplished by taking Chip Enables ($\overline{\text{CE}}_1$ LOW and CE_2 HIGH) and Write Enable ($\overline{\text{WE}}$) input LOW. If Byte Low Enable ($\overline{\text{BLE}}$) is LOW, then data from I/O pins (I/O0 through I/O7), is written into the location specified on the address pins (A0 through A20). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O8 through I/O15) is written into the location specified on the address pins (A0 through A20).

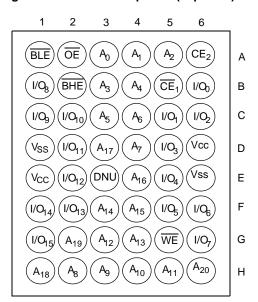
Reading from the device is accomplished by taking Chip Enables ($\overline{\text{CE}}_1$ LOW and $\overline{\text{CE}}_2$ HIGH) and Output Enable ($\overline{\text{OE}}$) LOW while forcing the Write Enable ($\overline{\text{WE}}$) HIGH. If Byte Low Enable ($\overline{\text{BLE}}$) is LOW, then data from the memory location specified by the address pins will appear on I/O $_0$ to I/O $_7$. If Byte High Enable ($\overline{\text{BHE}}$) is LOW, then data from memory will appear on I/O $_8$ to I/O $_{15}$. See the truth table for a complete description of read and write modes.

For a complete list of related documentation, click here.

Logic Block Diagram

Cypress Semiconductor Corporation
Document Number: 38-05633 Rev. *J

Contents


Pin Configuration	3
Product Portfolio	
Maximum Ratings	
Operating Range	4
Electrical Characteristics	4
Capacitance	5
Thermal Resistance	
AC Test Loads and Waveforms	5
Data Retention Characteristics	6
Data Retention Waveform	6
Switching Characteristics	7
Switching Waveforms	
Truth Table	

Ordering information	
Ordering Code Definitions	12
Package Diagram	13
Acronyms	14
Document Conventions	14
Units of Measure	14
Document History Page	15
Sales, Solutions, and Legal Information	17
Worldwide Sales and Design Support	17
Products	17
PSoC®Solutions	17
Cypress Developer Community	17
Technical Support	

Pin Configuration

Figure 1. 48-ball FBGApinout (Top View) [1]

Product Portfolio

							Power D	issipation		
Product	V _{CC} Range (V)		Speed	Operating I _{CC} (mA)			- Standby I _{SB2} (μA)			
Product		(ns)	f = 1 MHz		f = f _{max}					
	Min	Typ ^[2]	Max		Typ ^[2]	Max	Typ ^[2]	Max	Typ ^[2]	Max
CY62177DV30LL	2.2	3.0	3.6	55	2	4	15	30	5	50

Notes

- DNU pins have to be left floating or tied to Vss to ensure proper application.
 Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ.)}, T_A = 25 °C.

Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Storage temperature-65 °C to + 150 °C Ambient temperature with power applied–55 °C to + 125 °C Supply voltage to ground potential -0.3 V to V_{CC} + 0.3 V

Output current into outputs (LOW)	20 mA
Static discharge voltage	0004.1/
(per MIL-STD-883, method 3015)	>2001 V
Latch-up current	>200 mA

Operating Range

Device	Range	Ambient Temperature	V cc ^[5]	
CY62177DV30LL	Industrial	–40 °C to +85 °C	2.20 V to 3.60 V	

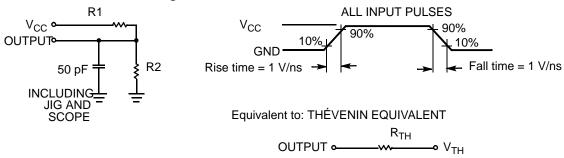
Electrical Characteristics

Over the Operating Range

Parameter	Description	Test Cond	itions	Min	Typ ^[6]	Max	Unit
V _{OH}	Output HIGH voltage	$I_{OH} = -0.1 \text{ mA}$	V _{CC} = 2.20 V	2.0	_	_	V
		$I_{OH} = -1.0 \text{ mA}$	$V_{CC} = 2.70 \text{ V}$	2.4	-	_	V
V _{OL}	Output LOW voltage	$I_{OL} = 0.1 \text{ mA}$	$V_{CC} = 2.20 \text{ V}$	ı	ı	0.4	V
		$I_{OL} = 2.1 \text{ mA}$	$V_{CC} = 2.70 \text{ V}$	ı	I	0.4	V
V_{IH}	Input HIGH voltage	$V_{CC} = 2.2 \text{ V to } 2.7 \text{ V}$,	1.8	I	V_{CC} + 0.3 V	V
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$,	2.2	I	V_{CC} + 0.3 V	V
V_{IL}	Input LOW voltage	$V_{CC} = 2.2 \text{ V to } 2.7 \text{ V}$,	-0.3	I	0.6	V
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	-0.3	-	0.8	V	
I _{IX}	Input leakage current	$GND \leq V_I \leq V_{CC}$		-1	-	+1	μΑ
I _{OZ}	Output leakage current	$GND \le V_O \le V_{CC}$, out	put disabled	-1	-	+1	μΑ
I _{CC}	V _{CC} operating supply current	$f = f_{MAX} = 1/t_{RC}$	$V_{CC} = V_{CC_{max}}$	_	15	30	mA
		f = 1 MHz	I _{OUT} = 0 mA CMOS levels		2	4	mA
I _{SB1}	Automatic CE power-down current – CMOS inputs	$\begin{split} \overline{\text{CE}}_1 &\geq \text{V}_{\text{CC}} - 0.2 \text{ V, CE}_2 < 0.2 \text{ V,} \\ \text{V}_{\text{IN}} &\geq \text{V}_{\text{CC}} - 0.2 \text{ V, V}_{\text{IN}} \leq 0.2 \text{ V,} \\ \text{f} &= \text{f}_{\text{MAX}} \text{ (address and data only),} \\ \text{f} &= 0 (\overline{\text{OE}}, \overline{\text{WE}}, \overline{\text{BHE}} \text{ and } \overline{\text{BLE}}), \\ \text{V}_{\text{CC}} &= 3.60 \text{ V} \end{split}$			5	100	μА
I _{SB2}	Automatic CE power-down current – CMOS inputs	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		_	5	50	μА

- Notes
 3. V_{IL(min.)} = −2.0 V for pulse durations less than 20 ns.
 4. V_{IH(mlax)} = V_{CC} + 0.75 V for pulse durations less than 20 ns.
 5. Full device AC operation requires linear V_{CC} ramp from 0 to V_{CC(min)} ≥ 500 μs.
 6. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ.)}, T_A = 25 °C.

Capacitance


Parameter [7]	Description	Test Conditions	Max.	Unit
C _{IN}	Input capacitance	$T_A = 25 ^{\circ}\text{C}, f = 1 \text{MHz},$	12	pF
C _{OUT}	Output capacitance	$V_{CC} = V_{CC(typ)}$	12	pF

Thermal Resistance

Parameter [7]	Description	Test Conditions	BGA	Unit
θ_{JA}	Thermal resistance (junction to ambient)	Still Air, soldered on a 3×4.5 inch, two-layer printed circuit board	46.31	°C/W
θ JC	Thermal resistance (junction to case)		3.5	°C/W

AC Test Loads and Waveforms

Figure 2. AC Test Loads and Waveforms

Parameters	s 2.5 V (2.2 V to 2.7 V) 3.0 V (2.7 V to 3.6 V)		Unit
R1	16667	1103	Ω
R2	15385	1554	Ω
R _{TH}	8000	645	Ω
V _{TH}	1.20	1.75	V

Note

^{7.} Tested initially and after any design or process changes that may affect these parameters.

Data Retention Characteristics

Over the Operating Range

Parameter	Description	Conditions	Min	Typ ^[9]	Max	Unit
V_{DR}	V _{CC} for data retention		1.5	-	-	V
I _{CCDR}	Data retention current	$\begin{aligned} &V_{CC} = 1.5 \text{ V} \\ &\overline{CE}_1 \ge V_{CC} - 0.2 \text{ V, } CE_2 < 0.2 \text{ V,} \\ &V_{IN} \ge V_{CC} - 0.2 \text{ V or } V_{IN} \le 0.2 \text{ V} \end{aligned}$	_	_	25	μА
t _{CDR} ^[8]	Chip deselect to data retention time		0	_	_	ns
t _R ^[10]	Operation recovery time		55	-	_	ns

Data Retention Waveform

Figure 3. Data Retention Waveform [11, 12]

 ^{8.} Tested initially and after any design or process changes that may affect these parameters.
 9. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ.)}, T_A = 25 °C
 10. Full device operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min.)} ≥ 100 µs or stable at V_{CC(min.)} ≥ 100 µs.

Switching Characteristics

Over the Operating Range

Parameter [12,	Description	Min	Max	Unit
Read Cycle				
t _{RC}	Read cycle time	55	_	ns
t _{AA}	Address to data valid	_	55	ns
t _{OHA}	Data hold from address change	10	_	ns
t _{ACE}	CE LOW to data valid	_	55	ns
t _{DOE}	OE LOW to data valid	-	25	ns
t _{LZOE}	OE LOW to LOW Z ^[14]	5	_	ns
t _{HZOE}	OE HIGH to High Z ^[14, 15]	_	20	ns
t _{LZCE}	CE LOW to Low Z ^[14]	10	_	ns
t _{HZCE}	CE HIGH to High Z ^[14, 15]	-	20	ns
t _{PU}	CE LOW to power-up	0	_	ns
t _{PD}	CE HIGH to power-down	-	55	ns
t _{DBE}	BLE/BHE LOW to data valid	-	55	ns
t _{LZBE}	BLE/BHE LOW to Low Z ^[14]	10	_	ns
t _{HZBE}	BLE/BHE HIGH to HIGH Z ^[14, 15]	-	20	ns
Write Cycle [16	5, 17]			
t _{WC}	Write cycle time	55	_	ns
t _{SCE}	CE LOW to write end	40	_	ns
t _{AW}	Address set-up to write end	40	_	ns
t _{HA}	Address hold from write end	0	_	ns
t _{SA}	Address set-up to write start	0	_	ns
t _{PWE}	WE pulse width	40	_	ns
t _{BW}	BLE/BHE LOW to write end	40	_	ns
t _{SD}	Data set-up to write end	25	_	ns
t _{HD}	Data hold from write end	0	_	ns
t _{HZWE}	WE LOW to High Z ^[14, 15]	-	20	ns
t _{LZWE}	WE HIGH to Low Z ^[14]	10	_	ns

- 11. BHE.BLE is the AND of both BHE and BLE. Chip can be deselected by either disabling the chip enable signals or by disabling both BHE and BLE.

 12. CE is the logical combination of CE₁ and CE₂. When CE₁ is LOW and CE₂ is HIGH, CE is LOW; when CE₁ is HIGH or CE₂ is LOW, CE is HIGH.

Test conditions for all parameters other than tri-state parameters assume signal transition time of 1 ns/V, timing reference levels of V_{CC(typ.)}/2, input pulse levels of 0 to V_{CC(typ.)}, and output loading of the specified I_{OL}/I_{OH} as shown in the "AC Test Loads and Waveforms" section.
 At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZBE} is less than t_{LZCE}, and t_{HZWE} is less than t_{LZCE}, and t_{HZWE} is less than t_{LZCE}.

^{15.} t_{HZOE}, t_{HZOE}, t_{HZBE}, and t_{HZWE} transitions are measured when the <u>outputs</u> enter a <u>high</u> impedance state.

16. The internal Write time of the memory is defined by the overlap of WE, CE = V_{IL}, BHE and/or BLE = V_{IL}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The <u>data</u> input set-u<u>p</u> and hold timing should be referenced to the edge of the signal that terminates the write.

17. The minimum write cycle pulse width for Write Cycle No. 3 (WE Controlled, OE LOW) should be equal to the sum of tsD and thzwe.

Switching Waveforms

Figure 4. Read Cycle No. 1 (Address Transition Controlled) $^{[18,\ 19,\ 20]}$

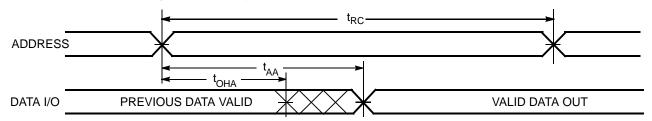
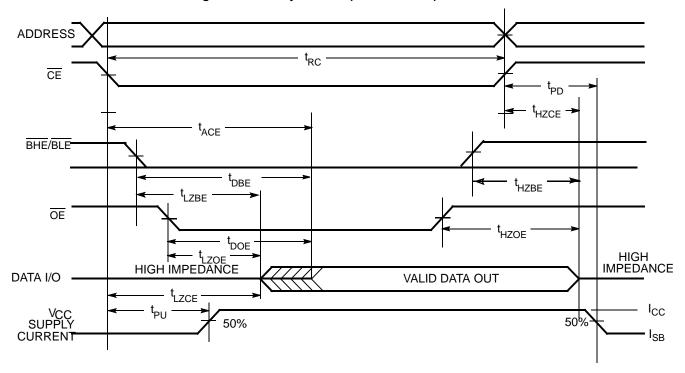



Figure 5. Read Cycle No. 2 (OE Controlled) [18, 20, 21, 22]

Notes

18. All Read/Write switching waveforms <u>are shown for 16-bit</u> data tr<u>ansa</u>ctions only.

19. The device is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$, \overline{BHE} and/or $\overline{BLE} = V_{IL}$.

20. \overline{WE} is HIGH for read cycle.

21. Address valid prior to or coincident with \overline{CE} , \overline{BHE} , \overline{BLE} transition LOW.

22. \overline{CE} is the logical combination of \overline{CE}_1 and \overline{CE}_2 . When \overline{CE}_1 is LOW and \overline{CE}_2 is HIGH, \overline{CE} is LOW; when \overline{CE}_1 is HIGH or \overline{CE}_2 is LOW, \overline{CE} is HIGH.

Switching Waveforms (continued)

Figure 6. Write Cycle No. 1 ($\overline{\text{WE}}$ Controlled) [23, 24, 25, 26, 27, 28] **ADDRESS** t_{SCE} t_{HA} t_{PWE} WE BHE/BLE t_{BW} t_{HD} VALID DATA IN DATA I/O (Śee Note 26 t_{HZOE} > Figure 7. Write Cycle No. 2 (CE Controlled) [23, 24, 25, 26, 27, 28] **ADDRESS** t_{SCE} t_{SA} t_{HA} WE BHE/BLE t_{BW}

Notes

See Note 26

- 23. All Read/Write switching waveforms are shown for 16-bit data transactions only.

 24. Data I/O is high impedance if $\overline{OE} = V_{IL}$.

 25. If \overline{CE} goes HIGH simultaneously with $\overline{WE} = V_{IH}$, the output remains in a high-impedance state.

 26. <u>During this period</u>, the I/Os are in <u>output state and input signals should not be applied</u>.

 27. \overline{CE} is the logical combination of \overline{CE}_1 and \overline{CE}_2 . When \overline{CE}_1 is LOW and \overline{CE}_2 is HIGH, \overline{CE} is LOW; when \overline{CE}_1 is HIGH or \overline{CE}_2 is LOW, \overline{CE} is HIGH.

 28. The internal Write time of the memory is defined by the overlap of \overline{WE} , $\overline{CE} = V_{IL}$, \overline{BHE} and/or $\overline{BLE} = V_{IL}$. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input set-up and hold timing should be referenced to the edge of the signal that terminates the write.

VALID DATA IN

 t_{HD}

Switching Waveforms (continued)

Figure 8. Write Cycle No. 3 (WE Controlled, $\overline{\text{OE}}$ LOW) [29, 30, 31, 32]

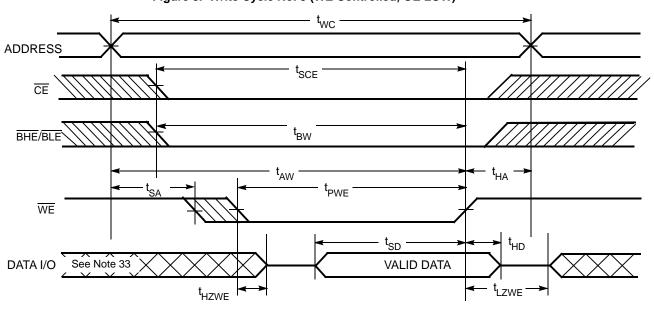
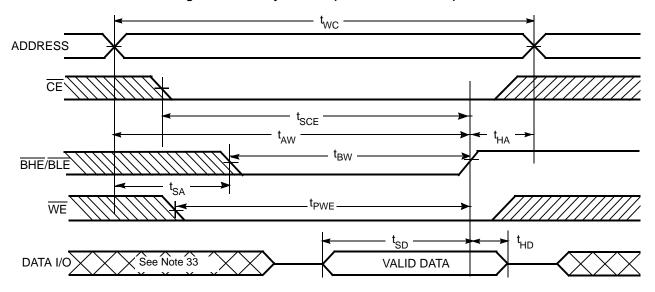



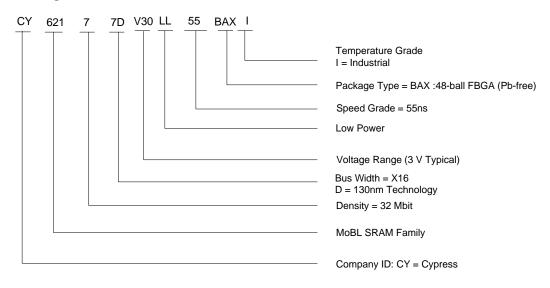
Figure 9. Write Cycle No. 4 (BHE/BLE Controlled) [29, 30, 31]

- 29. All Read/Write switching wavefo<u>rms</u> are shown for 16-bit data transactions only.
 30. \overline{CE} is the logical combination of \overline{CE}_1 and \overline{CE}_2 . When \overline{CE}_1 is LOW and \overline{CE}_2 is HIGH, \overline{CE} is LOW; when \overline{CE}_1 is HIGH or \overline{CE}_2 is LOW, \overline{CE} is HIGH.
 31. If \overline{CE} goes HIGH simultaneously with $\overline{WE} = V_{IH}$, the output remains in a high-impedance state.

- 32. The minimum write cycle pulse width should be equal to the sum of tsD and tHZWE.

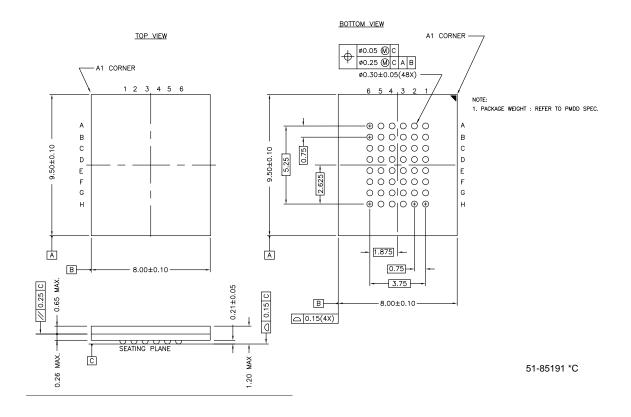
 33. During this period, the I/Os are in output state and input signals should not be applied.

Truth Table


CE ₁	CE ₂	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
Н	Х	Х	Х	Х	Х	High Z	Deselect/power-down	Standby (I _{SB})
Х	L	Х	Х	Х	Х	High Z	Deselect/power-down	Standby (I _{SB})
Х	Х	Х	Х	Н	Н	High Z	Deselect/power-down	Standby (I _{SB})
L	Н	Н	L	L	L	Data out (I/O ₀ –I/O ₁₅)	Read	Active (I _{CC})
L	Н	Н	L	Н	L	Data out (I/O ₀ -I/O ₇); High Z (I/O ₈ -I/O ₁₅)	Read	Active (I _{CC})
L	Н	Н	L	L	Н	High Z (I/O ₀ –I/O ₇); Data Out (I/O ₈ –I/O ₁₅)	Read	Active (I _{CC})
L	Н	Н	Н	L	Н	High Z	Output disabled	Active (I _{CC})
L	Н	Н	Н	Н	L	High Z	Output disabled	Active (I _{CC})
L	Н	Н	Н	L	L	High Z	Output disabled	Active (I _{CC})
L	Н	L	Х	L	L	Data in (I/O ₀ -I/O ₁₅)	Write	Active (I _{CC})
L	Н	L	Х	Н	L	Data in (I/O ₀ –I/O ₇); High Z (I/O ₈ –I/O ₁₅)	Write	Active (I _{CC})
L	Н	L	Х	L	Н	High Z (I/O ₀ –I/O ₇); Data in (I/O ₈ –I/O ₁₅)	Write	Active (I _{CC})

Ordering Information

Speed (ns)		Ordering Code	Package Diagram	Package Type	Operating Range
	55	CY62177DV30LL-55BAXI	51-85191	48-ball FBGA (8 mm × 9.5 mm × 1.2 mm) (Pb-free)	Industrial


Ordering Code Definitions

Package Diagram

Figure 10. 48 ball FBGA (8 \times 9.5 \times 1.2 mm) Package Outline, 51-85191

Acronyms

Acronym	Description
CMOS complementary metal oxide semiconductor	
FBGA	fine ball grid array
I/O	input/output
SRAM	static random access memory

Document Conventions

Units of Measure

Symbol	Unit of Measure		
°C	degrees Celsius		
MHz	megahertz		
μΑ	microampere		
mA	milliampere		
ns	nanosecond		
pF	picofarad		
V	volt		
Ω	ohm		
W	watt		

Document History Page

Document Title: CY62177DV30 MoBL [®] , 32-Mbit (2M × 16) Static RAM Document #: 38-05633				
Revision	ECN	Orig. of Change	Submission Date	Description of Change
**	251075	AJU	See ECN	New data sheet.
*A	330363	AJU	See ECN	Updated Document Title (Replaced CYM62177DV30 with CY62177DV30). Added second chip enable (CE ₂) related information in all instances across the document. Updated Switching Characteristics: Added Note 12 and referred the same note in "Parameter" column.
*B	400960	NXR	See ECN	Changed address of Cypress Semiconductor Corporation on Page 1 from "390" North First Street" to "198 Champion Court". Updated Electrical Characteristics: Changed maximum value of I_{SB1} parameter from 60 and 40 μA to 100 μA corresponding to L and LL versions for both the 55 and the 70 ns speed bins respectively.
*C	469187	NXR	See ECN	Changed status from Preliminary to Final. Updated Electrical Characteristics: Changed maximum value of I_{SB2} parameter from 40 μA to 50 μA corresponding to LL version for both 45 ns and 55 ns speed bins. Updated Data Retention Characteristics: Changed maximum value of I_{CCDR} parameter from 20 μA to 25 μA for LL version. Updated Ordering Information.
*D	2896036	AJU	03/19/10	Updated Ordering Information (Removed inactive parts). Updated Package Diagram. Updated to new template.
*E	3153110	RAME	01/25/2011	Removed CY62177DV30L related information in all instances across the document. Removed 70 ns speed bin related information in all instances across the document. Added Ordering Code Definitions Updated to new template.
*F	3329873	RAME	07/27/11	Updated Functional Description: Removed Note "For best practice recommendations, please refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com website." and its reference. Updated Capacitance: Removed Note "This applies for all packages." and its reference in "Parameter column (because of single package availability). Added Acronyms and Units of Measure. Updated template and styles according to current Cypress standards.
*G	3685455	MEMJ	07/20/2012	Updated Switching Waveforms: Added Note 18 and referred the same note in all waveforms. Updated text in Switching Waveforms diagrams. Updated Package Diagram.
*H	4576526	MEMJ	11/21/2014	Updated Functional Description: Added "For a complete list of related documentation, click here." at the end. Updated Switching Characteristics: Added Note 17 and referred the same note in "Write Cycle". Updated Switching Waveforms: Added Note 32 and referred the same note in Figure 8. Updated Package Diagram: spec 51-85191 — Changed revision from *B to *C.

Document History Page (continued)

Document Title: CY62177DV30 MoBL [®] , 32-Mbit (2M × 16) Static RAM Document #: 38-05633				
Revision	ECN	Orig. of Change	Submission Date	Description of Change
*	4919314	VINI	09/14/2015	Updated Switching Waveforms: Updated caption of Figure 9 (Removed "OE LOW"). Updated to new template. Completing Sunset Review.
*J	5444220	VINI	09/21/2016	Updated Thermal Resistance: Updated all values of θ_{JA} and θ_{JC} parameters. Updated to new template. Completing Sunset Review.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM® Cortex® Microcontrollers cypress.com/arm Automotive cypress.com/automotive Clocks & Buffers cypress.com/clocks Interface cypress.com/interface Internet of Things cypress.com/iot Lighting & Power Control cypress.com/powerpsoc Memory cypress.com/memory **PSoC** cypress.com/psoc Touch Sensing cypress.com/touch **USB** Controllers cypress.com/usb Wireless/RF

cypress.com/wireless

PSoC[®]Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation, 2004-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through reselfers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.