

3.3V CMOS OCTAL BUS TRANSCEIVER WITH 3-STATE OUTPUTS AND 5 VOLT TOLERANT I/O

IDT74LVC2245A

FEATURES:

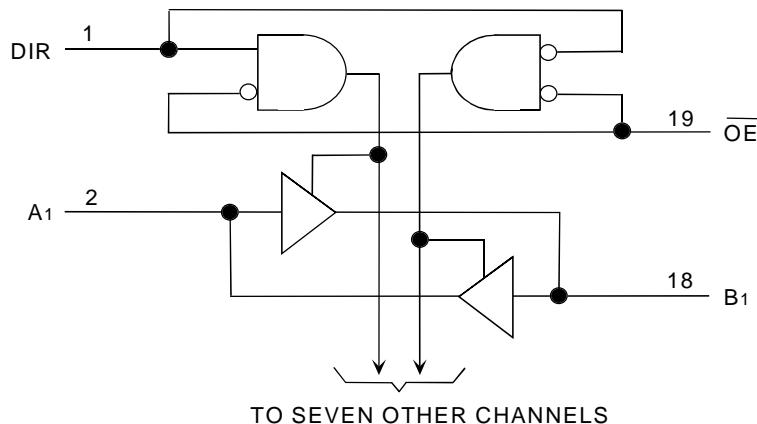
- 0.5 MICRON CMOS Technology
- ESD > 2000V per MIL-STD-883, Method 3015;
> 200V using machine model (C = 200pF, R = 0)
- 1.27mm pitch SOIC, 0.65mm pitch SSOP,
0.635mm pitch QSOP, 0.65mm pitch TSSOP packages
- Extended commercial range of -40°C to +85°C
- V_{CC} = 3.3V ± 0.3V, Normal Range
- V_{CC} = 2.3V to 3.6V, Extended Range
- CMOS power levels (0.4µW typ. static)
- Rail-to-Rail output swing for increased noise margin
- All inputs, outputs and I/O are 5 Volt tolerant
- Supports hot insertion

Drive Features for LVC2245A:

- Balanced Output Drivers: ±12mA (B port)
- High Output Drivers: ±24mA (A port)

DESCRIPTION:

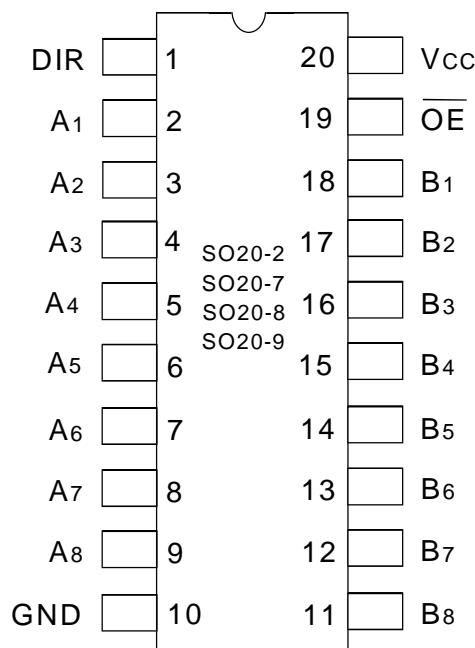
This bus transceiver is built using advanced dual metal CMOS technology. The LVC2245A device is designed for asynchronous communication between data buses. The device transmits data from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (\overline{OE}) input can be used to disable the device so the buses are effectively isolated.


Inputs can be driven from either 3.3V or 5V devices. This feature allows the use of this device as a translator in a mixed 3.3V/5V environment.

The LVC2245A has series resistors in the device output structure of the "B" port which will significantly reduce line noise when used with light loads. The driver has been designed to drive ±12mA at the designated threshold levels.

APPLICATIONS:

- 5V and 3.3V mixed voltage systems
- Data communication and telecommunication systems


FUNCTIONAL BLOCK DIAGRAM

EXTENDED COMMERCIAL TEMPERATURE RANGE

FEBRUARY 2000

PIN CONFIGURATION

SOIC/ SSOP/ QSOP/ TSSOP
TOP VIEW

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Description	Max.	Unit
VTERM	Terminal Voltage with Respect to GND	- 0.5 to +6.5	V
TSTG	Storage Temperature	- 65 to +150	°C
IOUT	DC Output Current	- 50 to +50	mA
Ik	Continuous Clamp Current, Vi < 0 or Vo < 0	- 50	mA
Icc	Continuous Current through each Vcc or GND	±100	mA
Iss			

8LVC

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

CAPACITANCE (TA = +25°C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Typ.	Max.	Unit
C _{IN}	Input Capacitance	V _{IN} = 0V	4.5	6	pF
C _{OUT}	Output Capacitance	V _{OUT} = 0V	5.5	8	pF
C _{I/O}	I/O Port Capacitance	V _{IN} = 0V	6.5	8	pF

8LVC Link

NOTE:

1. As applicable to the device type.

PIN DESCRIPTION

Pin Names	Description
OE	Output-enable Input (Active LOW)
A _x	Side A Inputs or 3-State Outputs
B _x	Side B Inputs or 3-State Outputs
DIR	Direction-control Input

FUNCTION TABLE (1)

Inputs		Outputs
OE	DIR	
L	L	B data to A bus
L	H	A data to B bus
H	X	Isolation

NOTE:

1. H = HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: $T_A = -40^\circ\text{C}$ To $+85^\circ\text{C}$

Symbol	Parameter	Test Conditions		Min.	Typ. ⁽¹⁾	Max.	Unit
V _{IH}	Input HIGH Voltage Level	V _{CC} = 2.3V to 2.7V		1.7	—	—	V
		V _{CC} = 2.7V to 3.6V		2	—	—	
V _{IL}	Input LOW Voltage Level	V _{CC} = 2.3V to 2.7V		—	—	0.7	V
		V _{CC} = 2.7V to 3.6V		—	—	0.8	
I _{IH} I _{IL}	Input Leakage Current	V _{CC} = 3.6V	V _I = 0 to 5.5V	—	—	± 5	μA
I _{OZH} I _{OZL}	High Impedance Output Current (3-State Output pins)	V _{CC} = 3.6V	V _O = 0 to 5.5V	—	—	± 10	μA
I _{OFF}	Input/Output Power Off Leakage	V _{CC} = 0V, V _{IN} or V _O \leq 5.5V		—	—	± 50	μA
V _{IK}	Clamp Diode Voltage	V _{CC} = 2.3V, I _{IN} = -18mA		—	-0.7	-1.2	V
V _H	Input Hysteresis	V _{CC} = 3.3V		—	100	—	mV
I _{CCL} I _{CCH} I _{CCZ}	Quiescent Power Supply Current	V _{CC} = 3.6V	V _{IN} = GND or V _{CC}	—	—	10	μA
			3.6 \leq V _{IN} \leq 5.5V ⁽²⁾	—	—	10	
ΔI_{CC}	Quiescent Power Supply Current Variation	One input at V _{CC} - 0.6V, other inputs at V _{CC} or GND V _{CC} = 3.0 – 3.6V		—	—	500	μA

NOTES:

1. Typical values are at V_{CC} = 3.3V, $+25^\circ\text{C}$ ambient.

2. This applies in the disabled state only.

OUTPUT DRIVE CHARACTERISTICS FOR PORT A

Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	V _{CC} = 2.3V to 3.6V	I _{OH} = -0.1mA	V _{CC} - 0.2	—	V
		V _{CC} = 2.3V	I _{OH} = -6mA	2	—	
		V _{CC} = 2.3V	I _{OH} = -12mA	1.7	—	
		V _{CC} = 2.7V		2.2	—	
		V _{CC} = 3.0V		2.4	—	
		V _{CC} = 3.0V	I _{OH} = -24mA	2.2	—	
V _{OL}	Output LOW Voltage	V _{CC} = 2.3V to 3.6V	I _{OL} = 0.1mA	—	0.2	V
		V _{CC} = 2.3V	I _{OL} = 6mA	—	0.4	
			I _{OL} = 12mA	—	0.7	
		V _{CC} = 2.7V	I _{OL} = 12mA	—	0.4	
		V _{CC} = 3.0V	I _{OL} = 24mA	—	0.55	

NOTE:

1. V_{IH} and V_{IL} must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate V_{CC} range. $T_A = -40^\circ\text{C}$ to $+85^\circ\text{C}$.

8LVC Link

OUTPUT DRIVE CHARACTERISTICS FOR PORT B

Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Max.	Unit
VOH	Output HIGH Voltage	VCC = 2.3V to 3.6V	I _{OH} = -0.1mA	VCC - 0.2	—	V
		VCC = 2.3V	I _{OH} = -4mA	1.9	—	
			I _{OH} = -6mA	1.7	—	
		VCC = 2.7V	I _{OH} = -4mA	2.2	—	
			I _{OH} = -8mA	2	—	
		VCC = 3.0V	I _{OH} = -6mA	2.4	—	
			I _{OH} = -12mA	2	—	
VOL	Output LOW Voltage	VCC = 2.3V to 3.6V	I _{OL} = 0.1mA	—	0.2	V
		VCC = 2.3V	I _{OL} = 4mA	—	0.4	
			I _{OL} = 6mA	—	0.55	
		VCC = 2.7V	I _{OL} = 4mA	—	0.4	
			I _{OL} = 8mA	—	0.6	
		VCC = 3.0V	I _{OL} = 6mA	—	0.55	
			I _{OL} = 12mA	—	0.8	

8LVC Link

NOTE:

1. V_{IH} and V_{IL} must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate V_{CC} range. T_A = -40°C to +85°C.

OPERATING CHARACTERISTICS, V_{CC} = 3.3V±0.3V, T_A = 25°C

Symbol	Parameter	Test Conditions	Typical	Unit
CPD	Power dissipation capacitance per transceiver Outputs enabled	C _L = 0pF, f = 10Mhz	48	pF
CPD	Power dissipation capacitance per transceiver Outputs disabled		4	pF

SWITCHING CHARACTERISTICS FOR PORT A (1)

Symbol	Parameter	V _{CC} = 2.7V		V _{CC} = 3.3V±0.3V		Unit
		Min.	Max.	Min.	Max.	
t _{PLH}	Propagation Delay xBx to xAx	—	7.3	1.5	6.3	ns
t _{PHL}	Output Enable Time xOE to xAx	—	9.5	1.5	8.5	ns
t _{PZH}	Output Disable Time xOE to xAx	—	8.5	1.7	7.5	ns
t _{PZL}		—	—	—	500	ps
tsk(0)	Output Skew ⁽²⁾	—	—	—	—	

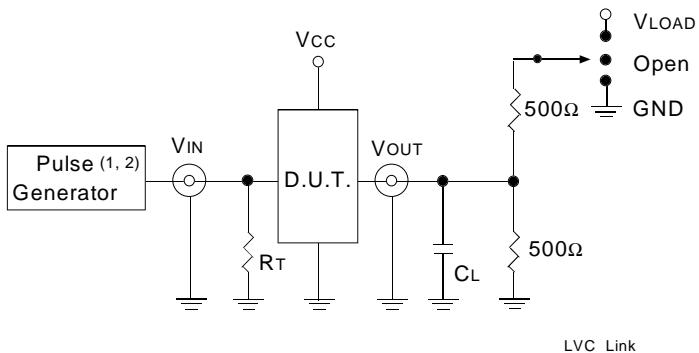
NOTES:

1. See test circuits and waveforms. T_A = -40°C to +85°C.
2. Skew between any two outputs of the same package and switching in the same direction.

SWITCHING CHARACTERISTICS FOR PORT B (1)

Symbol	Parameter	V _{CC} = 2.7V		V _{CC} = 3.3V±0.3V		Unit
		Min.	Max.	Min.	Max.	
t _{PLH}	Propagation Delay xAx to xBx	—	8.1	1.5	7.1	ns
t _{PHL}	Output Enable Time OE to xBx	—	10	1.5	9	ns
t _{PZH}	Output Disable Time OE to xBx	—	9.2	1.7	8.2	ns
t _{PZL}		—	—	—	500	ps
t _{SK(0)}	Output Skew ⁽²⁾	—	—	—	500	ps

NOTES:


1. See test circuits and waveforms. TA = – 40°C to + 85°C.
2. Skew between any two outputs of the same package and switching in the same direction.

TEST CIRCUITS AND WAVEFORMS

TEST CONDITIONS

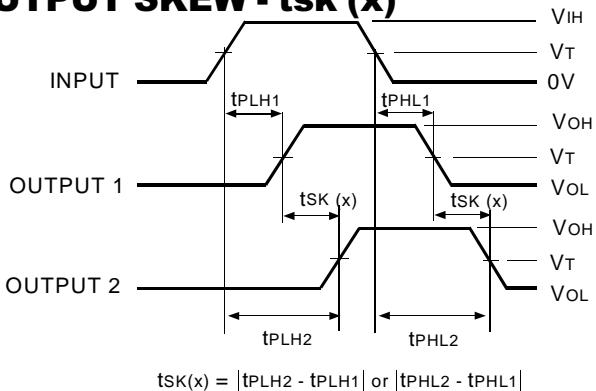
Symbol	$V_{CC}^{(1)} = 3.3V \pm 0.3V$	$V_{CC}^{(1)} = 2.7V$	$V_{CC}^{(2)} = 2.5V \pm 0.2V$	Unit
V_{LOAD}	6	6	$2 \times V_{CC}$	V
V_{IH}	2.7	2.7	V_{CC}	V
V_T	1.5	1.5	$V_{CC} / 2$	V
V_{LZ}	300	300	150	mV
V_{HZ}	300	300	150	mV
C_L	50	50	30	pF

TEST CIRCUITS FOR ALL OUTPUTS

DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance.
RT = Termination resistance: should be equal to ZOUT of the Pulse Generator.

NOTES-

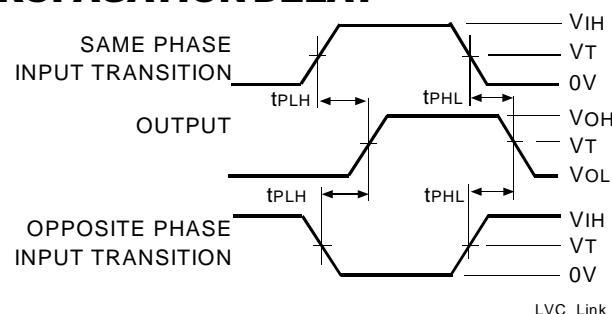

NOTES:

1. Pulse Generator for All Pulses: Rate \leq 10MHz; $t_f \leq 2.5\text{ns}$; $t_R \leq 2.5\text{ns}$.
2. Pulse Generator for All Pulses: Rate \leq 10MHz; $t_f \leq 2\text{ns}$; $t_R \leq 2\text{ns}$.

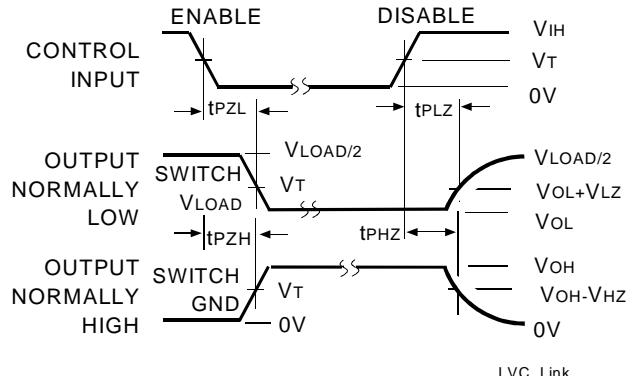
SWITCH POSITION

Test	Switch
Open Drain	V_{LOAD}
Disable Low	
Enable Low	
Disable High	GND
Enable High	
All Other tests	Open

OUTPUT SKEW - tsk (x)


$$t_{SK}(x) = |t_{PLH2} - t_{PLH1}| \text{ or } |t_{PHL2} - t_{PHL1}|$$

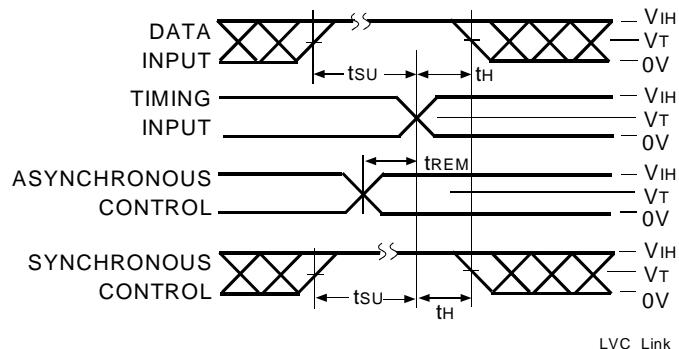
NOTES:


NOTE:-

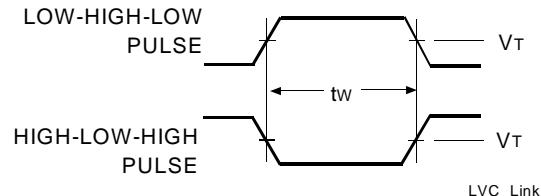
1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.
2. For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.

PROPAGATION DELAY

ENABLE AND DISABLE TIMES



NOTE-


NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

SET-UP, HOLD, AND RELEASE TIMES

PULSE WIDTH

ORDERING INFORMATION

CORPORATE HEADQUARTERS

2975 Stender Way
Santa Clara, CA 95054

for SALES:

800-345-7015 or 408-727-6116
fax: 408-492-8674
www.idt.com*

*To search for sales office near you, please click the sales button found on our home page or dial the 800# above and press 2.
The IDT logo is a registered trademark of Integrated Device Technology, Inc.